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Chapter 1: Overview Of The Chapters
The chapters of the C++ Annotations cover the following topics:
Chapter 2: Introduction
This document offers an introduction to the C++ programming language. It is a guide for C/C++ programming courses, yearly presented by Frank at the University of Groningen. This document is not a complete C/C++ handbook, as much of the C-background of C++ is not covered. Other sources should be referred to for that (e.g., the on-line book suggested to me by George Danchev (danchev at spnet dot net)).
The reader should be forewarned that extensive knowledge of the C programming language is actually assumed. The C++ Annotations continue where topics of the C programming language end, such as pointers, basic flow control and the construction of functions.
Some elements of the language, like specific lexical tokens (like digraphs (e.g., <: for [, and >: for ])) are not covered by the C++ Annotations, as these tokens occur extremely seldom in C++ source code. In addition, trigraphs (using ??< for {, and ??> for }) have been removed from C++.
The working draft of the C++ standard is freely available, and can be cloned from the git-repository at https://gitlab.com/cplusplus/draft.git
The version number of the C++ Annotations (currently 11.5.0) is updated when the content of the document change. The first number is the major number, and is probably not going to change for some time: it indicates a major rewriting. The middle number is increased when new information is added to the document. The last number only indicates small changes; it is increased when, e.g., series of typos are corrected.
This document is published by the Center of Information Technology, University of Groningen, the Netherlands under the GNU General Public License.
The C++ Annotations were typeset using the yodl formatting system.
All correspondence concerning suggestions, additions, improvements or changes to this document should be directed to the author:
Frank B. Brokken
University of Groningen,
PO Box 407,
9700 AK Groningen
The Netherlands
(email: f.b.brokken@rug.nl)
In this chapter an overview of C++'s defining features is presented. A few extensions to C are reviewed and the concepts of object based and object oriented programming (OOP) are briefly introduced.
2.1: What's new in the C++ Annotations
This section is modified when the first or second part of the version number changes (and occasionally also for the third field of the version number). At a major version upgrade the entries of the previous major version are kept, and entries referring to older releases are removed.
2.2: C++'s history
The first implementation of C++ was developed in the 1980s at the AT&T Bell Labs, where the Unix operating system was created.
C++ was originally a `pre-compiler', similar to the preprocessor of C, converting special constructions in its source code to plain C. Back then this code was compiled by a standard C compiler. The `pre-code', which was read by the C++ pre-compiler, was usually located in a file with the extension .cc, .C or .cpp. This file would then be converted to a C source file with the extension .c, which was thereupon compiled and linked.
The nomenclature of C++ source files remains: the extensions .cc and .cpp are still used. However, the preliminary work of a C++ pre-compiler is nowadays usually performed during the actual compilation process. Often compilers determine the language used in a source file from its extension. This holds true for Borland's and Microsoft's C++ compilers, which assume a C++ source for an extension .cpp. The GNU compiler g++, which is available on many Unix platforms, assumes for C++ the extension .cc.
The fact that C++ used to be compiled into C code is also visible from the fact that C++ is a superset of C: C++ offers the full C grammar and supports all C-library functions, and adds to this features of its own. This makes the transition from C to C++ quite easy. Programmers familiar with C may start `programming in C++' by using source files having extensions .cc or .cpp instead of .c, and may then comfortably slip into all the possibilities offered by C++. No abrupt change of habits is required.
2.2.1: History of the C++ Annotations
The original version of the C++ Annotations was written by Frank Brokken and Karel Kubat in Dutch using LaTeX. After some time, Karel rewrote the text and converted the guide to a more suitable format and (of course) to English in September 1994.
The first version of the guide appeared on the net in October 1994. By then it was converted to SGML.
Gradually new chapters were added, and the content was modified and further improved (thanks to countless readers who sent us their comments).
In major version four Frank added new chapters and converted the document from SGML to yodl.
The C++ Annotations are freely distributable. Be sure to read the legal notes.
Reading the annotations beyond this point implies that you are aware of these notes and that you agree with them.
If you like this document, tell your friends about it. Even better, let us know by sending email to Frank.
2.2.2: Compiling a C program using a C++ compiler
Prospective C++ programmers should realize that C++ is not a perfect superset of C. There are some differences you might encounter when you simply rename a file to a file having the extension .cc and run it through a C++ compiler:
putchar(10);
and
putchar('\n');
are synonymous.
By contrast, in C++, sizeof('c') is always 1 (but see also section 3.4.2). An int is still an int, though. As we shall see later (section 2.5.4), the two function calls
somefunc(10);
and
somefunc('\n');
may be handled by different functions: C++ distinguishes functions not only by their names, but also by their argument types, which are different in these two calls. The former using an int argument, the latter a char.
void func();
means that a function func() exists, returning no value. The declaration doesn't specify which arguments (if any) are accepted by the function.
However, in C++ the above declaration means that the function func() does not accept any arguments at all. Any arguments passed to it result in a compile-time error.
Note that the keyword extern is not required when declaring functions. A function definition becomes a function declaration simply by replacing a function's body by a semicolon. The keyword extern is required, though, when declaring variables.
2.2.3: Compiling a C++ program
To compile a C++ program, a C++ compiler is required. Considering the free nature of this document, it won't come as a surprise that a free compiler is suggested here. The Free Software Foundation (FSF) provides at http://www.gnu.org a free C++ compiler which is, among other places, also part of the Debian (http://www.debian.org) distribution of Linux ( http://www.linux.org).
Always use the latest C++ standard supported by your compiler. When the latest standard isn't used by default, but is already partially implemented it can usually be selected by specifying the appropriate flag. E.g., to use the C++2a standard specify the flag --std=c++2a. In the C++ Annotations it is assumed that this flag is used when compiling the examples.
2.2.3.1: C++ under MS-Windows
For MS-Windows Cygwin (http://cygwin.com) or MinGW (http://mingw-w64.org/doku.php) provide the foundation for installing the Windows port of the GNU g++ compiler (see also https://docs.microsoft.com/en-us/windows/wsl/about).
The GNU g++ compiler's official home page is http://gcc.gnu.org, also containing information about how to install the compiler in an MS-Windows system.
2.2.3.2: Compiling a C++ source text
Generally the following command can be used to compile a C++ source file `source.cc':
g++ source.cc
This produces a binary program (a.out or a.exe). If the default name is inappropriate, the name of the executable can be specified using the -o flag (here producing the program source):
g++ -o source source.cc
If a mere compilation is required, the compiled module can be produced using the -c flag:
g++ -c source.cc
This generates the file source.o, which can later on be linked to other modules.
C++ programs quickly become too complex to maintain `by hand'. With all serious programming projects program maintenance tools are used. Usually the standard make program is used to maintain C++ programs, but good alternatives exist, like the icmake or ccbuild program maintenance utilities.
It is strongly advised to start using maintenance utilities early in the study of C++.
2.3: C++: advantages and claims
Often it is said that programming in C++ leads to `better' programs. Some of the claimed advantages of C++ are:
Which of these allegations are true? Originally, our impression was that the C++ language was somewhat overrated; the same holding true for the entire object-oriented programming (OOP) approach. The enthusiasm for the C++ language resembles the once uttered allegations about Artificial-Intelligence (AI) languages like Lisp and Prolog: these languages were supposed to solve the most difficult AI-problems `almost without effort'. New languages are often oversold: in the end, each problem can be coded in any programming language (say BASIC or assembly language). The advantages and disadvantages of a given programming language aren't in `what you can do with them', but rather in `which tools the language offers to implement an efficient and understandable solution to a programming problem'. Often these tools take the form of syntactic restrictions, enforcing or promoting certain constructions or simply suggesting intentions by applying or `embracing' such syntactic forms. Rather than a long list of plain assembly instructions we now use flow control statements, functions, objects or even (with C++) so-called templates to structure and organize code and to express oneself `eloquently' in the language of one's choice.
Concerning the above allegations of C++, we support the following, however.
C++ in particular (and OOP in general) is of course not the solution to all programming problems. However, the language does offer various new and elegant facilities which are worth investigating. At the downside, the level of grammatical complexity of C++ has increased significantly as compared to C. This may be considered a serious drawback of the language. Although we got used to this increased level of complexity over time, the transition was neither fast nor painless.
With the C++ Annotations we hope to help the reader when transiting from C to C++ by focusing on the additions of C++ as compared to C and by leaving out plain C. It is our hope that you like this document and may benefit from it.
Enjoy and good luck on your journey into C++!
2.4: What is Object-Oriented Programming?
Object-oriented (and object-based) programming propagates a slightly different approach to programming problems than the strategy usually used in C programs. In C programming problems are usually solved using a `procedural approach': a problem is decomposed into subproblems and this process is repeated until the subtasks can be coded. Thus a conglomerate of functions is created, communicating through arguments and variables, global or local (or static).
In contrast (or maybe better: in addition) to this, an object-based approach identifies the keywords used in a problem statement. These keywords are then depicted in a diagram where arrows are drawn between those keywords to depict an internal hierarchy. The keywords become the objects in the implementation and the hierarchy defines the relationship between these objects. The term object is used here to describe a limited, well-defined structure, containing all information about an entity: data types and functions to manipulate the data. As an example of an object oriented approach, an illustration follows:
The employees and owner of a car dealer and auto garage company are paid as follows. First, mechanics who work in the garage are paid a certain sum each month. Second, the owner of the company receives a fixed amount each month. Third, there are car salesmen who work in the showroom and receive their salary each month plus a bonus per sold car. Finally, the company employs second-hand car purchasers who travel around; these employees receive their monthly salary, a bonus per bought car, and a restitution of their travel expenses.
When representing the above salary administration, the keywords could be mechanics, owner, salesmen and purchasers. The properties of such units are: a monthly salary, sometimes a bonus per purchase or sale, and sometimes restitution of travel expenses. When analyzing the problem in this manner we arrive at the following representation:
In the hierarchy of objects we would define the dependency between the first two objects by letting the car salesmen be `derived' from the owner and mechanics.
The hierarchy of the identified objects are further illustrated in Figure 1.
Figure 1: Hierarchy of objects in the salary administration.
The overall process in the definition of a hierarchy such as the above starts with the description of the most simple type. Traditionally (and still encountered with some popular object oriented languages) more complex types are thereupon derived from the basic type, with each derived type adding some new functionality. From these derived types, more complex types can again be derived ad infinitum, until a representation of the entire problem can be made.
Over the years this approach has become less popular in C++ as it typically results in very tight coupling among those types, which in turns reduces rather than enhances the understanding, maintainability and testability of complex programs. The term coupling refers to the degree of independence between software components: tight coupling means a strong dependency, which is frowned upon in C++. In C++ object oriented programs more and more favor small, easy to understand hierarchies, limited coupling and a developmental process where design patterns (cf. Gamma et al. (1995)) play a central role.
In C++ classes are frequently used to define the characteristics of objects. Classes contain the necessary functionality to do useful things. Classes generally do not offer all their functionality (and typically none of their data) to objects of other classes. As we will see, classes tend to hide their properties in such a way that they are not directly modifiable by the outside world. Instead, dedicated functions are used to reach or modify the properties of objects. Thus class-type objects are able to uphold their own integrity. The core concept here is encapsulation of which data hiding is just an example. These concepts are further elaborated in chapter 7.
2.5: Differences between C and C++
In this section some examples of C++ code are shown. Some differences between C and C++ are highlighted.
2.5.1: The function `main'
In C++ there are only two variants of the function main: int main() and int main(int argc, char **argv).
Notes:
2.5.2: End-of-line comment
According to the ANSI/ISO definition, `end of line comment' is implemented in the syntax of C++. This comment starts with // and ends at the end-of-line marker. The standard C comment, delimited by /* and */ can still be used in C++:
int main()
{
// this is end-of-line comment
// one comment per line
/*
this is standard-C comment, covering
multiple lines
*/
}
Despite the example, it is advised not to use C type comment inside the body of C++ functions. Sometimes existing code must temporarily be suppressed, e.g., for testing purposes. In those cases it's very practical to be able to use standard C comment. If such suppressed code itself contains such comment, it would result in nested comment-lines, resulting in compiler errors. Therefore, the rule of thumb is not to use C type comment inside the body of C++ functions (alternatively, #if 0 until #endif pair of preprocessor directives could of course also be used).
2.5.3: Strict type checking
C++ uses very strict type checking. A prototype must be known for each function before it is called, and the call must match the prototype. The program
int main()
{
printf("Hello World\n");
}
often compiles under C, albeit with a warning that printf() is an unknown function. But C++ compilers (should) fail to produce code in such cases. The error is of course caused by the missing #include <stdio.h> (which in C++ is more commonly included as #include <cstdio> directive).
And while we're at it: as we've seen in C++ main always uses the int return value. Although it is possible to define int main() without explicitly defining a return statement, within main it is not possible to use a return statement without an explicit int-expression. For example:
int main()
{
return; // won't compile: expects int expression, e.g.
// return 1;
}
Implicit conversions from void * to non-void pointers are not allowed. E.g., the following isn't accepted in C++:
void *none()
{
return 0;
}
int main()
{
int *empty = none();
}
2.5.4: Function Overloading
In C++ it is possible to define functions having identical names but performing different actions. The functions must differ in their parameter lists (and/or in their const attribute). An example is given below:
#include <stdio.h>
void show(int val)
{
printf("Integer: %d\n", val);
}
void show(double val)
{
printf("Double: %lf\n", val);
}
void show(char const *val)
{
printf("String: %s\n", val);
}
int main()
{
show(12);
show(3.1415);
show("Hello World!\n");
}
In the above program three functions show are defined, only differing in their parameter lists, expecting an int, double and char *, respectively. The functions have identical names. Functions having identical names but different parameter lists are called overloaded. The act of defining such functions is called `function overloading'.
The C++ compiler implements function overloading in a rather simple way. Although the functions share their names (in this example show), the compiler (and hence the linker) use quite different names. The conversion of a name in the source file to an internally used name is called `name mangling'. E.g., the C++ compiler might convert the prototype void show (int) to the internal name VshowI, while an analogous function having a char * argument might be called VshowCP. The actual names that are used internally depend on the compiler and are not relevant for the programmer, except where these names show up in e.g., a listing of the content of a library.
Some additional remarks with respect to function overloading:
However, it is also quite possible to define two functions lookup, one of which would find a name in a list while the other would determine the video mode. In this case the behavior of those two functions have nothing in common. It would therefore be more practical to use names which suggest their actions; say, findname and videoMode.
printf("Hello World!\n");
provides no information about the return value of the function printf. Two functions printf which only differ in their return types would therefore not be distinguishable to the compiler.
2.5.5: Default function arguments
In C++ it is possible to provide `default arguments' when defining a function. These arguments are supplied by the compiler when they are not specified by the programmer. For example:
#include <stdio.h>
void showstring(char *str = "Hello World!\n");
int main()
{
showstring("Here's an explicit argument.\n");
showstring(); // in fact this says:
// showstring("Hello World!\n");
}
The possibility to omit arguments in situations where default arguments are defined is just a nice touch: it is the compiler who supplies the lacking argument unless it is explicitly specified at the call. The code of the program will neither be shorter nor more efficient when default arguments are used.
Functions may be defined with more than one default argument:
void two_ints(int a = 1, int b = 4);
int main()
{
two_ints(); // arguments: 1, 4
two_ints(20); // arguments: 20, 4
two_ints(20, 5); // arguments: 20, 5
}
When the function two_ints is called, the compiler supplies one or two arguments whenever necessary. A statement like two_ints(,6) is, however, not allowed: when arguments are omitted they must be on the right-hand side.
Default arguments must be known at compile-time since at that moment arguments are supplied to functions. Therefore, the default arguments must be mentioned at the function's declaration, rather than at its implementation:
// sample header file
void two_ints(int a = 1, int b = 4);
// code of function in, say, two.cc
void two_ints(int a, int b)
{
...
}
It is an error to supply default arguments in both function definitions and function declarations. When applicable default arguments should be provided in function declarations: when the function is used by other sources the compiler commonly reads the header file rather than the function definition itself. Consequently the compiler has no way to determine the values of default arguments if they are provided in the function definition.
2.5.6: NULL-pointers vs. 0-pointers and nullptr
In C++ all zero values are coded as 0. In C NULL is often used in the context of pointers. This difference is purely stylistic, though one that is widely adopted. In C++ NULL should be avoided (as it is a macro, and macros can --and therefore should-- easily be avoided in C++, see also section 8.1.4). Instead 0 can almost always be used.
Almost always, but not always. As C++ allows function overloading (cf. section 2.5.4) the programmer might be confronted with an unexpected function selection in the situation shown in section 2.5.4:
#include <stdio.h>
void show(int val)
{
printf("Integer: %d\n", val);
}
void show(double val)
{
printf("Double: %lf\n", val);
}
void show(char const *val)
{
printf("String: %s\n", val);
}
int main()
{
show(12);
show(3.1415);
show("Hello World!\n");
}
In this situation a programmer intending to call show(char const *) might call show(0). But this doesn't work, as 0 is interpreted as int and so show(int) is called. But calling show(NULL) doesn't work either, as C++ usually defines NULL as 0, rather than ((void *)0). So, show(int) is called once again. To solve these kinds of problems the new C++ standard introduces the keyword nullptr representing the 0 pointer. In the current example the programmer should call show(nullptr) to avoid the selection of the wrong function. The nullptr value can also be used to initialize pointer variables. E.g.,
int *ip = nullptr; // OK
int value = nullptr; // error: value is no pointer
2.5.7: The `void' parameter list
In C, a function prototype with an empty parameter list, such as
void func();
means that the argument list of the declared function is not prototyped: for functions using this prototype the compiler does not warn against calling func with any set of arguments. In C the keyword void is used when it is the explicit intent to declare a function with no arguments at all, as in:
void func(void);
As C++ enforces strict type checking, in C++ an empty parameter list indicates the total absence of parameters. The keyword void is thus omitted.
2.5.8: The `#define __cplusplus'
Each C++ compiler which conforms to the ANSI/ISO standard defines the symbol __cplusplus: it is as if each source file were prefixed with the preprocessor directive #define __cplusplus.
We shall see examples of the usage of this symbol in the following sections.
2.5.9: Using standard C functions
Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used in C++ programs. Such functions, however, must be declared as C functions.
As an example, the following code fragment declares a function xmalloc as a C function:
extern "C" void *xmalloc(int size);
This declaration is analogous to a declaration in C, except that the prototype is prefixed with extern "C".
A slightly different way to declare C functions is the following:
extern "C"
{
// C-declarations go in here
}
It is also possible to place preprocessor directives at the location of the declarations. E.g., a C header file myheader.h which declares C functions can be included in a C++ source file as follows:
extern "C"
{
#include <myheader.h>
}
Although these two approaches may be used, they are actually seldom encountered in C++ sources. A more frequently used method to declare external C functions is encountered in the next section.
2.5.10: Header files for both C and C++
The combination of the predefined symbol __cplusplus and the possibility to define extern "C" functions offers the ability to create header files for both C and C++. Such a header file might, e.g., declare a group of functions which are to be used in both C and C++ programs.
The setup of such a header file is as follows:
#ifdef __cplusplus
extern "C"
{
#endif
/* declaration of C-data and functions are inserted here. E.g., */
void *xmalloc(int size);
#ifdef __cplusplus
}
#endif
Using this setup, a normal C header file is enclosed by extern "C" { which occurs near the top of the file and by }, which occurs near the bottom of the file. The #ifdef directives test for the type of the compilation: C or C++. The `standard' C header files, such as stdio.h, are built in this manner and are therefore usable for both C and C++.
In addition C++ headers should support include guards. In C++ it is usually undesirable to include the same header file twice in the same source file. Such multiple inclusions can easily be avoided by including an #ifndef directive in the header file. For example:
#ifndef MYHEADER_H_
#define MYHEADER_H_
// declarations of the header file is inserted here,
// using #ifdef __cplusplus etc. directives
#endif
When this file is initially scanned by the preprocessor, the symbol MYHEADER_H_ is not yet defined. The #ifndef condition succeeds and all declarations are scanned. In addition, the symbol MYHEADER_H_ is defined.
When this file is scanned next while compiling the same source file, the symbol MYHEADER_H_ has been defined and consequently all information between the #ifndef and #endif directives is skipped by the compiler.
In this context the symbol name MYHEADER_H_ serves only for recognition purposes. E.g., the name of the header file can be used for this purpose, in capitals, with an underscore character instead of a dot.
Apart from all this, the custom has evolved to give C header files the extension .h, and to give C++ header files no extension. For example, the standard iostreams cin, cout and cerr are available after including the header file iostream, rather than iostream.h. In the Annotations this convention is used with the standard C++ header files, but not necessarily everywhere else.
There is more to be said about header files. Section 7.11 provides an in-depth discussion of the preferred organization of C++ header files. In addition, starting with the C++2a standard modules are available resulting in a somewhat more efficient way of handling declarations than offered by the traditional header files. In the C++ Annotations modules are covered in chapter 7, section 7.12.
2.5.11: Defining local variables
Although already available in the C programming language, local variables should only be defined once they're needed. Although doing so requires a little getting used to, eventually it tends to produce more readable, maintainable and often more efficient code than defining variables at the beginning of compound statements. We suggest to apply the following rules of thumb when defining local variables:
If considered appropriate, nested blocks can be used to localize auxiliary variables. However, situations exist where local variables are considered appropriate inside nested statements. The just mentioned for statement is of course a case in point, but local variables can also be defined within the condition clauses of if-else statements, within selection clauses of switch statements and condition clauses of while statements. Variables thus defined are available to the full statement, including its nested statements. For example, consider the following switch statement:
#include <stdio.h>
int main()
{
switch (int c = getchar())
{
case 'a':
case 'e':
case 'i':
case 'o':
case 'u':
printf("Saw vowel %c\n", c);
break;
case EOF:
printf("Saw EOF\n");
break;
case '0' ... '9':
printf("Saw number character %c\n", c);
break;
default:
printf("Saw other character, hex value 0x%2x\n", c);
}
}
Note the location of the definition of the character `c': it is defined in the expression part of the switch statement. This implies that `c' is available only to the switch statement itself, including its nested (sub)statements, but not outside the scope of the switch.
The same approach can be used with if and while statements: a variable that is defined in the condition clause of an if and while statement is available in their nested statements. There are some caveats, though:
The former point of attention should come as no big surprise: in order to be able to evaluate the logical condition of an if or while statement, the value of the variable must be interpretable as either zero (false) or non-zero (true). Usually this is no problem, but in C++ objects (like objects of the type std::string (cf. chapter 5)) are often returned by functions. Such objects may or may not be interpretable as numeric values. If not (as is the case with std::string objects), then such variables can not be defined at the condition or expression clauses of condition- or repetition statements. The following example will therefore not compile:
if (std::string myString = getString()) // assume getString returns
{ // a std::string value
// process myString
}
The above example requires additional clarification. Often a variable can profitably be given local scope, but an extra check is required immediately following its initialization. The initialization and the test cannot both be combined in one expression. Instead two nested statements are required. Consequently, the following example won't compile either:
if ((int c = getchar()) && strchr("aeiou", c))
printf("Saw a vowel\n");
If such a situation occurs, either use two nested if statements, or localize the definition of int c using a nested compound statement:
if (int c = getchar()) // nested if-statements
if (strchr("aeiou", c))
printf("Saw a vowel\n");
{ // nested compound statement
int c = getchar();
if (c && strchr("aeiou", c))
printf("Saw a vowel\n");
}
2.5.12: The keyword `typedef'
The keyword typedef is still used in C++, but is not required anymore when defining union, struct or enum definitions. This is illustrated in the following example:
struct SomeStruct
{
int a;
double d;
char string[80];
};
When a struct, union or other compound type is defined, the tag of this type can be used as type name (this is SomeStruct in the above example):
SomeStruct what;
what.d = 3.1415;
2.5.13: Functions as part of a struct
In C++ we may define functions as members of structs. Here we encounter the first concrete example of an object: as previously described (see section 2.4), an object is a structure containing data while specialized functions exist to manipulate those data.
A definition of a struct Point is provided by the code fragment below. In this structure, two int data fields and one function draw are declared.
struct Point // definition of a screen-dot
{
int x; // coordinates
int y; // x/y
void draw(); // drawing function
};
A similar structure could be part of a painting program and could, e.g., represent a pixel. With respect to this struct it should be noted that:
The Point structure could be used as follows:
Point a; // two points on
Point b; // the screen
a.x = 0; // define first dot
a.y = 10; // and draw it
a.draw();
b = a; // copy a to b
b.y = 20; // redefine y-coord
b.draw(); // and draw it
As shown in the above example a function that is part of the structure may be selected using the dot (.) (the arrow (->) operator is used when pointers to objects are available). This is therefore identical to the way data fields of structures are selected.
The idea behind this syntactic construction is that several types may contain functions having identical names. E.g., a structure representing a circle might contain three int values: two values for the coordinates of the center of the circle and one value for the radius. Analogously to the Point structure, a Circle may now have a function draw to draw the circle.
2.5.14: Evaluation order of operands
Traditionally, the evaluation order of expressions of operands of binary operators is, except for the boolean operators and and or, not defined. C++ changed this for postfix expressions, assignment expressions (including compound assignments), and shift operators:
In the following examples first is evaluated before second, before third, before fourth, whether they are single variables, parenthesized expressions, or function calls:
first.second
fourth += third = second += first
first << second << third << fourth
first >> second >> third >> fourth
In addition, when overloading an operator, the function implementing the overloaded operator is evaluated like the built-in operator it overloads, and not in the way function calls are generally ordered.
Chapter 3: A First Impression Of C++
In this chapter C++ is further explored. The possibility to declare functions in structs is illustrated in various examples; the concept of a class is introduced; casting is covered in detail; many new types are introduced and several important notational extensions to C are discussed.
3.1: Notable differences with C
Before we continue with the `real' object-approach to programming, we first introduce some notable differences with the C programming language: not mere differences between C and C++, but important syntactic constructs and keywords not found or differently used in C.
3.1.1: Using the keyword `const'
Even though the keyword const is part of the C grammar, its use is more important and much more common and strictly used in C++ than it is in C.
The const keyword is a modifier stating that the value of a variable or of an argument may not be modified. In the following example the intent is to change the value of a variable ival, which fails:
int main()
{
int const ival = 3; // a constant int
// initialized to 3
ival = 4; // assignment produces
// an error message
}
This example shows how ival may be initialized to a given value in its definition; attempts to change the value later (in an assignment) are not permitted.
Variables that are declared const can, in contrast to C, be used to specify the size of an array, as in the following example:
int const size = 20;
char buf[size]; // 20 chars big
Another use of the keyword const is seen in the declaration of pointers, e.g., in pointer-arguments. In the declaration
char const *buf;
buf is a pointer variable pointing to chars. Whatever is pointed to by buf may not be changed through buf: the chars are declared as const. The pointer buf itself however may be changed. A statement like *buf = 'a'; is therefore not allowed, while ++buf is.
In the declaration
char *const buf;
buf itself is a const pointer which may not be changed. Whatever chars are pointed to by buf may be changed at will.
Finally, the declaration
char const *const buf;
is also possible; here, neither the pointer nor what it points to may be changed.
The rule of thumb for the placement of the keyword const is the following: whatever occurs to the left to the keyword may not be changed.
Although simple, this rule of thumb is often used. For example, Bjarne Stroustrup states (in http://www.research.att.com/~bs/bs_faq2.html#constplacement):
Should I put "const" before or after the type?
I put it before, but that's a matter of taste. "const T" and "T const" were always (both) allowed and equivalent. For example:
const int a = 1; // OK
int const b = 2; // also OK
My guess is that using the first version will confuse fewer programmers (``is more idiomatic'').
But we've already seen an example where applying this simple `before' placement rule for the keyword const produces unexpected (i.e., unwanted) results as we will shortly see (below). Furthermore, the `idiomatic' before-placement also conflicts with the notion of const functions, which we will encounter in section 7.7. With const functions the keyword const is also placed behind rather than before the name of the function.
The definition or declaration (either or not containing const) should always be read from the variable or function identifier back to the type identifier:
``Buf is a const pointer to const characters''
This rule of thumb is especially useful in cases where confusion may occur. In examples of C++ code published in other places one often encounters the reverse: const preceding what should not be altered. That this may result in sloppy code is indicated by our second example above:
char const *buf;
What must remain constant here? According to the sloppy interpretation, the pointer cannot be altered (as const precedes the pointer). In fact, the char values are the constant entities here, as becomes clear when we try to compile the following program:
int main()
{
char const *buf = "hello";
++buf; // accepted by the compiler
*buf = 'u'; // rejected by the compiler
}
Compilation fails on the statement *buf = 'u'; and not on the statement ++buf.
Marshall Cline's C++ FAQ gives the same rule (paragraph 18.5) , in a similar context:
[18.5] What's the difference between "const Fred* p", "Fred* const p" and "const Fred* const p"?
You have to read pointer declarations right-to-left.
Marshall Cline's advice can be improved, though. Here's a recipe that will effortlessly dissect even the most complex declaration:
Let's apply this recipe to the following (by itself irrelevant) complex declaration. Little arrows indicate how far we should read at each step and the direction of the arrow indicates the reading direction:
char const *(* const (*(*ip)())[])[]
ip Start at the variable's name:
'ip' is
ip) Hitting a closing paren: revert
-->
(*ip) Find the matching open paren:
<- 'a pointer to'
(*ip)()) The next unmatched closing par:
--> 'a function (not expecting
arguments)'
(*(*ip)()) Find the matching open paren:
<- 'returning a pointer to'
(*(*ip)())[]) The next closing par:
--> 'an array of'
(* const (*(*ip)())[]) Find the matching open paren:
<-------- 'const pointers to'
(* const (*(*ip)())[])[] Read until the end:
-> 'an array of'
char const *(* const (*(*ip)())[])[] Read backwards what's left:
<----------- 'pointers to const chars'
Collecting all the parts, we get for char const *(* const (*(*ip)())[])[]: ip is a pointer to a function (not expecting arguments), returning a pointer to an array of const pointers to an array of pointers to const chars. This is what ip represents; the recipe can be used to parse any declaration you ever encounter.
3.1.2: Namespaces
C++ introduces the notion of a namespace: all symbols are defined in a larger context, called a namespace. Namespaces are used to avoid name conflicts that could arise when a programmer would like to define a function like sin operating on degrees, but does not want to lose the capability of using the standard sin function, operating on radians.
Namespaces are covered extensively in chapter 4. For now it should be noted that most compilers require the explicit declaration of a standard namespace: std. So, unless otherwise indicated, it is stressed that all examples in the Annotations now implicitly use the
using namespace std;
declaration. So, if you actually intend to compile examples given in the C++ Annotations, make sure that the sources start with the above using declaration.
3.1.3: The scope resolution operator ::
C++ introduces several new operators, among which the scope resolution operator (::). This operator can be used in situations where a global variable exists having the same name as a local variable:
#include <stdio.h>
double counter = 50; // global variable
int main()
{
for (int counter = 1; // this refers to the
counter != 10; // local variable
++counter)
{
printf("%d\n",
::counter // global variable
/ // divided by
counter); // local variable
}
}
In the above program the scope operator is used to address a global variable instead of the local variable having the same name. In C++ the scope operator is used extensively, but it is seldom used to reach a global variable shadowed by an identically named local variable. Its main purpose is encountered in chapter 7.
3.1.4: `cout', `cin', and `cerr'
Analogous to C, C++ defines standard input- and output streams which are available when a program is executed. The streams are:
Syntactically these streams are not used as functions: instead, data are written to streams or read from them using the operators <<, called the insertion operator and >>, called the extraction operator. This is illustrated in the next example:
#include <iostream>
using namespace std;
int main()
{
int ival;
char sval[30];
cout << "Enter a number:\n";
cin >> ival;
cout << "And now a string:\n";
cin >> sval;
cout << "The number is: " << ival << "\n"
"And the string is: " << sval << '\n';
}
This program reads a number and a string from the cin stream (usually the keyboard) and prints these data to cout. With respect to streams, please note:
The stream objects cin, cout and cerr are not part of the C++ grammar proper. The streams are part of the definitions in the header file iostream. This is comparable to functions like printf that are not part of the C grammar, but were originally written by people who considered such functions important and collected them in a run-time library.
A program may still use the old-style functions like printf and scanf rather than the new-style streams. The two styles can even be mixed. But streams offer several clear advantages and in many C++ programs have completely replaced the old-style C functions. Some advantages of using streams are:
The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 6 iostreams are covered in greater detail. Even though printf and friends can still be used in C++ programs, streams have practically replaced the old-style C I/O functions like printf. If you think you still need to use printf and related functions, think again: in that case you've probably not yet completely grasped the possibilities of stream objects.
3.2: Functions as part of structs
Earlier we noted that functions can be part of structs (see section 2.5.13). Such functions are called member functions. This section briefly discusses how to define such functions.
The code fragment below shows a struct having data fields for a person's name and address. A function print is included in the struct's definition:
struct Person
{
char name[80];
char address[80];
void print();
};
When defining the member function print the structure's name (Person) and the scope resolution operator (::) are used:
void Person::print()
{
cout << "Name: " << name << "\n"
"Address: " << address << '\n';
}
The implementation of Person::print shows how the fields of the struct can be accessed without using the structure's type name. Here the function Person::print prints a variable name. Since Person::print is itself a part of struct person, the variable name implicitly refers to the same type.
This struct Person could be used as follows:
Person person;
strcpy(person.name, "Karel");
strcpy(person.address, "Marskramerstraat 33");
person.print();
The advantage of member functions is that the called function automatically accesses the data fields of the structure for which it was invoked. In the statement person.print() the object person is the `substrate': the variables name and address that are used in the code of print refer to the data stored in the person object.
3.2.1: Data hiding: public, private and class
As mentioned before (see section 2.3), C++ contains specialized syntactic possibilities to implement data hiding. Data hiding is the capability of sections of a program to hide its data from other sections. This results in very clean data definitions. It also allows these sections to enforce the integrity of their data.
C++ has three keywords that are related to data hiding: private, protected and public. These keywords can be used in the definition of structs. The keyword public allows all subsequent fields of a structure to be accessed by all code; the keyword private only allows code that is part of the struct itself to access subsequent fields. The keyword protected is discussed in chapter 13, and is somewhat outside of the scope of the current discussion.
In a struct all fields are public, unless explicitly stated otherwise. Using this knowledge we can expand the struct Person:
struct Person
{
private:
char d_name[80];
char d_address[80];
public:
void setName(char const *n);
void setAddress(char const *a);
void print();
char const *name();
char const *address();
};
As the data fields d_name and d_address are in a private section they are only accessible to the member functions which are defined in the struct: these are the functions setName, setAddress etc.. As an illustration consider the following code:
Person fbb;
fbb.setName("Frank"); // OK, setName is public
strcpy(fbb.d_name, "Knarf"); // error, x.d_name is private
Data integrity is implemented as follows: the actual data of a struct Person are mentioned in the structure definition. The data are accessed by the outside world using special functions that are also part of the definition. These member functions control all traffic between the data fields and other parts of the program and are therefore also called `interface' functions. The thus implemented data hiding is illustrated in Figure 2.
Figure 2: Private data and public interface functions of the class Person.
The members setName and setAddress are declared with char const * parameters. This indicates that the functions will not alter the strings which are supplied as their arguments. Analogously, the members name and address return char const *s: the compiler prevents callers of those members from modifying the information made accessible through the return values of those members.
Two examples of member functions of the struct Person are shown below:
void Person::setName(char const *n)
{
strncpy(d_name, n, 79);
d_name[79] = 0;
}
char const *Person::name()
{
return d_name;
}
The power of member functions and of the concept of data hiding results from the abilities of member functions to perform special tasks, e.g., checking the validity of the data. In the above example setName copies only up to 79 characters from its argument to the data member name, thereby avoiding a buffer overflow.
Another illustration of the concept of data hiding is the following. As an alternative to member functions that keep their data in memory a library could be developed featuring member functions storing data on file. To convert a program storing Person structures in memory to one that stores the data on disk no special modifications are required. After recompilation and linking the program to a new library it is converted from storage in memory to storage on disk. This example illustrates a broader concept than data hiding; it illustrates encapsulation. Data hiding is a kind of encapsulation. Encapsulation in general results in reduced coupling of different sections of a program. This in turn greatly enhances reusability and maintainability of the resulting software. By having the structure encapsulate the actual storage medium the program using the structure becomes independent of the actual storage medium that is used.
Though data hiding can be implemented using structs, more often (almost always) classes are used instead. A class is a kind of struct, except that a class uses private access by default, whereas structs use public access by default. The definition of a class Person is therefore identical to the one shown above, except that the keyword class has replaced struct while the initial private: clause can be omitted. Our typographic suggestion for class names (and other type names defined by the programmer) is to start with a capital character to be followed by the remainder of the type name using lower case letters (e.g., Person).
3.2.2: Structs in C vs. structs in C++
In this section we'll discuss an important difference between C and C++ structs and (member) functions. In C it is common to define several functions to process a struct, which then require a pointer to the struct as one of their arguments. An imaginary C header file showing this concept is:
/* definition of a struct PERSON This is C */
typedef struct
{
char name[80];
char address[80];
} PERSON;
/* some functions to manipulate PERSON structs */
/* initialize fields with a name and address */
void initialize(PERSON *p, char const *nm,
char const *adr);
/* print information */
void print(PERSON const *p);
/* etc.. */
In C++, the declarations of the involved functions are put inside the definition of the struct or class. The argument denoting which struct is involved is no longer needed.
class Person
{
char d_name[80];
char d_address[80];
public:
void initialize(char const *nm, char const *adr);
void print();
// etc..
};
In C++ the struct parameter is not used. A C function call such as:
PERSON x;
initialize(&x, "some name", "some address");
becomes in C++:
Person x;
x.initialize("some name", "some address");
3.3: Several additions to C's grammar
3.3.1: References
In addition to the common ways to define variables (plain variables or pointers) C++ introduces references defining synonyms for variables. A reference to a variable is like an alias; the variable and the reference can both be used in statements involving the variable:
int int_value;
int &ref = int_value;
In the above example a variable int_value is defined. Subsequently a reference ref is defined, which (due to its initialization) refers to the same memory location as int_value. In the definition of ref, the reference operator & indicates that ref is not itself an int but a reference to one. The two statements
++int_value;
++ref;
have the same effect: they increment int_value's value. Whether that location is called int_value or ref does not matter.
References serve an important function in C++ as a means to pass modifiable arguments to functions. E.g., in standard C, a function that increases the value of its argument by five and returning nothing needs a pointer parameter:
void increase(int *valp) // expects a pointer
{ // to an int
*valp += 5;
}
int main()
{
int x;
increase(&x); // pass x's address
}
This construction can also be used in C++ but the same effect is also achieved using a reference:
void increase(int &valr) // expects a reference
{ // to an int
valr += 5;
}
int main()
{
int x;
increase(x); // passed as reference
}
It is arguable whether code such as the above should be preferred over C's method, though. The statement increase (x) suggests that not x itself but a copy is passed. Yet the value of x changes because of the way increase() is defined. However, references can also be used to pass objects that are only inspected (without the need for a copy or a const *) or to pass objects whose modification is an accepted side-effect of their use. In those cases using references are strongly preferred over existing alternatives like copy by value or passing pointers.
Behind the scenes references are implemented using pointers. So, as far as the compiler is concerned references in C++ are just const pointers. With references, however, the programmer does not need to know or to bother about levels of indirection. An important distinction between plain pointers and references is of course that with references no indirection takes place. For example:
extern int *ip;
extern int &ir;
ip = 0; // reassigns ip, now a 0-pointer
ir = 0; // ir unchanged, the int variable it refers to
// is now 0.
In order to prevent confusion, we suggest to adhere to the following:
void some_func(int val)
{
cout << val << '\n';
}
int main()
{
int x;
some_func(x); // a copy is passed
}
void by_pointer(int *valp)
{
*valp += 5;
}
void by_reference(string const &str)
{
cout << str; // no modification of str
}
int main ()
{
int x = 7;
by_pointer(&x); // a pointer is passed
// x might be changed
string str("hello");
by_reference(str); // str is not altered
}
References play an important role in cases where the argument is not changed by the function but where it is undesirable to copy the argument to initialize the parameter. Such a situation occurs when a large object is passed as argument, or is returned by the function. In these cases the copying operation tends to become a significant factor, as the entire object must be copied. In these cases references are preferred.
If the argument isn't modified by the function, or if the caller shouldn't modify the returned information, the const keyword should be used. Consider the following example:
struct Person // some large structure
{
char name[80];
char address[90];
double salary;
};
Person person[50]; // database of persons
// printperson expects a
// reference to a structure
// but won't change it
void printperson (Person const &subject)
{
cout << "Name: " << subject.name << '\n' <<
"Address: " << subject.address << '\n';
}
// get a person by index value
Person const &personIdx(int index)
{
return person[index]; // a reference is returned,
} // not a copy of person[index]
int main()
{
Person boss;
printperson(boss); // no pointer is passed,
// so `boss' won't be
// altered by the function
printperson(personIdx(5));
// references, not copies
// are passed here
}
References could result in extremely `ugly' code. A function may return a reference to a variable, as in the following example:
int &func()
{
static int value;
return value;
}
This allows the use of the following constructions:
func() = 20;
func() += func();
It is probably superfluous to note that such constructions should normally not be used. Nonetheless, there are situations where it is useful to return a reference. We have actually already seen an example of this phenomenon in our previous discussion of streams. In a statement like cout << "Hello" << '\n'; the insertion operator returns a reference to cout. So, in this statement first the "Hello" is inserted into cout, producing a reference to cout. Through this reference the '\n' is then inserted in the cout object, again producing a reference to cout, which is then ignored.
Several differences between pointers and references are pointed out in the next list below:
int &ref;
is not allowed; what would ref refer to?3.3.2: Rvalue References
In C++, temporary (rvalue) values are indistinguishable from const & types. C++ introduces a new reference type called an rvalue reference, which is defined as typename &&.
The name rvalue reference is derived from assignment statements, where the variable to the left of the assignment operator is called an lvalue and the expression to the right of the assignment operator is called an rvalue. Rvalues are often temporary, anonymous values, like values returned by functions.
In this parlance the C++ reference should be considered an lvalue reference (using the notation typename &). They can be contrasted to rvalue references (using the notation typename &&).
The key to understanding rvalue references is the concept of an anonymous variable. An anonymous variable has no name and this is the distinguishing feature for the compiler to associate it automatically with an rvalue reference if it has a choice. Before introducing some interesting constructions let's first have a look at some standard situations where lvalue references are used. The following function returns a temporary (anonymous) value:
int intVal()
{
return 5;
}
Although intVal's return value can be assigned to an int variable it requires copying, which might become prohibitive when a function does not return an int but instead some large object. A reference or pointer cannot be used either to collect the anonymous return value as the return value won't survive beyond that. So the following is illegal (as noted by the compiler):
int &ir = intVal(); // fails: refers to a temporary
int const &ic = intVal(); // OK: immutable temporary
int *ip = &intVal(); // fails: no lvalue available
Apparently it is not possible to modify the temporary returned by intVal. But now consider these functions:
void receive(int &value) // note: lvalue reference
{
cout << "int value parameter\n";
}
void receive(int &&value) // note: rvalue reference
{
cout << "int R-value parameter\n";
}
and let's call this function from main:
int main()
{
receive(18);
int value = 5;
receive(value);
receive(intVal());
}
This program produces the following output:
int R-value parameter
int value parameter
int R-value parameter
The program's output shows the compiler selecting receive(int &&value) in all cases where it receives an anonymous int as its argument. Note that this includes receive(18): a value 18 has no name and thus receive(int &&value) is called. Internally, it actually uses a temporary variable to store the 18, as is shown by the following example which modifies receive:
void receive(int &&value)
{
++value;
cout << "int R-value parameter, now: " << value << '\n';
// displays 19 and 6, respectively.
}
Contrasting receive(int &value) with receive(int &&value) has nothing to do with int &value not being a const reference. If receive(int const &value) is used the same results are obtained. Bottom line: the compiler selects the overloaded function using the rvalue reference if the function is passed an anonymous value.
The compiler runs into problems if void receive(int &value) is replaced by void receive(int value), though. When confronted with the choice between a value parameter and a reference parameter (either lvalue or rvalue) it cannot make a decision and reports an ambiguity. In practical contexts this is not a problem. Rvalue references were added to the language in order to be able to distinguish the two forms of references: named values (for which lvalue references are used) and anonymous values (for which rvalue references are used).
It is this distinction that allows the implementation of move semantics and perfect forwarding. At this point the concept of move semantics cannot yet fully be discussed (but see section 9.7 for a more thorough discussion) but it is very well possible to illustrate the underlying ideas.
Consider the situation where a function returns a struct Data containing a pointer to a dynamically allocated NTBS. We agree that Data objects are only used after initialization, for which two init functions are available. As an aside: when Data objects are no longer required the memory pointed at by text must again be returned to the operating system; assume that that task is properly performed.
struct Data
{
char *text;
void init(char const *txt); // initialize text from txt
void init(Data const &other)
{
text = strdup(other.text);
}
};
There's also this interesting function:
Data dataFactory(char const *text);
Its implementation is irrelevant, but it returns a (temporary) Data object initialized with text. Such temporary objects cease to exist once the statement in which they are created end.
Now we'll use Data:
int main()
{
Data d1;
d1.init(dataFactory("object"));
}
Here the init function duplicates the NTBS stored in the temporary object. Immediately thereafter the temporary object ceases to exist. If you think about it, then you realize that that's a bit over the top:
That's two strdup calls, but the temporary Data object thereafter is never used again.
To handle cases like these rvalue reference were introduced. We add the following function to the struct Data:
void init(Data &&tmp)
{
text = tmp.text; // (1)
tmp.text = 0; // (2)
}
Now, when the compiler translates d1.init(dataFactory("object")) it notices that dataFactory returns a (temporary) object, and because of that it uses the init(Data &&tmp) function. As we know that the tmp object ceases to exist after executing the statement in which it is used, the d1 object (at (1)) grabs the temporary object's text value, and then (at (2)) assigns 0 to other.text so that the temporary object's free(text) action does no harm.
Thus, struct Data suddenly has become move-aware and implements move semantics, removing the (extra copy) drawback of the previous approach, and instead of making an extra copy of the temporary object's NTBS the pointer value is simply transferred to its new owner.
3.3.3: Lvalues, rvalues and more
Although this section contains forward references to chapters 5, 7, and 16, its topic best fits the current chapter. This section can be skipped without loss of continuity, and you might consider returning to it once you're familiar with the content of these future chapters.
Historically, the C programming language distinguished between lvalues and rvalues. The terminology was based on assignment expressions, where the expression to the left of the assignment operator receives a value (e.g., it referred to a location in memory where a value could be written into, like a variable), while the expression to the right of the assignment operator only had to represent a value (it could be a temporary variable, a constant value or the value stored in a variable):
lvalue = rvalue;
C++ adds to this basic distinction several new ways of referring to expressions:
An expression's value is an xvalue if it is:
Here is a small example. Consider this simple struct:
struct Demo
{
int d_value;
};
In addition we have these function declarations and definitions:
Demo &&operator+(Demo const &lhs, Demo const &rhs);
Demo &&factory();
Demo demo;
Demo &&rref = static_cast<Demo &&>(demo);
Expressions like
factory();
factory().d_value;
static_cast<Demo &&>(demo);
demo + demo
are xvalues. However, the expression
rref;
is an lvalue.
In many situations it's not particularly important to know what kind of gvalue or what kind of rvalue is actually used. In the C++ Annotations the term lhs (left hand side) is frequently used to indicate an operand that's written to the left of a binary operator, while the term rhs (right hand side) is frequently used to indicate an operand that's written to the right of a binary operator. Lhs and rhs operands could actually be gvalues (e.g., when representing ordinary variables), but they could also be prvalues (e.g., numeric values added together using the addition operator). Whether or not lhs and rhs operands are gvalues or lvalues can always be determined from the context in which they are used.
3.3.4: Strongly typed enumerations
Enumeration values in C++ are in fact int values, thereby bypassing type safety. E.g., values of different enumeration types may be compared for (in)equality, albeit through a (static) type cast.
Another problem with the current enum type is that their values are not restricted to the enum type name itself, but to the scope where the enumeration is defined. As a consequence, two enumerations having the same scope cannot have identical names.
Such problems are solved by defining enum classes. An enum class can be defined as in the following example:
enum class SafeEnum
{
NOT_OK, // 0, by implication
OK = 10,
MAYBE_OK // 11, by implication
};
Enum classes use int values by default, but the used value type can easily be changed using the : type notation, as in:
enum class CharEnum: unsigned char
{
NOT_OK,
OK
};
To use a value defined in an enum class its enumeration name must be provided as well. E.g., OK is not defined, CharEnum::OK is.
Using the data type specification (noting that it defaults to int) it is possible to use enum class forward declarations. E.g.,
enum Enum1; // Illegal: no size available
enum Enum2: unsigned int; // Legal: explicitly declared type
enum class Enum3; // Legal: default int type is used
enum class Enum4: char; // Legal: explicitly declared type
A sequence of symbols of a strongly typed enumeration can also be indicated in a switch using the ellipsis syntax, as shown in the next example:
SafeEnum enumValue();
switch (enumValue())
{
case SafeEnum::NOT_OK ... SafeEnum::OK:
cout << "Status is known\n";
break;
default:
cout << "Status unknown\n";
break;
}
3.3.5: Initializer lists
The C language defines the initializer list as a list of values enclosed by curly braces, possibly themselves containing initializer lists. In C these initializer lists are commonly used to initialize arrays and structs.
C++ extends this concept by introducing the type initializer_list<Type> where Type is replaced by the type name of the values used in the initializer list. Initializer lists in C++ are, like their counterparts in C, recursive, so they can also be used with multi-dimensional arrays, structs and classes.
Before using the initializer_list the <initializer_list> header file must be included.
Like in C, initializer lists consist of a list of values surrounded by curly braces. But unlike C, functions can define initializer list parameters. E.g.,
void values(std::initializer_list<int> iniValues)
{
}
A function like values could be called as follows:
values({2, 3, 5, 7, 11, 13});
The initializer list appears as an argument which is a list of values surrounded by curly braces. Due to the recursive nature of initializer lists a two-dimensional series of values can also be passes, as shown in the next example:
void values2(std::initializer_list<std::initializer_list<int>> iniValues)
{}
values2({{1, 2}, {2, 3}, {3, 5}, {4, 7}, {5, 11}, {6, 13}});
Initializer lists are constant expressions and cannot be modified. However, their size and values may be retrieved using their size, begin, and end members as follows:
void values(initializer_list<int> iniValues)
{
cout << "Initializer list having " << iniValues.size() << "values\n";
for
(
initializer_list<int>::const_iterator begin = iniValues.begin();
begin != iniValues.end();
++begin
)
cout << "Value: " << *begin << '\n';
}
Initializer lists can also be used to initialize objects of classes (cf. section 7.5).
Implicit conversions, also called narrowing conversions are not allowed when specifying values of initializer lists. Narrowing conversions are encountered when values are used of a type whose range is larger than the type specified when defining the initializer list. For example
Some examples:
initializer_list<int> ii{ 1.2 }; // 1.2 isn't an int value
initializer_list<unsigned> iu{ ~0ULL }; // unsigned long long doesn't fit
3.3.5.1: Designated initialization
C++, like C, also supports designated initialization. However, as C++ requires that destruction of data members occurs in the opposite order as their construction it is required that, when using designated initialization, members are initialized in the order in which they are declared in their class or struct. E.g.,
struct Data
{
int d_first;
double d_second;
std::string d_third;
};
Data data{ .d_first = 1, .d_third = "hello" };
In this example, d_first and d_third are explicitly initialized, while d_second is implicitly initialized to its default value (so: 0.0).
In C++ it is not allowed to reorder the initialization of members in a desginated initialization list. So, Data data{ .d_third = "hello", .d_first = 1 } is an error, but Data data{ .d_third = "hello" } is OK, as there is no ordering conflict in the latter example (this also initializes d_first and d_second to 0).
Likewise, a union can be initialized using designated initialization, as illustrated by the next example:
union Data
{
int d_first;
double d_second;
std::string *d_third;
};
// initialize the union's d_third field:
Data data{ .d_third = new string{ "hello" } };
3.3.6: Initializers for bit-fields
Bit-fields are used to specify series of bits in an integral value type. For example, in networking software processing IP4 packets, the first uint32_t value of IP4 packets contain:
Rather than using complex bit and bit-shift operations, these fields inside integral values can be specified using bit-fields. E.g.,
struct FirstIP4word
{
uint32_t version: 4;
uint32_t header: 4;
uint32_t tos: 8;
uint32_t length: 16;
};
To total size of a FirstIP4word object is 32 bits, or four bytes. To show the version of a FirstIP4word first object, simply do:
cout << first.version << '\n';
and to set its header length to 10 simply do
first.header = 10;
Bit fields are already available in C. The C++2a standard allows them to be initialized by default by using initialization expressions in their definitions. E.g.,
struct FirstIP4word
{
uint32_t version: 4 = 1; // version now 1, by default
uint32_t header: 4 = 10; // TCP header length now 10, by default
uint32_t tos: 8;
uint32_t length: 16;
};
The initialization expressions are evaluated when the object using the bit-fields is defined. Also, when a variable is used to initialize a bit-field the variable must at least have been declared when the struct containing bit-fields is defined. E.g.,
extern int value;
struct FirstIP4word
{
...
uint32_t length: 16 = value; // OK: value has been declared
};
3.3.7: Type inference using `auto'
The keyword auto can be used to simplify type definitions of variables and return types of functions if the compiler is able to determine the proper types of such variables or functions.
Using auto as a storage class specifier is no longer supported by C++: a variable definition like auto int var results in a compilation error.
The keyword auto is used in situations where it is very hard to determine the variable's type. These situations are encountered, e.g., in the context of templates (cf. chapters 18 until 23). It is also used in situations where a known type is a very long one but also automatically available to the compiler. In such cases the programmer uses auto to avoid having to type long type definitions.
At this point in the Annotations only simple examples can be given. Refer to section 21.1.2 for additional information about auto (and the related decltype function).
When defining and initializing a variable int variable = 5 the type of the initializing expression is well known: it's an int, and unless the programmer's intentions are different this could be used to define variable's type (a somewhat contrived example as in this case it reduces rather than improves the clarity of the code):
auto variable = 5;
However, it is attractive to use auto. In chapter 5 the iterator concept is introduced (see also chapters 12 and 18). Iterators frequently have long type definitions, like
std::vector<std::string>::const_reverse_iterator
Functions may return objects having such types. Since the compiler knows about these types we may exploit this knowledge by using auto. Assume that a function begin() is declared like this:
std::vector<std::string>::const_reverse_iterator begin();
Rather than writing a long variable definition (at // 1, below) a much shorter definition (at // 2) can be used:
std::vector<std::string>::const_reverse_iterator iter = begin(); // 1
auto iter = begin(); // 2
It's also easy to define and initialized additional variables of such types. When initializing such variables iter can be used to initialize those variables, and auto can be used, so the compiler deduces their types:
auto start = iter;
When defining variables using auto the variable's type is deduced from the variable's initializing expression. Plain types and pointer types are used as-is, but when the initializing expression is a reference type, then the reference's basic type (without the reference, omitting const or volatile specifications) is used.
If a reference type is required then auto & or auto && can be used. Likewise, const and/or pointer specifications can be used in combination with the auto keyword itself. Here are some examples:
int value;
auto another = value; // 'int another' is defined
string const &text();
auto str = text(); // text's plain type is string, so
// string str, NOT string const str
// is defined
str += "..."; // so, this is OK
int *ip = &value;
auto ip2 = ip; // int *ip2 is defined.
int *const &ptr = ip;
auto ip3 = ptr; // int *ip3 is defined, omitting const &
auto const &ip4 = ptr; // int *const &ip4 is defined.
In the next to last auto specification, the tokens (reading right to left) from the reference to the basic type are omitted: here const & was appended to ptr's basic type (int *). Hence, int *ip2 is defined.
In the last auto specification auto also produces int *, but in the type definition const & is added to the type produced by auto, so int *const &ip4 is defined.
The auto keyword can also be used to postpone the definition of a function's return type. The declaration of a function intArrPtr returning a pointer to arrays of 10 ints looks like this:
int (*intArrPtr())[10];
Such a declaration is fairly complex. E.g., among other complexities it requires `protection of the pointer' using parentheses in combination with the function's parameter list. In situations like these the specification of the return type can be postponed using the auto return type, followed by the specification of the function's return type after any other specification the function might receive (e.g., as a const member (cf. section 7.7) or following its noexcept specification (cf. section 23.8)).
Using auto to declare the above function, the declaration becomes:
auto intArrPtr() -> int (*)[10];
A return type specification using auto is called a late-specified return type.
Since the C++14 standard late return type specifications are no longer required for functions returning auto. Such functions can now simply be declared like this:
auto autoReturnFunction();
In this case some restrictions apply, both to the function definitions and the function declarations:
auto fibonacci(size_t n)
{
if (n <= 1)
return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
3.3.7.1: Structured binding declarations
Usually functions return single-valued results: doubles, ints, strings, etc. When functions need to return multiple values a return by argument construction is often used, where addresses of variables that live outside of the called function are passed to functions, allowing the functions to assign new values to those variables.
When multiple values should be returned from a function a struct can be used, but pairs (cf. section 12.2) or tuples (cf. section 22.6) can also be used. Here's a simple example, where a function fun returns a struct having two data fields:
struct Return
{
int first;
double second;
};
Return fun()
{
return Return{ 1, 12.5 };
}
(Briefly forward referencing to sections 12.2 and 22.6: the struct definition can completely be omitted if fun returns a pair or tuple. In those cases the following code remains valid.)
A function calling fun traditionally defines a variable of the same type as fun's return type, and then uses that variable's fields to access first and second. If you don't like the typing, auto can also be used:
int main()
{
auto r1 = fun();
cout << r1.first;
}
Instead of referring to the elements of the returned struct, pair or tuple structured binding declarations can also be used. Here, auto is followed by a (square brackets surrounded) comma-separated list of variables, where each variable is defined, and receives the value of the corresponding field or element of the called function's return value. So, the above main function can also be written like this:
int main()
{
auto [one, two] = fun();
cout << one; // one and two: now defined
}
Merely specifying auto results in fun's return value being copied, and the structured bindings variables will refer to the copied value. But structured binding declarations can also be used in combination with (lvalue/rvalue) return values. The following ensures that rone and rtwo refer to the elements of fun's anonymous return value:
int main()
{
auto &&[rone, rtwo] = fun();
}
If the called function returns a value that survives the function call itself, then structured binding declarations can use lvalue references. E.g.,
Return &fun2()
{
static Return ret{ 4, 5 };
return ret;
}
int main()
{
auto &[lone, ltwo] = fun2(); // OK: referring to ret's fields
}
To use structured binding declarations it is not required to use function calls. The object providing the data can also anonymously be defined:
int main()
{
auto const &[lone, ltwo] = Return{ 4, 5 };
// or:
auto &&[lone, ltwo] = Return{ 4, 5 };
}
The object doesn't even have to make its data members publicly available. In section TUPLES using structured bindings not necessarily referring to data members is covered.
Another application is found in situations where nested statements of for or selection statements benefit from using locally defined variables of various types. Such variables can easily be defined using structured binding declarations that are initialized from anonymous structs, pairs or tuples. Here is an example illustrating this:
// define a struct:
struct Three
{
size_t year;
double firstAmount;
double interest;
};
// define an array of Three objects, and process each in turn:
Three array[10];
fill(array); // not implemented here
for (auto &[year, amount, interest]: array)
cout << "Year " << year << ": amount = " << amount << '\n';
When using structured bindings the structured binding declaration must specify all elements that are available. So if a struct has four data members the structured binding declaration must define four elements. To avoid warnings of unused variables at lease one of the variables of the structured binding declaration must be used.
3.3.8: Defining types and `using' declarations
In C++ typedef is commonly used to define shorthand notations for complex types. Assume we want to define a shorthand for `a pointer to a function expecting a double and an int, and returning an unsigned long long int'. Such a function could be:
unsigned long long int compute(double, int);
A pointer to such a function has the following form:
unsigned long long int (*pf)(double, int);
If this kind of pointer is frequently used, consider defining it using typedef: simply put typedef in front of it and the pointer's name is turned into the name of a type. It could be capitalized to let it stand out more clearly as the name of a type:
typedef unsigned long long int (*PF)(double, int);
After having defined this type, it can be used to declare or define such pointers:
PF pf = compute; // initialize the pointer to a function like
// 'compute'
void fun(PF pf); // fun expects a pointer to a function like
// 'compute'
However, including the pointer in the typedef might not be a very good idea, as it masks the fact that pf is a pointer. After all, PF pf looks more like `int x' than `int *x'. To document that pf is in fact a pointer, slightly change the typedef:
typedef unsigned long long int FUN(double, int);
FUN *pf = compute; // now pf clearly is a pointer.
The scope of typedefs is restricted to compilation units. Therefore, typedefs are usually embedded in header files which are then included by multiple source files in which the typedefs should be used.
In addition to typedef C++ offers the using keyword to associate a type and an identifier. In practice typedef and using can be used interchangeably. The using keyword arguably result in more readable type definitions. Consider the following three (equivalent) definitions:
typedef unsigned long long int FUN(double, int);
using FUN = unsigned long long int (double, int);
using FUN = auto (double, int) -> unsigned long long int;
3.3.9: Range-based for-loops
The C++ for-statement is identical to C's for-statement:
for (init; cond; inc)
statement
Often the initialization, condition, and increment parts are fairly obvious, as in situations where all elements of an array or vector must be processed. Many languages offer the foreach statement for that and C++ offers the std::for_each generic algorithm (cf. section 19.1.18).
In addition to the traditional syntax C++ adds new syntax for the for-statement: the range-based for-loop. This new syntax can be used to process all element of a range in turn. Three types of ranges are distinguished:
The following additional for-statement syntax is available:
// assume int array[30]
for (auto &element: array)
statement
The part to the left of the colon is called the for range declaration. The declared variable (element) is a formal name; use any identifier you like. The variable is only available within the nested statement, and it refers to (or is a copy of) each of the elements of the range, from the first element up to the last.
There's no formal requirement to use auto, but using auto is extremely useful in many situations. Not only in situations where the range refers to elements of some complex type, but also in situations where you know what you can do with the elements in the range, but don't care about their exact type names. In the above example int could also have been used.
The reference symbol (&) is important in the following cases:
When the reference symbol is omitted the variable will be a copy of each of the subsequent elements of the range. Fine, probably, if you merely need to look at the variables when they are of primitive types, but needlessly inefficient if you have an array of BigStruct elements:
struct BigStruct
{
double array[100];
int last;
};
Inefficient, because you don't need to make copies of the array's elements. Instead, use references to elements:
BigStruct data[100]; // assume properly initialized elsewhere
int countUsed()
{
int sum = 0;
// const &: the elements aren't modified
for (auto const &element: data)
sum += element.last;
return sum;
}
Range-based for-loops can also benefit from structured bindings. If struct Element holds a int key and a double value, and all the values of positive keys should be added then the following code snippet accomplishes that:
Element elems[100]; // somehow initialized
double sum = 0;
for (auto const &[key, value]: elems)
{
if (key > 0)
sum += value;
}
The C++2a standard also supports an optional initialization section (like the ones already available for if and switch statements) for range-based for-loops. Assume the elements of an array must be inserted into cout, but before each element we want to display the element's index. The index variable is not used outside the for-statement, and the extension offered in the C++2a standard allows us to localize the index variable. Here is an example:
// localize idx: only visible in the for-stmnt
for (size_t idx = 0; auto const &element: data)
cout << idx++ << ": " << element << '\n';
3.3.10: Raw String Literals
Standard series of ASCII characters (a.k.a. C strings) are delimited by double quotes, supporting escape sequences like \n, \\ and \", and ending in 0-bytes. Such series of ASCII-characters are commonly known as null-terminated byte strings (singular: NTBS, plural: NTBSs). C's NTBS is the foundation upon which an enormous amount of code has been built
In some cases it is attractive to be able to avoid having to use escape sequences (e.g., in the context of XML). C++ allows this using raw string literals.
Raw string literals start with an R, followed by a double quote, optionally followed by a label (which is an arbitrary sequence of non-blank characters, followed by (). The raw string ends at the closing parenthesis ), followed by the label (if specified when starting the raw string literal), which is in turn followed by a double quote. Here are some examples:
R"(A Raw \ "String")"
R"delimiter(Another \ Raw "(String))delimiter"
In the first case, everything between "( and )" is part of the string. Escape sequences aren't supported so the text \ " within the first raw string literal defines three characters: a backslash, a blank character and a double quote. The second example shows a raw string defined between the markers "delimiter( and )delimiter".
Raw string literals come in very handy when long, complex ascii-character sequences (e.g., usage-info or long html-sequences) are used. In the end they are just that: long NTBSs. Those long raw string literals should be separated from the code that uses them, thus maintaining the readability of the using code.
As an illustration: the bisonc++ parser generator supports an option --prompt. When specified, the code generated by bisonc++ inserts prompting code when debugging is requested. Directly inserting the raw string literal into the function processing the prompting code results in code that is very hard to read:
void prompt(ostream &out)
{
if (d_genDebug)
out << (d_options.prompt() ? R"(
if (d_debug__)
{
s_out__ << "\n================\n"
"? " << dflush__;
std::string s;
getline(std::cin, s);
}
)" : R"(
if (d_debug__)
s_out__ << '\n';
)"
) << '\n';
}
Readability is greatly enhanced by defining the raw string literals as named NTBSs, defined in the source file's anonymous namespace (cf. chapter 4):
namespace {
char const noPrompt[] =
R"(
if (d_debug__)
s_out__ << '\n';
)";
char const doPrompt[] =
R"(
if (d_debug__)
{
s_out__ << "\n================\n"
"? " << dflush__;
std::string s;
getline(std::cin, s);
}
)";
} // anonymous namespace
void prompt(ostream &out)
{
if (d_genDebug)
out << (d_options.prompt() ? doPrompt : noPrompt) << '\n';
}
3.3.11: Binary constants
In addition to hexadecimal integral constants (starting with 0x), octal integral constants (starting with 0), and decimal integral constants (starting with one of the digits 1..9), binary integral constants can be defined using the prefixes 0b or 0B. E.g., to represent the (decimal) value 5 the notation 0b101 can also be used.
The binary constants come in handy in the context of, e.g., bit-flags, as it immediately shows which bit-fields are set, while other notations are less informative.
3.3.12: Selection statements with initializers
The standard for repetition statements start with an optional initialization clause. The initialization clause allows us to localize variables to the scope of the for statements. Initialization clauses van also be used in selection statements.
Consider the situation where an action should be performed if the next line read from the standard input stream equals go!. Traditionally, when used inside a function, intending to localize the string to contain the content of the next line as much as possible, constructions like the following had to be used:
void function()
{
// ... any set of statements
{
string line; // localize line
if (getline(cin, line))
action();
}
// ... any set of statements
}
Since init ; clauses can also be used for selection statements (if and switch statements) (note that with selection statements the semicolon is part of the initialization clause, which is different from the optional init (no semicolon) clause in for statements), we can rephrase the above example as follows:
void function()
{
// ... any set of statements
if (string line; getline(cin, line))
action();
// ... any set of statements
}
Note that a variable may still also be defined in the actual condition clauses. This is true for both the extended if and switch statement. However, before using the condition clauses an initialization clause may be used to define additional variables (plural, as it may contain a comma-separated list of variables, similar to the syntax that's available for for-statements).
3.3.13: Attributes
Attributes are compiler directives that are inserted into source files to inform the compiler of some peculiarity of the code (variable or function) that follows the specified attribute. Attributes are used to inform the compiler about situations that are intentional, and thus prevent the compiler from issuing warnings.
The following attributes are recognized:
demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated
[-Wdeprecated-declarations] deprecatedFunction();
demo.cc:5:21: note: declared here
[[deprecated]] void deprecatedFunction()
When using the alternative form (e.g., [[deprecated("do not use")]] void fun()) the compiler generates a warning showing the text between the double quotes, e.g.,
demo.cc:12:24: warning: 'void deprecatedFunction()' is deprecated:
do not use [-Wdeprecated-declarations]
deprecatedFunction();
demo.cc:5:38: note: declared here
[[deprecated("do not use")]] void deprecatedFunction()
When statements nested under case entries in switch statements continue into subsequent case or default entries the compiler issues a `falling through' warning. If falling through is intentional the attribute [[fallthrough]], which then must be followed by a semicolon, should be used. Here is an annotated example:
void function(int selector)
{
switch (selector)
{
case 1:
case 2: // no falling through, but merged entry points
cout << "cases 1 and 2\n";
[[fallthrough]]; // no warning: intentionally falling through
case 3:
cout << "case 3\n";
case 4: // a warning is issued: falling through not
// announced.
cout << "case 4\n";
[[fallthrough]]; // error: there's nothing beyond
}
}
This attribute can be applied to a class, typedef-name, variable, parameter, non-static data member, a function, an enumeration or an enumerator. When it is applied to an entity no warning is generated when the entity is not used. Example:
void fun([[maybe_unused]] size_t argument)
{
// argument isn't used, but no warning
// telling you so is issued
}
The attribute [[nodiscard]] may be specified when declaring a function, class or enumeration. If a function is declared [[nodiscard]] or if a function returns an entity previously declared using [[nodiscard]] then the return value of such a function may only be ignored when explicitly cast to void. Otherwise, when the return value is not used a warning is issued. Example:
int [[nodiscard]] importantInt();
struct [[nodiscard]] ImportantStruct { ... };
ImportantStruct factory();
int main()
{
importantInt(); // warning issued
factory(); // warning issued
}
[[noreturn]] void doesntReturn();
[[noreturn]] void doesntReturn()
{
exit(0);
}
3.3.14: Three-way comparison (<=>)
The C++2a standard added the three-way comparison operator <=>, also known as the spaceship operator, to C++. In C++ operators can be defined for class-types, among which equality and comparison operators (the familiar set of ==, !=, <, <=, > and >= operators). To provide classes with all comparison operators merely the the equality and the spaceship operator need to be defined.
Its priority is less than the priorities of the bit-shift operators << and >> and larger than the priorities of the ordering operators <, <=, >, and >=.
Section 11.6.2 covers the construction of the three-way comparison operator.
3.4: New language-defined data types
In C the following built-in data types are available: void, char, short, int, long, float and double. C++ extends these built-in types with several additional built-in types: the types bool, wchar_t, long long and long double (Cf. ANSI/ISO draft (1995), par. 27.6.2.4.1 for examples of these very long types). The type long long is merely a double-long long datatype. The type long double is merely a double-long double datatype. These built-in types as well as pointer variables are called primitive types in the C++ Annotations.
There is a subtle issue to be aware of when converting applications developed for 32-bit architectures to 64-bit architectures. When converting 32-bit programs to 64-bit programs, only long types and pointer types change in size from 32 bits to 64 bits; integers of type int remain at their size of 32 bits. This may cause data truncation when assigning pointer or long types to int types. Also, problems with sign extension can occur when assigning expressions using types shorter than the size of an int to an unsigned long or to a pointer. More information about this issue can be found here.
Except for these built-in types the class-type string is available for handling character strings. The datatypes bool, and wchar_t are covered in the following sections, the datatype string is covered in chapter 5. Note that recent versions of C may also have adopted some of these newer data types (notably bool and wchar_t). Traditionally, however, C doesn't support them, hence they are mentioned here.
Now that these new types are introduced, let's refresh your memory about letters that can be used in literal constants of various types. They are:
And, of course: the x and a until f characters can be used to specify hexadecimal constants (optionally using capital letters).
3.4.1: The data type `bool'
The type bool represents boolean (logical) values, for which the (now reserved) constants true and false may be used. Except for these reserved values, integral values may also be assigned to variables of type bool, which are then implicitly converted to true and false according to the following conversion rules (assume intValue is an int-variable, and boolValue is a bool-variable):
// from int to bool:
boolValue = intValue ? true : false;
// from bool to int:
intValue = boolValue ? 1 : 0;
Furthermore, when bool values are inserted into streams then true is represented by 1, and false is represented by 0. Consider the following example:
cout << "A true value: " << true << "\n"
"A false value: " << false << '\n';
The bool data type is found in other programming languages as well. Pascal has its type Boolean; Java has a boolean type. Different from these languages, C++'s type bool acts like a kind of int type. It is primarily a documentation-improving type, having just two values true and false. Actually, these values can be interpreted as enum values for 1 and 0. Doing so would ignore the philosophy behind the bool data type, but nevertheless: assigning true to an int variable neither produces warnings nor errors.
Using the bool-type is usually clearer than using int. Consider the following prototypes:
bool exists(char const *fileName); // (1)
int exists(char const *fileName); // (2)
With the first prototype, readers expect the function to return true if the given filename is the name of an existing file. However, with the second prototype some ambiguity arises: intuitively the return value 1 is appealing, as it allows constructions like
if (exists("myfile"))
cout << "myfile exists";
On the other hand, many system functions (like access, stat, and many other) return 0 to indicate a successful operation, reserving other values to indicate various types of errors.
As a rule of thumb I suggest the following: if a function should inform its caller about the success or failure of its task, let the function return a bool value. If the function should return success or various types of errors, let the function return enum values, documenting the situation by its various symbolic constants. Only when the function returns a conceptually meaningful integral value (like the sum of two int values), let the function return an int value.
3.4.2: The data type `wchar_t'
The wchar_t type is an extension of the char built-in type, to accommodate wide character values (but see also the next section). The g++ compiler reports sizeof(wchar_t) as 4, which easily accommodates all 65,536 different Unicode character values.
Note that Java's char data type is somewhat comparable to C++'s wchar_t type. Java's char type is 2 bytes wide, though. On the other hand, Java's byte data type is comparable to C++'s char type: one byte. Confusing?
3.4.3: Unicode encoding
In C++ string literals can be defined as NTBSs. Prepending an NTBS by L (e.g., L"hello") defines a wchar_t string literal.
C++ also supports 8, 16 and 32 bit Unicode encoded strings. Furthermore, two new data types are introduced: char16_t and char32_t storing, respectively, a UTF-16 and a UTF-32 unicode value.
A char type value fits in a utf_8 unicode value. For character sets exceeding 256 different values wider types (like char16_t or char32_t) should be used.
String literals for the various types of unicode encodings (and associated variables) can be defined as follows:
char utf_8[] = u8"This is UTF-8 encoded.";
char16_t utf16[] = u"This is UTF-16 encoded.";
char32_t utf32[] = U"This is UTF-32 encoded.";
Alternatively, unicode constants may be defined using the \u escape sequence, followed by a hexadecimal value. Depending on the type of the unicode variable (or constant) a UTF-8, UTF-16 or UTF-32 value is used. E.g.,
char utf_8[] = u8"\u2018";
char16_t utf16[] = u"\u2018";
char32_t utf32[] = U"\u2018";
Unicode strings can be delimited by double quotes but raw string literals can also be used.
3.4.4: The data type `long long int'
C++ also supports the type long long int. On 32 bit systems it has at least 64 usable bits.
3.4.5: The data type `size_t'
The size_t type is not really a built-in primitive data type, but a data type that is promoted by POSIX as a typename to be used for non-negative integral values answering questions like `how much' and `how many', in which case it should be used instead of unsigned int. It is not a specific C++ type, but also available in, e.g., C. Usually it is defined implicitly when a (any) system header file is included. The header file `officially' defining size_t in the context of C++ is cstddef.
Using size_t has the advantage of being a conceptual type, rather than a standard type that is then modified by a modifier. Thus, it improves the self-documenting value of source code.
Sometimes functions explictly require unsigned int to be used. E.g., on amd-architectures the X-windows function XQueryPointer explicitly requires a pointer to an unsigned int variable as one of its arguments. In such situations a pointer to a size_t variable can't be used, but the address of an unsigned int must be provided. Such situations are exceptional, though.
Other useful bit-represented types also exists. E.g., uint32_t is guaranteed to hold 32-bits unsigned values. Analogously, int32_t holds 32-bits signed values. Corresponding types exist for 8, 16 and 64 bits values. These types are defined in the header file cstdint and can be very useful when you need to specify or use integral value types of fixed sizes.
3.4.6: std::byte
TO DO
3.4.7: Digit separators
To improve the readability of large numbers digit separators for integer and floating point literals can be used. The digit separator is a single quote which may be inserted between digits of such literals to enhance human readability. Multiple digit separators may be used, but only one separator can be inserted between successive digits. E.g.,
1'000'000
3.141'592'653'589'793'238'5
''123 // won't compile
1''23 // won't compile either
3.5: A new syntax for casts
Traditionally, C offers the following cast syntax:
(typename)expression
here typename is the name of a valid type, and expression is an expression.
C style casts are now deprecated. C++ programs should merely use the new style C++ casts as they offer the compiler facilities to verify the sensibility of the cast. Facilities which are not offered by the classic C-style cast.
A cast should not be confused with the often used constructor notation:
typename(expression)
the constructor notation is not a cast, but a request to the compiler to construct an (anonymous) variable of type typename from expression.
If casts are really necessary one of several new-style casts should be used. These new-style casts are introduced in the upcoming sections.
3.5.1: The `static_cast'-operator
The static_cast<type>(expression) is used to convert `conceptually comparable or related types' to each other. Here as well as in other C++ style casts type is the type to which the type of expression should be cast.
Here are some examples of situations where the static_cast can (or should) be used:
This happens, for example when the quotient of two int values must be computed without losing the fraction part of the division. The sqrt function called in the following fragment returns 2:
int x = 19;
int y = 4;
sqrt(x / y);
whereas it returns 2.179 when a static_cast is used, as in:
sqrt(static_cast<double>(x) / y);
The important point to notice here is that a static_cast is allowed to change the representation of its expression into the representation that's used by the destination type.
Also note that the division is put outside of the cast expression. If the division is performed within the cast's expression (as in static_cast<double>(x / y)) an integer division has already been performed before the cast has had a chance to convert the type of an operand to double.
Here the two types use identical representations, but different semantics. Assigning an ordinary enum value to an int doesn't require a cast, but when the enum is a strongly typed enum a cast is required. Conversely, a static_cast is required when assigning an int value to a variable of some enum type. Here is an example:
enum class Enum
{
VALUE
};
cout << static_cast<int>(Enum::VALUE); // show the numeric value
The static_cast is used in the context of class inheritance (cf. chapter 13) to convert a pointer to a so-called `derived class' to a pointer to its `base class'. It cannot be used for casting unrelated types to each other (e.g., a static_cast cannot be used to cast a pointer to a short to a pointer to an int).
A void * is a generic pointer. It is frequently used by functions in the C library (e.g., memcpy(3)). Since it is the generic pointer it is related to any other pointer, and a static_cast should be used to convert a void * to an intended destination pointer. This is a somewhat awkward left-over from C, which should probably only be used in that context. Here is an example:
The qsort function from the C library expects a pointer to a (comparison) function having two void const * parameters. In fact, these parameters point to data elements of the array to be sorted, and so the comparison function must cast the void const * parameters to pointers to the elements of the array to be sorted. So, if the array is an int array[] and the compare function's parameters are void const *p1 and void const *p2 then the compare function obtains the address of the int pointed to by p1 by using:
static_cast<int const *>(p1);
Here is an example: the C function tolower requires an int representing the value of an unsigned char. But char by default is a signed type. To call tolower using an available char ch we should use:
tolower(static_cast<unsigned char>(ch))
3.5.2: The `const_cast'-operator
The const keyword has been given a special place in casting. Normally anything const is const for a good reason. Nonetheless situations may be encountered where the const can be ignored. For these special situations the const_cast should be used. Its syntax is:
const_cast<type>(expression)
A const_cast<type>(expression) expression is used to undo the const attribute of a (pointer) type.
The need for a const_cast may occur in combination with functions from the standard C library which traditionally weren't always as const-aware as they should. A function strfun(char *s) might be available, performing some operation on its char *s parameter without actually modifying the characters pointed to by s. Passing char const hello[] = "hello"; to strfun produces the warning
passing `const char *' as argument 1 of `fun(char *)' discards const
A const_cast is the appropriate way to prevent the warning:
strfun(const_cast<char *>(hello));
3.5.3: The `reinterpret_cast'-operator
The third new-style cast is used to change the interpretation of information: the reinterpret_cast. It is somewhat reminiscent of the static_cast, but reinterpret_cast should only be used when it is known that the information as defined in fact is or can be interpreted as something completely different. Its syntax is:
reinterpret_cast<pointer type>(pointer expression)
Think of the reinterpret_cast as a cast offering a poor-man's union: the same memory location may be interpreted in completely different ways.
The reinterpret_cast is used, for example, in combination with the write function that is available for streams. In C++ streams are the preferred interface to, e.g., disk-files. The standard streams like std::cin and std::cout also are stream objects.
Streams intended for writing (`output streams' like cout) offer write members having the prototype
write(char const *buffer, int length)
To write the value stored within a double variable to a stream in its un-interpreted binary form the stream's write member is used. However, as a double * and a char * point to variables using different and unrelated representations, a static_cast cannot be used. In this case a reinterpret_cast is required. To write the raw bytes of a variable double value to cout we use:
cout.write(reinterpret_cast<char const *>(&value), sizeof(double));
All casts are potentially dangerous, but the reinterpret_cast is the most dangerous of them all. Effectively we tell the compiler: back off, we know what we're doing, so stop fuzzing. All bets are off, and we'd better do know what we're doing in situations like these. As a case in point consider the following code:
int value = 0x12345678; // assume a 32-bits int
cout << "Value's first byte has value: " << hex <<
static_cast<int>(
*reinterpret_cast<unsigned char *>(&value)
);
The above code produces different results on little and big endian computers. Little endian computers show the value 78, big endian computers the value 12. Also note that the different representations used by little and big endian computers renders the previous example (cout.write(...)) non-portable over computers of different architectures.
As a rule of thumb: if circumstances arise in which casts have to be used, clearly document the reasons for their use in your code, making double sure that the cast does not eventually cause a program to misbehave. Also: avoid reinterpret_casts unless you have to use them.
3.5.4: The `dynamic_cast'-operator
Finally there is a new style cast that is used in combination with polymorphism (see chapter 14). Its syntax is:
dynamic_cast<type>(expression)
Different from the static_cast, whose actions are completely determined compile-time, the dynamic_cast's actions are determined run-time to convert a pointer to an object of some class (e.g., Base) to a pointer to an object of another class (e.g., Derived) which is found further down its so-called class hierarchy (this is also called downcasting).
At this point in the Annotations a dynamic_cast cannot yet be discussed extensively, but we return to this topic in section 14.6.1.
3.5.5: Casting 'shared_ptr' objects
This section can safely be skipped without loss of continuity.
In the context of the class shared_ptr, which is covered in section 18.4, several more new-style casts are available. Actual coverage of these specialized casts is postponed until section 18.4.5.
These specialized casts are:
3.6: Keywords and reserved names in C++
C++'s keywords are a superset of C's keywords. Here is a list of all keywords of the language:
alignas char16_t double long reinterpret_cast true
alignof char32_t dynamic_cast module requires try
and class else mutable return typedef
and_eq co_await enum namespace short typeid
asm co_return explicit new signed typename
atomic_cancel co_yield export noexcept sizeof union
atomic_commit compl extern not static unsigned
atomic_noexcept concept false not_eq static_assert using
auto const float nullptr static_cast virtual
bitand const_cast for operator struct void
bitor constexpr friend or switch volatile
bool continue goto or_eq synchronized wchar_t
break decltype if private template while
case default import protected this xor
catch delete inline public thread_local xor_eq
char do int register throw
Notes:
register int index;
result in compilation errors. Also, register is no longer considered a storage class specifier (storage class specifiers are extern, thread_local, mutable and static).
Keywords can only be used for their intended purpose and cannot be used as names for other entities (e.g., variables, functions, class-names, etc.). In addition to keywords identifiers starting with an underscore and living in the global namespace (i.e., not using any explicit namespace or using the mere :: namespace specification) or living in the std namespace are reserved identifiers in the sense that their use is a prerogative of the implementor.
Chapter 4: Namespaces
4.1: Namespaces
Imagine a math teacher who wants to develop an interactive math program. For this program functions like cos, sin, tan etc. are to be used accepting arguments in degrees rather than arguments in radians. Unfortunately, the function name cos is already in use, and that function accepts radians as its arguments, rather than degrees.
Problems like these are usually solved by defining another name, e.g., the function name cosDegrees is defined. C++ offers an alternative solution through namespaces. Namespaces can be considered as areas or regions in the code in which identifiers may be defined. Identifiers defined in a namespace normally won't conflict with names already defined elsewhere (i.e., outside of their namespaces). So, a function cos (expecting angles in degrees) could be defined in a namespace Degrees. When calling cos from within Degrees you would call the cos function expecting degrees, rather than the standard cos function expecting radians.
4.1.1: Defining namespaces
Namespaces are defined according to the following syntax:
namespace identifier
{
// declared or defined entities
// (declarative region)
}
The identifier used when defining a namespace is a standard C++ identifier.
Within the declarative region, introduced in the above code example, functions, variables, structs, classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined within a function body. However, it is possible to define a namespace using multiple namespace declarations. Namespaces are `open' meaning that a namespace CppAnnotations could be defined in a file file1.cc and also in a file file2.cc. Entities defined in the CppAnnotations namespace of files file1.cc and file2.cc are then united in one CppAnnotations namespace region. For example:
// in file1.cc
namespace CppAnnotations
{
double cos(double argInDegrees)
{
...
}
}
// in file2.cc
namespace CppAnnotations
{
double sin(double argInDegrees)
{
...
}
}
Both sin and cos are now defined in the same CppAnnotations namespace.
Namespace entities can be defined outside of their namespaces. This topic is discussed in section 4.1.4.1.
4.1.1.1: Declaring entities in namespaces
Instead of defining entities in a namespace, entities may also be declared in a namespace. This allows us to put all the declarations in a header file that can thereupon be included in sources using the entities defined in the namespace. Such a header file could contain, e.g.,
namespace CppAnnotations
{
double cos(double degrees);
double sin(double degrees);
}
4.1.1.2: A closed namespace
Namespaces can be defined without a name. Such an anonymous namespace restricts the visibility of the defined entities to the source file defining the anonymous namespace.
Entities defined in the anonymous namespace are comparable to C's static functions and variables. In C++ the static keyword can still be used, but its preferred use is in class definitions (see chapter 7). In situations where in C static variables or functions would have been used the anonymous namespace should be used in C++.
The anonymous namespace is a closed namespace: it is not possible to add entities to the same anonymous namespace using different source files.
4.1.2: Referring to entities
Given a namespace and its entities, the scope resolution operator can be used to refer to its entities. For example, the function cos() defined in the CppAnnotations namespace may be used as follows:
// assume CppAnnotations namespace is declared in the
// following header file:
#include <cppannotations>
int main()
{
cout << "The cosine of 60 degrees is: " <<
CppAnnotations::cos(60) << '\n';
}
This is a rather cumbersome way to refer to the cos() function in the CppAnnotations namespace, especially so if the function is frequently used. In cases like these an abbreviated form can be used after specifying a using declaration. Following
using CppAnnotations::cos; // note: no function prototype,
// just the name of the entity
// is required.
calling cos results in a call of the cos function defined in the CppAnnotations namespace. This implies that the standard cos function, accepting radians, is not automatically called anymore. To call that latter cos function the plain scope resolution operator should be used:
int main()
{
using CppAnnotations::cos;
...
cout << cos(60) // calls CppAnnotations::cos()
<< ::cos(1.5) // call the standard cos() function
<< '\n';
}
A using declaration can have restricted scope. It can be used inside a block. The using declaration prevents the definition of entities having the same name as the one used in the using declaration. It is not possible to specify a using declaration for a variable value in some namespace, and to define (or declare) an identically named object in a block also containing a using declaration. Example:
int main()
{
using CppAnnotations::value;
...
cout << value << '\n'; // uses CppAnnotations::value
int value; // error: value already declared.
}
4.1.2.1: The `using' directive
A generalized alternative to the using declaration is the using directive:
using namespace CppAnnotations;
Following this directive, all entities defined in the CppAnnotations namespace are used as if they were declared by using declarations.
While the using directive is a quick way to import all the names of a namespace (assuming the namespace has previously been declared or defined), it is at the same time a somewhat dirty way to do so, as it is less clear what entity is actually used in a particular block of code.
If, e.g., cos is defined in the CppAnnotations namespace, CppAnnotations::cos is going to be used when cos is called. However, if cos is not defined in the CppAnnotations namespace, the standard cos function will be used. The using directive does not document as clearly as the using declaration what entity will actually be used. Therefore use caution when applying the using directive.
Namespace declarations are context sensitive: when a using namespace declaration is specified inside a compound statement then the declaration is valid until the compound statement's closing curly bracket has been encountered. In the next example a string first is defined without explicit specifying std::string, but once the compound statement has ended the scope of the using namespace std declaration has also ended, and so std:: is required once again when defining second:
#include <string>
int main()
{
{
using namespace std;
string first;
}
std::string second;
}
A using namespace directive cannot be used within the declaration block of a class- or enumeration-type. E.g., the following example won't compile:
struct Namespace
{
using namespace std; // won't compile
};
4.1.2.2: `Koenig lookup'
If Koenig lookup were called the `Koenig principle', it could have been the title of a new Ludlum novel. However, it is not. Instead it refers to a C++ technicality.
`Koenig lookup' refers to the fact that if a function is called without specifying its namespace, then the namespaces of its argument types are used to determine the function's namespace. If the namespace in which the argument types are defined contains such a function, then that function is used. This procedure is called the `Koenig lookup'.
As an illustration consider the next example. The function FBB::fun(FBB::Value v) is defined in the FBB namespace. It can be called without explicitly mentioning its namespace:
#include <iostream>
namespace FBB
{
enum Value // defines FBB::Value
{
FIRST
};
void fun(Value x)
{
std::cout << "fun called for " << x << '\n';
}
}
int main()
{
fun(FBB::FIRST); // Koenig lookup: no namespace
// for fun() specified
}
/*
generated output:
fun called for 0
*/
The compiler is rather smart when handling namespaces. If Value in the namespace FBB would have been defined as typedef int Value then FBB::Value would be recognized as int, thus causing the Koenig lookup to fail.
As another example, consider the next program. Here two namespaces are involved, each defining their own fun function. There is no ambiguity, since the argument defines the namespace and FBB::fun is called:
#include <iostream>
namespace FBB
{
enum Value // defines FBB::Value
{
FIRST
};
void fun(Value x)
{
std::cout << "FBB::fun() called for " << x << '\n';
}
}
namespace ES
{
void fun(FBB::Value x)
{
std::cout << "ES::fun() called for " << x << '\n';
}
}
int main()
{
fun(FBB::FIRST); // No ambiguity: argument determines
// the namespace
}
/*
generated output:
FBB::fun() called for 0
*/
Here is an example in which there is an ambiguity: fun has two arguments, one from each namespace. The ambiguity must be resolved by the programmer:
#include <iostream>
namespace ES
{
enum Value // defines ES::Value
{
FIRST
};
}
namespace FBB
{
enum Value // defines FBB::Value
{
FIRST
};
void fun(Value x, ES::Value y)
{
std::cout << "FBB::fun() called\n";
}
}
namespace ES
{
void fun(FBB::Value x, Value y)
{
std::cout << "ES::fun() called\n";
}
}
int main()
{
// fun(FBB::FIRST, ES::FIRST); ambiguity: resolved by
// explicitly mentioning
// the namespace
ES::fun(FBB::FIRST, ES::FIRST);
}
/*
generated output:
ES::fun() called
*/
An interesting subtlety with namespaces is that definitions in one namespace may break the code defined in another namespace. It shows that namespaces may affect each other and that namespaces may backfire if we're not aware of their peculiarities. Consider the following example:
namespace FBB
{
struct Value
{};
void fun(int x);
void gun(Value x);
}
namespace ES
{
void fun(int x)
{
fun(x);
}
void gun(FBB::Value x)
{
gun(x);
}
}
Whatever happens, the programmer'd better not use any of the functions defined in the ES namespace, since that would result in infinite recursion. However, that's not the point. The point is that the programmer won't even be given the opportunity to call ES::fun since the compilation fails.
Compilation fails for gun but not for fun. But why is that so? Why is ES::fun flawlessly compiling while ES::gun isn't? In ES::fun fun(x) is called. As x's type is not defined in a namespace the Koenig lookup does not apply and fun calls itself with infinite recursion.
With ES::gun the argument is defined in the FBB namespace. Consequently, the FBB::gun function is a possible candidate to be called. But ES::gun itself also is possible as ES::gun's prototype perfectly matches the call gun(x).
Now consider the situation where FBB::gun has not yet been declared. Then there is of course no ambiguity. The programmer responsible for the ES namespace is resting happily. Some time after that the programmer who's maintaining the FBB namespace decides it may be nice to add a function gun(Value x) to the FBB namespace. Now suddenly the code in the namespace ES breaks because of an addition in a completely other namespace (FBB). Namespaces clearly are not completely independent of each other and we should be aware of subtleties like the above. Later in the C++ Annotations (chapter 11) we'll return to this issue.
Koenig lookup is only used in the context of namespaces. If a function is defined outside of a namespace, defining a parameter of a type that's defined inside a namespace, and that namespace also defines a function with an identical signature, then the compiler reports an ambiguity when that function is called. Here is an example, assuming the abovementioned namespace FBB is also available:
void gun(FBB::Value x);
int main(int argc, char **argv)
{
gun(FBB::Value{}); // ambiguity: FBB::gun and ::gun can both
// be called.
}
4.1.3: The standard namespace
The std namespace is reserved by C++. The standard defines many entities that are part of the runtime available software (e.g., cout, cin, cerr); the templates defined in the Standard Template Library (cf. chapter 18); and the Generic Algorithms (cf. chapter 19) are defined in the std namespace.
Regarding the discussion in the previous section, using declarations may be used when referring to entities in the std namespace. For example, to use the std::cout stream, the code may declare this object as follows:
#include <iostream>
using std::cout;
Often, however, the identifiers defined in the std namespace can all be accepted without much thought. Because of that, one frequently encounters a using directive, allowing the programmer to omit a namespace prefix when referring to any of the entities defined in the namespace specified with the using directive. Instead of specifying using declarations the following using directive is frequently encountered: construction like
#include <iostream>
using namespace std;
Should a using directive, rather than using declarations be used? As a rule of thumb one might decide to stick to using declarations, up to the point where the list becomes impractically long, at which point a using directive could be considered.
Two restrictions apply to using directives and declarations:
4.1.4: Nesting namespaces and namespace aliasing
Namespaces can be nested. Here is an example:
namespace CppAnnotations
{
int value;
namespace Virtual
{
void *pointer;
}
}
The variable value is defined in the CppAnnotations namespace. Within the CppAnnotations namespace another namespace (Virtual) is nested. Within that latter namespace the variable pointer is defined. To refer to these variable the following options are available:
int main()
{
CppAnnotations::value = 0;
CppAnnotations::Virtual::pointer = 0;
}
using namespace CppAnnotations;
int main()
{
value = 0;
Virtual::pointer = 0;
}
using namespace CppAnnotations::Virtual;
int main()
{
CppAnnotations::value = 0;
pointer = 0;
}
using namespace CppAnnotations;
using namespace Virtual;
int main()
{
value = 0;
pointer = 0;
}
using CppAnnotations::value;
using CppAnnotations::Virtual::pointer;
int main()
{
value = 0;
pointer = 0;
}
using namespace CppAnnotations::Virtual;
using CppAnnotations::value;
int main()
{
value = 0;
pointer = 0;
}
Following a using namespace directive all entities of that namespace can be used without any further prefix. If a single using namespace directive is used to refer to a nested namespace, then all entities of that nested namespace can be used without any further prefix. However, the entities defined in the more shallow namespace(s) still need the shallow namespace's name(s). Only after providing specific using namespace directives or using declarations namespace qualifications can be omitted.
When fully qualified names are preferred but a long name like
CppAnnotations::Virtual::pointer
is considered too long, a namespace alias may be used:
namespace CV = CppAnnotations::Virtual;
This defines CV as an alias for the full name. The variable pointer may now be accessed using:
CV::pointer = 0;
A namespace alias can also be used in a using namespace directive or using declaration:
namespace CV = CppAnnotations::Virtual;
using namespace CV;
Nested namespace definitions
Starting with the C++17 standard, when nesting namespaces a nested namespace can directly be referred to using scope resolution operators. E.g.,
namespace Outer::Middle::Inner
{
// entities defined/declared here are defined/declared in the Inner
// namespace, which is defined in the Middle namespace, which is
// defined in the Outer namespace
}
4.1.4.1: Defining entities outside of their namespaces
It is not strictly necessary to define members of namespaces inside a namespace region. But before an entity is defined outside of a namespace it must have been declared inside its namespace.
To define an entity outside of its namespace its name must be fully qualified by prefixing the member by its namespaces. The definition may be provided at the global level or at intermediate levels in the case of nested namespaces. This allows us to define an entity belonging to namespace A::B within the region of namespace A.
Assume the type int INT8[8] is defined in the CppAnnotations::Virtual namespace. Furthermore assume that it is our intent to define a function squares, inside the namespace
CppAnnotations::Virtual returning a pointer to CppAnnotations::Virtual::INT8.
Having defined the prerequisites within the CppAnnotations::Virtual namespace, our function could be defined as follows (cf. chapter 9 for coverage of the memory allocation operator new[]):
namespace CppAnnotations
{
namespace Virtual
{
void *pointer;
typedef int INT8[8];
INT8 *squares()
{
INT8 *ip = new INT8[1];
for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)
(*ip)[idx] = (idx + 1) * (idx + 1);
return ip;
}
}
}
The function squares defines an array of one INT8 vector, and returns its address after initializing the vector by the squares of the first eight natural numbers.
Now the function squares can be defined outside of the CppAnnotations::Virtual namespace:
namespace CppAnnotations
{
namespace Virtual
{
void *pointer;
typedef int INT8[8];
INT8 *squares();
}
}
CppAnnotations::Virtual::INT8 *CppAnnotations::Virtual::squares()
{
INT8 *ip = new INT8[1];
for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)
(*ip)[idx] = (idx + 1) * (idx + 1);
return ip;
}
In the above code fragment note the following:
Finally, note that the function could also have been defined in the CppAnnotations region. In that case the Virtual namespace would have been required when defining squares() and when specifying its return type, while the internals of the function would remain the same:
namespace CppAnnotations
{
namespace Virtual
{
void *pointer;
typedef int INT8[8];
INT8 *squares();
}
Virtual::INT8 *Virtual::squares()
{
INT8 *ip = new INT8[1];
for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)
(*ip)[idx] = (idx + 1) * (idx + 1);
return ip;
}
}
4.2: The std::chrono namespace (handling time)
The C programming language offers tools like sleep(3) and select(2) to suspend program execution for a certain amount of time. And of course the family of time(3) functions for setting and displaying time
Sleep and select can be used for waiting, but as they were designed in an era when multi threading was unavailable, their usefulness is limited when used in multi threaded programs. Multi threading has become part of C++ (covered in detail in chapter 20), and additional time-related functions are available in the std::filesystem namespace, covered below in this chapter.
In multi threaded programs threads are frequently suspended, albeit usually for a very short time. E.g., when a thread wants to access a variable, but the variable is currently being updated by another thread, then the former thread should wait until the latter thread has completed the update. Updating a variable usually doesn't take much time, but if it takes an unexpectedly long time, then the former thread may want to be informed about that, so it can do something else while the latter thread is busy updating the variable. Interactions between threads like these cannot be realized with functions like sleep and select.
The std::chrono namespace bridges the gap between the traditionally available time-related functions and the time-related requirements of multi-threading and of the std::filesystem name space. All but the specific std::filesystem related time functionality is available after including the <chrono> header file. After including the <filesystem> header file the facilities of the std::filesystem are available.
Time can be measured in various resolutions: in Olympic games time differences of hundreds of seconds may make the distinction between a gold and silver medal, but when planning a vacation we might talk about months before we go on vacation. Time resolutions are specified through objects of the class std::ratio, which (apart from including the <chrono> header file) is also available after including the <ratio> header file.
Different events usually last for different amounts of time (given a specific time resolution). Amounts of time are specified through objects of the class std::chrono::duration.
Events can also be characterized by their points in time: midnight, January 1, 1970 GMT is a point in time, as is 19:00, December 5, 2010. Points in time are specified through objects of the class std::chrono::time_point.
It's not just that resolutions, durations of events, and points in time of events may differ, but the devices (clocks) we use for specifying time also differ. In the old days hour glasses were used (and sometimes they're still used when boiling eggs), but on the other hand we may use atomic clocks when measurements should be very precise. Four different types of clocks are available. The commonly used clock is std::chrono::system_clock, but in the context of the file system there's also an (implicitly defined) filesystem::__file_clock.
In the upcoming sections the details of the std::chrono namespace are covered. First we look at characteristics of time resolutions. How to handle amounts of time given their resolutions is covered next. The next section describes facilities for defining and handling time-points. The relationships between these types and the various clock-types are covered thereafter.
In this chapter the specification std::chrono:: is often omitted (in practice using namespace std followed by using namespace chrono is commonly used; [std::]chrono:: specifications are occasionally used to avoid ambiguities). Also, every now and then you'll encounter forward references to later chapters, like the reference to the chapter about multi-threading. These are hard to avoid, but studying those chapters at this point fortunately can be postponed without loss of continuity.
4.2.1: Time resolutions: std::ratio
Time resolutions (or units of time) are essential components of time specifications. Time resolutions are defined through objects of the class std::ratio.
Before the class ratio can be used, the <ratio> header file must be included. Instead the <chrono> header file can be included.
The class ratio requires two template arguments. These are positive integral numbers surrounded by pointed brackets defining, respectively, the numerator and denominator of a fraction (by default the denominator equals 1). Examples:
ratio<1> - representing one;
ratio<60> - representing 60
ratio<1, 1000> - representing 1/1000.
The class ratio defines two directly accessible static data members: num represents its numerator, den its denominator. A ratio definition by itself simply defines a certain amount. E.g., when executing the following program
#include <ratio>
#include <iostream>
using namespace std;
int main()
{
cout << ratio<5, 1000>::num << ',' << ratio<5, 1000>::den << '\n' <<
milli::num << ',' << milli::den << '\n';
}
the text 1,200 is displayed, as that's the `amount' represented by ratio<5, 1000>: ratio simplifies the fraction whenever possible.
A fairly large number of predefined ratio types exist. They are, like ratio itself, defined in the standard namespace and can be used instead of the more cumbersome ratio<x> or ratio<x, y> specification:
| yocto | 10-24 | zepto | 10-21 | ||||
| atto | 10-18 | femto | 10-15 | pico | 10-12 | ||
| nano | 10-9 | micro | 10-6 | milli | 10-3 | ||
| centi | 10-2 | deci | 10-1 | ||||
| deca | 101 | hecto | 102 | kilo | 103 | ||
| mega | 106 | giga | 109 | tera | 1012 | ||
| peta | 1015 | exa | 1018 | ||||
| zetta | 1021 | yotta | 1024 | ||||
(note: the definitions of the types yocto, zepto, zetta and yotta use integral constants exceeding 64 bits. Although these constants are defined in C++, they are not available on 64 bit or smaller architectures.)
Time related ratios can very well be interpreted as fractions or multiple of seconds, with ratio<1, 1> representing a resolution of one second.
Here is an example showing how these abbreviations can be used:
cout << milli::num << ',' << milli::den << '\n' <<
kilo::num << ',' << kilo::den << '\n';
4.2.2: Amounts of time: std::chrono::duration
Amounts of time are specified through objects of the class std::chrono::duration.
Before using the class duration the <chrono> header file must be included.
Like ratio the class duration requires two template arguments. A numeric type (int64_t is normally used) defining the type holding the duration's amount of time, and a time-resolution (called its resolution), usually specified through a std::ratio-type (often using one of its chrono abbreviations).
Using the predefined std::deca ratio, representing units of 10 seconds an interval of 30 minutes is defined as follows:
duration<int64_t, std::deca> halfHr(180);
Here halfHr represents a time interval of 180 deca-seconds, so 1800 seconds. Comparable to the predefined ratios predefined duration types are available:
| nanoseconds | duration<int64_t, nano> | |
| microseconds | duration<int64_t, micro> | |
| milliseconds | duration<int64_t, milli> | |
| seconds | duration<int64_t> | |
| minutes | duration<int64_t, ratio<60>> | |
| hours | duration<int64_t, ratio<3600>> | |
Using these types, a time amount of 30 minutes can now simply be defined as minutes halfHour(30).
The two types that were specified when defining a duration<Type, Resolution> can be retrieved as, respectively,
Duration objects can be constructed by specifying an argument of its numeric type:
minutes halfHour(30);
the argument 30 is stored inside its int64_t data member.
Duration supports copy- and move-constructors (cf. chapter 9) and its default constructor initializes its int64_t data member to zero.
The amount of time stored in a duration object may be modified by adding or subtracting two duration objects or by multiplying, dividing, or computing a modulo value of its data member. Numeric multiplication operands may be used as left-hand side or right-hand side operands; in combination with the other multiplication operators the numeric operands must be used as right-hand side operands. Compound assignment operators are also available. Some examples:
minutes fullHour = minutes{ 30 } + halfHour;
fullHour = 2 * halfHour;
halfHour = fullHour / 2;
fullHour = halfHour + halfHour;
halfHour /= 2;
halfHour *= 2;
In addition, duration offers the following members (the first member is an ordinary member function requiring a duration object). The other three are static members (cf. chapter 8) which can be used without requiring objects (as shown at the zero code snippet):
seconds::zero().count(); // equals int64_t 0
Duration objects using different resolutions may be combined as long as no precision is lost. When duration objects using different resolutions are combined the resulting resolution is the finer of the two. When compound binary operators are used the receiving object's resolution must be the finer or the compilation fails.
minutes halfHour{ 30 };
hours oneHour{ 1 };
cout << (oneHour + halfHour).count(); // displays: 90
halfHour += oneHour; // OK
// oneHour += halfHours; // won't compile
The suffixes h, min, s, ms, us, ns can be used for integral values, creating the corresponding duration time intervals. E.g., minutes min = 1h stores 60 in min.
4.2.3: Clocks measuring time
Clocks are used for measuring time. C++ offers several predefined clock types, and all but one of them are defined in the std::chrono namespace. The exception is the clock std::filesystem::__file_clock (see section 4.3.1 for its details).
Before using the chrono clocks the <chrono> header file must be included.
We need clock types when defining points in time (see the next section). All predefined clock types define the following types:
All predefined clock types have a member now returning the clock's time_point corresponding to the current time (relative to the clock's epoch). It is a static member and can be used this way: system_clock::time_point tp = system_clock::now().
There are three predefined clock types in the chrono namespace:
The __file_clock is defined in the std::filesystem namespace ( covered in section 4.3.1).
In addition to now the classes system_clock and high_resolution_clock (referred to as Clock below) offer these two static members:
The example illustrates how these functions can be called:
system_clock::from_time_t(
system_clock::to_time_t(
system_clock::from_time_t(
time(0);
)
)
);
4.2.4: Points in time: std::chrono::time_point
Single moments in time can be specified through objects of the class std::chrono::time_point.
Before using the class time_point the <chrono> header file must be included.
Like duration the class time_point requires two template arguments: A clock type and a duration type. Usually system_clock is used as the clock's type using nanoseconds as the default duration type (it may be omitted if nanoseconds is the intended duration type). Otherwise specify the duration type as the time_point's second template argument. The following two time point definitions therefore use identifcal time point types:
time_point<standard_clock, nanoseconds> tp1;
time_point<standard_clock> tp2;
The class time_point supports three constructors:
The following operators and members are available:
system_clock::now() + seconds{ 5 };
time_point<system_clock> point = system_clock::now();
point -= seconds{ 5 };
cout <<
time_point<system_clock>::min().time_since_epoch().count() << '\n';
// shows -9223372036854775808
All predefined clocks use nanoseconds as their time resolution. To express the time in a less precise resolution take one unit of time of the less precise resolution (e.g., hours(1)) and convert it to nanoseconds. Then divide the value returned by the time point's time_since_epoch().count() member by count member of the less precise resolution converted to nanoseconds. Using this procedure the number of hours passed since the beginning of the epoch can be determined:
cout << system_clock::now().time_since_epoch().count() /
nanoseconds(hours(1)).count() <<
" hours since the epoch\n";
Time point objects based on the system clock or on the high resolution clock can be converted to std::time_t (or the equivalent type time_t) values. Such time_t values are used when converting time to text. For such conversions the manipulator put_time (cf. section 6.3.2) is commonly used, but put_time must be provided with the address of a std::tm object, which in turn can be obtained from a std::time_t value. The whole process is fairly complex, and the core elements are visualized in figure 3.
Figure 3: Time according to C++
The essential step eventually leading to the insertion of a time point's value into a std::ostream consists of using system_clock::to_time_t(time_point<system_clock> const &tp) to convert a time point to a time_t value (instead of using system_clock the high_resolution_clock can also be used). How a time point can be inserted into a std::ostream is described in section 6.4.4.
4.3: The std::filesystem namespace
Computers commonly store information that must survice reboots in their file systems. Traditionally, to manipulate the file system the C programming language offers functions performing the required system calls. Such functions (like rename(2), truncate(2), opendir(2), and realpath(3)) are of course also available in C++, but their signatures and way of use are often less attractive as they usually expect char const * parameters and may use static buffers or memory allocation based on malloc(3) and free(3).
Since 2003 the Boost library offers wrappers around these functions, offering interfaces to those system calls that are more C++-like.
Currently C++ directly supports these functions in the std::filesystem namespace. These facilities can be used after including the <filesystem> header file.
The filesystem namespace is extensive: it contains more than 10 different classes, and more than 30 free functions. To refer to the identifiers defined in the std::filesystem namespace their fully qualified names (e.g., std::filesystem::path can be used). Alternatively, after specifying `using namespace std::filesystem;' the identifiers can be used without further qualifications. Namespace specifications like `namespace fs = std::filesystem;' are also encountered, allowing specifications like fs::path.
Functions in the filesystem namespace may fail. When functions cannot perform their assigned tasks they may throw exceptions (cf. chapter 10) or they may assign values to error_code objects that are passed as arguments to those functions (see section 4.3.2 below).
4.3.1: the '__file_clock' type
In section 4.2.3 it was stated that various predefined clocks are available, of which the system_clock refers to the clock used by the computer itself. The filesystem namespace uses a different clock: the std::filesystem::__file_clock. Time points obtained using the __file_clock differ from the time points obtained using the system clock: time points using the __file_clock are based on an epoch that (currently) lies well beyond the epoch Jan 1, 00:00:00 1970 that is used by the system clock: Fri Dec 31 23:59:59 2173. The two epochs can be positioned on a time scale with the present somewhere in between:
<------|-----------------------|-----------------------|------->
system_clock's --------> present <-------- __file_clock's
epoch starts positive negative epoch starts
count count
The __file_clock has its own peculiarities: the static member now is available, as are the the non-static members: additions and subtractions of durations and the member time_since_epoch can all be used. The other members (to_time_t, from_time_t, min and max) aren't available.
Since to_time_t is not available for __file_clock how can we show the time or obtain the time's components of a time_point<__file_clock> object?
Computing the difference between the epochs we find 6'437'663'999 seconds, which we can add to the obtained time since the __file_clock's epoch to obtain the time since the system_clock's epoch. If timePt holds the duration since the __file_clock epoch then
6'437'663'999 + system_clock::to_time_t(
time_point<system_clock>{ nanoseconds(timePt) })
equals the number of seconds since the system_clock's epoch.
The potential drawback of this procedure is that, as __file_clock's name starts with underscores, the begin of its epoch might change. By using the now members of both clocks this drawback is avoided:
auto systemNow = system_clock::now().time_since_epoch();
auto fileNow = __file_clock::now().time_since_epoch();
time_t diff = (systemNow - fileNow) / 1'000'000'000;
time_t seconds = diff + system_clock::to_time_t(
time_point<system_clock>{ nanoseconds(timePt) });
4.3.2: The class 'error_code'
Objects of the class std::error_code encapsulate error values, and associated error categories (cf. section 10.9). Traditionally error values are available as values assigned to the global int errno variable. By convention, when errno's value equals zero there's no error. This convention was adopted by error_code.
Error codes can be defined for many conceptually different situations. Those situations are characterized by their own error categories.
Error categories are used to associate error_code objects with the errors that are defined by those categories. Default available error categories may use values like EADDRINUSE (or the equivalent enum class errc value address_in_use) but new types of error categories, tailored to other contexts, can also be defined. Defining error categories is covered near the end of the C++ Annotations (section 23.7.1). At this point two error_category members are briefly introduced:
Error category classes are singleton classes: only one object exists of each error category. In the context of the filesystem namespace the standard category system_category is used, and a reference to the system_category object is returned by the free function std::system_category, expecting no arguments. The public interface of the class error_code declares these construtors and members:
Constructors:
error_code ec{ 5, system_category() };
Members:
Free functions:
Ordering error_codes associated with different error categories has no meaning. But when the error categories are identical then they are compared by their error code values (cf. this SG14 discussion summary);
Other error related enums may also be defined with which tailored make_error_code functions can be associated (cf. section 23.7;)
return os << ec.category().name() << ':' << ec.value();
Several functions introduced below define an optional last error_code &ec parameter. Those functions have noexcept specifications. If those functions cannot complete their tasks, then ec is set to the appropriate error code, calling ec.clear() if no error was encountered. If no ec argument is provided then those functions throw a filesystem_error exception if they cannot complete their tasks.
4.3.3: Names of file system entries: path
Objects of the class filesysten::path hold names of file system entries. The class path is a value class: a default constructor (empty path) as well as standard copy/move construction/assignment facilities are available. In addition, the following constructors can be used:
A thus constructed path doesn't have to refer to an existing file system entry.
Path constructors expect character sequences (including NTBSs) that may consist of various (all optional) elements:
The constructors also define a last format ftmp = auto_format parameter, fir which in practice almost never an argument has to be provided (for its details see cppreference.)
Many functions expect path arguments which can usually be created from NTBSs or std::string objects as path allows promotions (cf. section 11.4). E.g., the filesystem function absolute expects a const &path argument. It can be called like this: absolute("tmp/filename").
4.3.3.1: Path modifiers
Objects of the class path can be handled in various ways:
Accessors (no arguments, const members) return the path's content in various forms, depending on the used accessor member: c_str returns an NTBS, string, wstring, u8string, u16string, u32string (possibly prefixed by generic_, like generic_string) returns a string-type of object. Example:
path ulb{ "/usr/local/bin" };
cout << ulb.string() << '\n'; // shows: /usr/local/bin
Double quotes surround the displayed path name when inserting a path object into a stream. The double quotes are omitted when accessing the path's content as an NTBS or as a string, and also when assigning (or casting) path objects to strings.
When extracting path objects from streams the path name that is extracted may optionally be surrounded by double quotes. The extracted path contains one set of surrounding quotes.
All of the path's components are sequentially accessed using its begin and end iterators: each component is returned as a path. If available root names and root directories are returned as initial components, followed by the individual directories and finally filename components. The directory separators themselves are not returned when iterating over a path's components.
Path components may also directly be obtained (if a component isn't present then an empty path component is returned). The following decomposers are available: root_name, root_directory, root_path, relative_path, parent_path ( returning the current path-content from which the last element has been removed), filename, stem (returning the filename without its dot-extension), and extension. Example:
path ulb{ "/usr/local/bin" };
cout << ulb.relative_path() << '\n'; // shows: "usr/local/bin"
// (note the double quotes)
When prefixed by has_ the member returns a bool which is true if the component is present. Also available: is_absolute, is_relative.
4.3.3.2: Path operators and free functions
In addition to the member functions various (free) operators are available:
Path objects can be compared (using the ==, !=, <, <=, >, and >= operators); the / operator returns the concatenated lhs and rhs, separated by a directory separator.
Comparisons use lexicographical comparisons (as if by comparing the return values of their string members).
In addition free functions are available. Some of these copy files. Those functions accept an optional std::filesystem::copy_options argument. The enum class copy_options defines symbolic constants that can be used to fine-tune the behavior of these functions. The enumeration supports bitwise operators (the symbols' values are shown between parentheses). It defines these symbols:
The following functions expect path arguments:
path man{ "/usr/local/bin/../../share/man" };
cout << canonical(man) << '\n'; // shows: "/usr/share/man"
If src is a directory, and dest does not exist, dest is created. Directories are recursively copied if copy options recursive or none were specified;
int main()
{
// get `now' according to the system_clock and
// the __file_clock, compute their difference in
// nanoseconds and seconds:
auto systemNow = system_clock::now().time_since_epoch();
auto fileNow = __file_clock::now().time_since_epoch();
duration diffNano = systemNow - fileNow;
time_t diff = diffNano.count() / 1'000'000'000;
cout << "system_clock now: " << systemNow.count() << "\n"
"__file_clock now: " << fileNow.count() << "\n"
"difference (nano): " << diffNano.count() << "\n"
"difference (secs): " << diff << '\n';
auto lwt = last_write_time("lastwritetime.cc").time_since_epoch();
time_t seconds = diff + system_clock::to_time_t(
time_point<system_clock>{ nanoseconds(lwt) } );
cout << "lastwritetime.cc's time: " <<
put_time(gmtime(&seconds), "%c") << '\n';
seconds =
system_clock::to_time_t(time_point<system_clock>{ diffNano });
cout << "__file_clock's epoch time expressed using the system_clock:\n"
" " << put_time(gmtime(&seconds), "%c") << "\n"
"same, merely using the difference in `now' clock-seconds:\n"
" " << put_time(gmtime(&diff), "%c") << '\n';
}
4.3.4: Handling directories: directory_entry
The file system is a recursive data structure. Its top-level entry is a directory (the root directory) containing plain directory entries (files, (soft) links, named sockets, etc.) and possibly also (sub)directory entries referring to nested directories which in turn may contiain plain- and (sub)directory entries.
In the std::filesystem namespace the elements of directories are objects of the class directory_entry, containing names and statuses of the entries of that directory.
The class directory_entry supports all standard constructors and assignment operators and in addition a constructor expecting a path:
directory_entry(path const &entry);
Objects of the class directory_entry can be constructed by name, without requiring that those objects refer to existing entries in the computer's file system. The assignment operator is also available, as is the (ostream) insertion operator, inserting the object's path into the stream. The extraction operator is not available.
`directory_entry' objects may be compared using the ==, !=, <, <=, >, and >= operators. These operators are then applied to their path objects: directory_entry("one") == directory_entry("one") returns true.
In addition to these operators the class directory_entry also has these member functions:
4.3.4.1: Visiting directory entries: (recursive_)directory_iterator
The filesystem namespace has two classes simplifying directory processing: objects of the class directory_iterator are (input) iterators iterating over the entries of directories; and objects of the class recursive_directory_iterator are (input) iterators recursively visiting all entries of directories.
The classes (recursive_)directory_iterator provides default, copy, and move constructors. Objects of both classes may also be constructed from a path and an optional error_code. E.g.,
directory_iterator(path const &dest [, error_code &ec]);
All members of standard input iterators (cf. section 18.2) are supported. These iterators point to directory_entry objects referring to entries in the computer's file system. E.g.,
cout << *directory_iterator{ "/home" } << '\n'; // shows the first
// entry under /home
End-iterators matching these objects are available through the default constructed objects of the two classes. In addition, range-based for loops can be used as shown by the next example:
for (auto &entry: directory_iterator("/var/log"))
cout << entry << '\n';
For-statements explicitly defining iterators can also be used:
for (
auto iter = directory_iterator("/var/log"),
end = directory_iterator{};
iter != end;
++iter
)
cout << entry << '\n';
After constructing a (recursive_)directory_iterator base{"/var/log"} object it refers to the first element of its directory. Such iterators can also explicitly be defined: auto &iter = begin(base), auto iter = begin(base), auto &iter = base or auto iter = base. All these iter objects refer to base's data, and incrementing them also advances base to its next element:
recursive_directory_iterator base{ "/var/log/" };
auto iter = base;
// final two elements show identical paths,
// different from the first element.
cout << *iter << ' ' << *++iter << ' ' << *base << '\n';
The functions begin and end that are used in the above examples are, like (recursive_)directory_iterator, available in the filesystem namespace.
The recursive_directory_iterator also accepts a directory_options argument (see below), by default specified as directory_options::none:
recursive_directory_iterator(path const &dest,
directory_options options [, error_code &ec]);
The enum class directory_options defines values that are used to fine-tune the behavior of recursive_directory_iterator objects, supporting bitwise operators (the values of its symbols are shown between parentheses):
The class recursive_directory_iterator also has these members:
Here is a little program displaying all directory elements of a directory and of all its immediate sub-directories.
int main()
{
recursive_directory_iterator base{ "/var/log" };
for (auto entry = base, end = end(base); entry != end; ++entry)
{
cout << entry.depth() << ": " << *entry << '\n';
if (entry.depth() == 1)
entry.disable_recursion_pending();
}
}
The above program handles entries as they come. If other strategies are needed they have to be implemented. E.g., a breadth-first strategy first visits all the non-directory entries and then visits the sub-directories. In the next example this is realized by processing each of the directories stored in level (initially it merely contains the starting directory). `Processing a directory' means that its non-directory entries are directly processed while the names of its sub-directories are stored in next. Once all entries in level have been processed the names of the next level sub-directories are available in next and by assigning next to level all directories at the next level are processed. When reaching the most deeply nested sub-directories next remains empty and the while statement ends:
void breadth(path const &dir) // starting dir.
{
vector<path> level{ dir }; // currently processed level
while (not level.empty()) // process all its dirs.
{
vector<path> next; // dirs of the next level
for (auto const &dir: level) // visit all dirs at this level
{
cout << "At " << dir << '\n';
// at each dir: visit all entries
for (auto const &entry: directory_iterator{ dir })
{
if (entry.is_directory()) // store all dirs at the current
next.push_back(entry); // level
else // or process its non-dir entry
cout << " entry: " << entry << '\n';
}
}
level = next; // continue at the next level,
} // which eventually won't exist
}
4.3.5: Types (file_type) and permissions (perms) of file system elements: file_status
File system entries (represented by path objects), have several attributes: permissions (e.g., the owner may modifiy an entry, others may only read entries), and types (like plain files, directories, and soft-links).
Types and permissions of file system entries are available through objects of the class file_status. The class file_status is a value-class supporting copy- and move- constructors and assignment operators.
The constructor
explicit file_status(file_type type = file_type::none,
perms permissions = perms::unknown)
creates the file status for a specific type of file system entry having a specific set of permissions. It also acts as default constructor.
The constructor's first parameter is an enumeration specifying the type of a file system entry represented by a path object:
The constructor's second parameter defines the enum class perms specifying the access permissions of file system entries. The enumeration's symbols were selected so that their meanings should be more descriptive than the constants defined in the <sys/stat.h> header file, but other than that they have identical values. All bitwise operators can be used by values of the enum class perms. Here is an overview of the symbols defined by the enum class perms:
| 4 | |||
| Symbol | Value | sys/stat.h | Meaning |
none | 0000 | No permission bits were set | |
owner_read | 0400 | S_IRUSR | File owner has read permission |
owner_write | 0200 | S_IWUSR | File owner has write permission |
owner_exec | 0100 | S_IXUSR | File owner has execute/search permissions |
owner_all | 0700 | S_IRWXU | File owner has read, write, and execute/search permissions |
group_read | 0040 | S_IRGRP | The file's group has read permission |
group_write | 0020 | S_IWGRP | The file's group has write permission |
group_exec | 0010 | S_IXGRP | The file's group has execute/search permissions |
group_all | 0070 | S_IRWXG | The file's group has read, write, and execute/search permissions |
others_read | 0004 | S_IROTH | Other users have read permission |
others_write | 0002 | S_IWOTH | Other users have write permission |
others_exec | 0001 | S_IXOTH | Other users have execute/search permissions |
others_all | 0007 | S_IRWXO | Other users have read, write, and execute/search permissions |
all | 0777 | All users have read, write, and execute/search permissions | |
set_uid | 04000 | S_ISUID | Set user ID to file owner user ID on execution |
set_gid | 02000 | S_ISGID | Set group ID to file's user group ID on execution |
sticky_bit | 01000 | S_ISVTX | POSIX XSI specifies that when set on a directory |
mask | 07777 | All valid permission bits. | |
The class file_status provides these members:
4.3.5.1: Obtaining the status of file system entries
The filesystem functions status and symlink_status retrieve or change statuses of file system entries. These functions may be called with a final (optional) error_code argument which is assigned an appropriate error code if they cannot perform their tasks. If the argument is omitted the members throw exceptions if they cannot perform their tasks:
Once a file_status object is obtained the file type of the entry whose status it represents can be interrogated using these functions (defined in the filesystem namespace, where WHATEVER is the requested specification):
bool is_WHATEVER(file_status status)
bool is_WHATEVER(path const path &entry [, error_code &ec])
These functions return true if status or status matches the requested type. Here are the available functions:
Alternatively, the file_status::type() member can be used in, e.g., a switch to select an entry matching its file_type return value (see the previous section (4.3.5) for a description of the symbols defined by the file_type enum).
Here is a little program showing how file statuses can be obtained and shown (for the map see section 12.4.7):
namespace
{
std::unordered_map<file_type, char const *> statusMap =
{
{ file_type::not_found, "an unknown file" },
{ file_type::none, "not yet or erroneously evaluated "
"file type" },
{ file_type::regular, "a regular file" },
{ file_type::directory, "a directory" },
{ file_type::symlink, "a symbolic link" },
{ file_type::block, "a block device" },
{ file_type::character, "a character device" },
{ file_type::fifo, "a named pipe" },
{ file_type::socket, "a socket file" },
{ file_type::unknown, "an unknown file type" }
};
}
int main()
{
cout << oct;
string line;
while (true)
{
cout << "enter the name of a file system entry: ";
if (not getline(cin, line) or line.empty())
break;
path entry{ line };
error_code ec;
file_status stat = status(entry, ec);
if (not status_known(stat))
{
cout << "status of " << entry << " is unknown. "
"Ec = " << ec << '\n';
continue;
}
cout << "status of " << entry << ": type = " <<
statusMap[stat.type()] <<
", permissions: " <<
static_cast<size_t>(stat.permissions()) << '\n';
}
}
4.3.6: Information about the space of file systems: space_info
Every existing path lives in a file system, Sizes of file systems typically are quite large, but there is a limit to their sizes.
The size of file systems, the number of bytes that is currently being used and the remaining number of bytes is made available by the function space(path const &entry [, error_code &ec]), returning the information about the file system containing entry in a POD struct space_info.
If the error_code argument is provided then it is cleared if no error occurs, and set to the operating system's error code if an error has occurred. If an error occurs and the error_code argument was not provided then a filesystem_error exception is thrown, receiving path as its first argument and the operating system's error code as its error_code argument.
The returned space_info has three fields:
uintmax_t capacity; // total size in bytes
uintmax_t free; // number of free bytes on the file system
uintmax_t available; // free bytes for a non-privileged process
If a field cannot be determined it is set to -1 (i.e., the max. value of the type uintmax_t).
The function can be used this way:
int main()
{
path tmp{ "/tmp" };
auto pod = space(tmp);
cout << "The filesystem containing /tmp has a capacity of " <<
pod.capacity << " bytes,\n"
"i.e., " << pod.capacity / (1024 * 1024) << " MB.\n"
"# free bytes: " << pod.free << "\n"
"# available: " << pod.available << "\n"
"free + available: " << pod.free + pod.available << '\n';
}
4.3.7: File system exceptions: filesystem_error
The std::filesystem namespace offers its own exception type filesystem_error (see also chapter 10). Its constructor has the following signature (the bracketed parameters are optional):
filesystem_error(string const &what,
[path const &path1, [path const &path2,]]
error_code ec);
As filesystem facilities are closely related to standard system functions, errc error code enumeration values can be used to obtain error_codes to pass to filesystem_error, as illustrated by the following program:
int main()
try
{
try
{
throw filesystem_error{ "exception encountered", "p1", "p2",
make_error_code(errc::address_in_use) };
}
catch (filesystem_error const &fse)
{
cerr << "what: " << fse.what() << "\n"
"path1: " << fse.path1() << "\n"
"path2: " << fse.path2() << "\n"
"code: " << fse.code() << '\n';
throw;
}
}
catch (exception const &ec)
{
cerr << "\n"
"plain exception's what: " << ec.what() << "\n\n";
}
Chapter 5: The `string' Data Type
C++ offers many solutions for common problems. Most of these facilities are part of the Standard Template Library or they are implemented as generic algorithms (see chapter 19).
Among the facilities C++ programmers have developed over and over again are those manipulating chunks of text, commonly called strings. The C programming language offers rudimentary string support.
To process text C++ offers a std::string type. In C++ the traditional C library functions manipulating NTB strings are deprecated in favor of using string objects. Many problems in C programs are caused by buffer overruns, boundary errors and allocation problems that can be traced back to improperly using these traditional C string library functions. Many of these problems can be prevented using C++ string objects.
Actually, string objects are class type variables, and in that sense they are comparable to stream objects like cin and cout. In this section the use of string type objects is covered. The focus is on their definition and their use. When using string objects the member function syntax is commonly used:
stringVariable.operation(argumentList)
For example, if string1 and string2 are variables of type std::string, then
string1.compare(string2)
can be used to compare both strings.
In addition to the common member functions the string class also offers a wide variety of operators, like the assignment (=) and the comparison operator (==). Operators often result in code that is easy to understand and their use is generally preferred over the use of member functions offering comparable functionality. E.g., rather than writing
if (string1.compare(string2) == 0)
the following is generally preferred:
if (string1 == string2)
To define and use string-type objects, sources must include the header file <string>. To merely declare the string type the header iosfwd can be included.
In addition to std::string, the header file string defines the following string types:
5.1: Operations on strings
Some of the operations that can be performed on strings return indices within the strings. Whenever such an operation fails to find an appropriate index, the value string::npos is returned. This value is a symbolic value of type string::size_type, which is (for all practical purposes) an (unsigned) int.
All string member functions accepting string objects as arguments also accept NTBS arguments. The same usually holds true for operators accepting string objects.
Some string-members use iterators. Iterators are formally introduced in section 18.2. Member functions using iterators are listed in the next section (5.2), but the iterator concept itself is not further covered by this chapter.
Strings support a large variety of members and operators. A short overview listing their capabilities is provided in this section, with subsequent sections offering a detailed discussion. The bottom line: C++ strings are extremely versatile and there is hardly a reason for falling back on the C library to process text. C++ strings handle all the required memory management and thus memory related problems, which are the #1 source of problems in C programs, can be prevented when C++ strings are used. Strings do come at a price, though. The class's extensive capabilities have also turned it into a beast. It's hard to learn and master all its features and in the end you'll find that not all that you expected is actually there. For example, std::string doesn't offer case-insensitive comparisons. But in the end it isn't even as simple as that. It is there, but it is somewhat hidden and at this point in the C++ Annotations it's too early to study into that hidden corner yet. Instead, realize that C's standard library does offer useful functions that can be used as long as we're aware of their limitations and are able to avoid their traps. So for now, to perform a traditional case-insensitive comparison of the content of two std::string objects str1 and str2 the following will do:
strcasecmp(str1.c_str(), str2.c_str());
Strings support the following functionality:
5.2: A std::string reference
In this section the string members and string-related operations are referenced. The subsections cover, respectively the string's initializers, iterators, operators, and member functions. The following terminology is used throughout this section:
Both opos and apos must refer to existing offsets, or an exception (cf. chapter 10) is generated. In contrast, an and on may exceed the number of available characters, in which case only the available characters are considered.
Many members declare default values for on, an and apos. Some members declare default values for opos. Default offset values are 0, the default values of on and an is string::npos, which can be interpreted as `the required number of characters to reach the end of the string'.
With members starting their operations at the end of the string object's content proceeding backwards, the default value of opos is the index of the object's last character, with on by default equal to opos + 1, representing the length of the substring ending at opos.
In the overview of member functions presented below it may be assumed that all these parameters accept default values unless indicated otherwise. Of course, the default argument values cannot be used if a function requires additional arguments beyond the ones otherwise accepting default values.
Some members have overloaded versions expecting an initial argument of type char const *. But even if that is not the case the first argument can always be of type char const * where a parameter of std::string is defined.
Several member functions accept iterators. Section 18.2 covers the technical aspects of iterators, but these may be ignored at this point without loss of continuity. Like apos and opos, iterators must refer to existing positions and/or to an existing range of characters within the string object's content.
All string-member functions computing indices return the predefined constant string::npos on failure.
The s literal suffix to indicate that a std::string constant is intended when a string literal (like "hello world") is used. It can be used after declaring using namespace std or, more specific, after declaring using namespace std::literals::string_literals.
When string literals are used when explicitly defining or using std::string objects the s-suffix is hardly ever required, but it may come in handy when using the auto keyword. E.g., auto str = "hello world"s defines std::string str, whereas it would have been a char const * if the literal suffix had been omitted.
5.2.1: Initializers
After defining string objects they are guaranteed to be in a valid state. At definition time string objects may be initialized in one of the following ways: The following string constructors are available:
string str1({'h', 'e', 'l', 'l', 'o'});
string str2{ 'h', 'e', 'l', 'l', 'o' };
5.2.2: Iterators
See section 18.2 for details about iterators. As a quick introduction to iterators: an iterator acts like a pointer, and pointers can often be used in situations where iterators are requested. Iterators usually come in pairs, defining a range of entities. The begin-iterator points to the first entity, the end-iterator points just beyond the last entity of the range. Their difference is equal to the number of entities in the iterator-range.
Iterators play an important role in the context of generic algorithms (cf. chapter 19). The class std::string defines the following iterator types:
these iterators are forward iterators. The const_iterator is returned by string const objects, the plain iterator is returned by non-const string objects. Characters referred to by iterators may be modified;
these iterators are also forward iterators but when incrementing the iterator the previous character in the string object is reached. Other than that they are comparable to, respectively, string::iterator and string::const_iterator.
5.2.3: Operators
String objects may be manipulated by member functions but also by operators. Using operators often results in more natural-looking code. In cases where operators are available having equivalent functionality as member function the operator is practically always preferred.
The following operators are available for string objects (in the examples `object' and `argument' refer to existing std::string objects).
a character, C or C++ string may be assigned to a string object. The assignment operator returns its left-hand side operand. Example:
object = argument;
object = "C string";
object = 'x';
object = 120; // same as object = 'x'
the arithmetic additive assignment operator and the addition operator add text to a string object. The compound assignment operator returns its left-hand side operand, the addition operator returns its result in a temporary string object. When using the addition operator either the left-hand side operand or the right-hand side operand must be a std::string object. The other operand may be a char, a C string or a C++ string. Example:
object += argument;
object += "hello";
object += 'x'; // integral expressions are OK
argument + otherArgument; // two std::string objects
argument + "hello"; // using + at least one
"hello" + argument; // std::string is required
argument + 'a'; // integral expressions are OK
'a' + argument;
The index operator may be used to retrieve object's individual characters, or to assign new values to individual characters of a non-const string object. There is no range-checking (use the at() member function for that). This operator returns a char & or char const &. Example:
object[3] = argument[5];
the logical comparison operators may be applied to two string objects or to a string object and a C string to compare their content. These operators return a bool value. The ==, !=, >, >=, <, and <= operators are available. The ordering operators perform a lexicographical comparison of their content using the ASCII character collating sequence. Example:
object == object; // true
object != (object + 'x'); // true
object <= (object + 'x'); // true
the insertion-operator (cf. section 3.1.4) may be used to insert a string object into an ostream, the extraction-operator may be used to extract a string object from an istream. The extraction operator by default first ignores all whitespace characters and then extracts all consecutively non-blank characters from an istream. Instead of a string a character array may be extracted as well, but the advantage of using a string object should be clear: the destination string object is automatically resized to the required number of characters. Example:
cin >> object;
cout << object;
5.2.4: Member functions
The std::string class offers many member function as well as additional non-member functions that should be considered part of the string class. All these functions are listed below in alphabetic order.
The symbolic value string::npos is defined by the string class. It represents `index-not-found' when returned by member functions returning string offset positions. Example: when calling `object.find('x')' (see below) on a string object not containing the character 'x', npos is returned, as the requested position does not exist.
The final 0-byte used in C strings to indicate the end of an NTBS is not considered part of a C++ string, and so the member function will return npos, rather than length() when looking for 0 in a string object containing the characters of a C string.
Here are the standard functions that operate on objects of the class string. When a parameter of size_t is mentioned it may be interpreted as a parameter of type string::size_type, but without defining a default argument value. The type size_type should be read as string::size_type. With size_type the default argument values mentioned in section 5.2 apply. All quoted functions are member functions of the class std::string, except where indicated otherwise.
argument[object.copy(argument, string::npos)] = 0;Of course, the programmer should make sure that argument's size is large enough to accommodate the additional 0-byte.
string s(2, 0);
cout << static_cast<int>(s.data()[1]) << '\n';
while (getline(istr, line))The content of the last line, whether or not it was terminated by a delimiter, is eventually also assigned to object.
process(line);
string{ stringObject }.swap(stringObject)idiom can be used.
5.2.5: Conversion functions
Several string conversion functions are available operating on or producing std::string objects. These functions are listed below in alphabetic order. They are not member functions, but class-less (free) functions declared in the std namespace. The <string> header file must be included before they can be used.
Here is an example of its use:
int value = stoi(" -123"s); // assigns value -123
value = stoi(" 123"s, 0, 5); // assigns value 38
Chapter 6: The IO-stream Library
Extending the standard stream (FILE) approach, well known from the C programming language, C++ offers an input/output (I/O) library based on class concepts.
All C++ I/O facilities are defined in the namespace std. The std:: prefix is omitted below, except for situations where this would result in ambiguities.
Earlier (in chapter 3) we've seen several examples of the use of the C++ I/O library, in particular showing insertion operator (<<) and the extraction operator (>>). In this chapter we'll cover I/O in more detail.
The discussion of input and output facilities provided by the C++ programming language heavily uses the class concept and the notion of member functions. Although class construction has not yet been covered (for that see chapter 7) and although inheritance is not covered formally before chapter 13, it is quite possible to discuss I/O facilities long before the technical background of class construction has been covered.
Most C++ I/O classes have names starting with basic_ (like basic_ios). However, these basic_ names are not regularly found in C++ programs, as most classes are also defined using typedef definitions like:
typedef basic_ios<char> ios;
Since C++ supports various kinds of character types (e.g., char, wchar_t), I/O facilities were developed using the template mechanism allowing for easy conversions to character types other than the traditional char type. As elaborated in chapter 21, this also allows the construction of generic software, that could thereupon be used for any particular type representing characters. So, analogously to the above typedef there exists a
typedef basic_ios<wchar_t> wios;
This type definition can be used for the wchar_t type. Because of the existence of these type definitions, the basic_ prefix was omitted from the C++ Annotations without loss of continuity. The C++ Annotations primarily focus on the standard 8-bits char type.
Iostream objects cannot be declared using standard forward declarations, like:
class std::ostream; // now erroneous
Instead, to declare iostream classes the <iosfwd> header file should be included:
#include <iosfwd> // correct way to declare iostream classes
Using C++ I/O offers the additional advantage of type safety. Objects (or plain values) are inserted into streams. Compare this to the situation commonly encountered in C where the fprintf function is used to indicate by a format string what kind of value to expect where. Compared to this latter situation C++'s iostream approach immediately uses the objects where their values should appear, as in
cout << "There were " << nMaidens << " virgins present\n";
The compiler notices the type of the nMaidens variable, inserting its proper value at the appropriate place in the sentence inserted into the cout iostream.
Compare this to the situation encountered in C. Although C compilers are getting smarter and smarter, and although a well-designed C compiler may warn you for a mismatch between a format specifier and the type of a variable encountered in the corresponding position of the argument list of a printf statement, it can't do much more than warn you. The type safety seen in C++ prevents you from making type mismatches, as there are no types to match.
Apart from this, iostreams offer more or less the same set of possibilities as the standard FILE-based I/O used in C: files can be opened, closed, positioned, read, written, etc.. In C++ the basic FILE structure, as used in C, is still available. But C++ adds to this I/O based on classes, resulting in type safety, extensibility, and a clean design.
In the ANSI/ISO standard the intent was to create architecture independent I/O. Previous implementations of the iostreams library did not always comply with the standard, resulting in many extensions to the standard. The I/O sections of previously developed software may have to be partially rewritten. This is tough for those who are now forced to modify old software, but every feature and extension that was once available can be rebuilt easily using ANSI/ISO standard conforming I/O. Not all of these reimplementations can be covered in this chapter, as many reimplementations rely on inheritance and polymorphism, which topics are formally covered by chapters 13 and 14. Selected reimplementations are provided in chapter 24, and in this chapter references to particular sections in other chapters are given where appropriate.
Figure 4: Central I/O Classes
This chapter is organized as follows (see also Figure 4):
The class ios is important in that it implements the communication with a buffer that is used by streams. This buffer is a streambuf object which is responsible for the actual I/O to/from the underlying device. Consequently iostream objects do not perform I/O operations themselves, but leave these to the (stream)buffer objects with which they are associated.
Stream objects have a limited but important role: they are the interface between, on the one hand, the objects to be input or output and, on the other hand, the streambuf, which is responsible for the actual input and output to the device accessed by a streambuf object.
This approach allows us to construct a new kind of streambuf for a new kind of device, and use that streambuf in combination with the `good old' istream- and ostream-class facilities. It is important to understand the distinction between the formatting roles of iostream objects and the buffering interface to an external device as implemented in a streambuf object. Interfacing to new devices (like sockets or file descriptors) requires the construction of a new kind of streambuf, rather than a new kind of istream or ostream object. A wrapper class may be constructed around the istream or ostream classes, though, to ease the access to a special device. This is how the stringstream classes were constructed.
6.1: Special header files
Several iostream related header files are available. Depending on the situation at hand, the following header files should be used:
class std::ostream; // erroneous declaration
void someFunction(std::ostream &str);
but, instead, one should use:
#include <iosfwd> // correctly declares class ostream
void someFunction(std::ostream &str);
6.2: The foundation: the class `ios_base'
The class std::ios_base forms the foundation of all I/O operations, and defines, among other things, facilities for inspecting the state of I/O streams and most output formatting facilities. Every stream class of the I/O library is, through the class ios, derived from this class, and inherits its capabilities. As ios_base is the foundation on which all C++ I/O was built, we introduce it here as the first class of the C++ I/O library.
Note that, as in C, I/O in C++ is not part of the language (although it is part of the ANSI/ISO standard on C++). Although it is technically possible to ignore all predefined I/O facilities, nobody does so, and the I/O library therefore represents a de facto I/O standard for C++. Also note that, as mentioned before, the iostream classes themselves are not responsible for the eventual I/O, but delegate this to an auxiliary class: the class streambuf or its derivatives.
It is neither possible nor required to construct an ios_base object directly. Its construction is always a side-effect of constructing an object further down the class hierarchy, like std::ios. Ios is the next class down the iostream hierarchy (see Figure 4). Since all stream classes in turn inherit from ios, and thus also from ios_base, the distinction between ios_base and ios is in practice not important. Therefore, facilities actually provided by ios_base will be discussed as facilities provided by ios. The reader who is interested in the true class in which a particular facility is defined should consult the relevant header files (e.g., ios_base.h and basic_ios.h).
6.3: Interfacing `streambuf' objects: the class `ios'
The std::ios class is derived directly from ios_base, and it defines de facto the foundation for all stream classes of the C++ I/O library.
Although it is possible to construct an ios object directly, this is seldom done. The purpose of the class ios is to provide the facilities of the class basic_ios, and to add several new facilites, all related to the streambuf object which is managed by objects of the class ios.
All other stream classes are either directly or indirectly derived from ios. This implies, as explained in chapter 13, that all facilities of the classes ios and ios_base are also available to other stream classes. Before discussing these additional stream classes, the features offered by the class ios (and by implication: by ios_base) are now introduced.
In some cases it may be required to include ios explicitly. An example is the situations where the formatting flags themselves (cf. section 6.3.2.2) are referred to in source code.
The class ios offers several member functions, most of which are related to formatting. Other frequently used member functions are:
The current ios object is associated with another streambuf object. A pointer to the ios object's original streambuf object is returned. The object to which this pointer points is not destroyed when the stream object goes out of scope, but is owned by the caller of rdbuf.
The ostream object is tied to current ios object. This means that the ostream object is flushed every time before an input or output action is performed by the current ios object. A pointer to the ios object's original ostream object is returned. To break the tie, pass the argument 0. See section 6.5.5 for an example.
6.3.1: Condition states
Operations on streams may fail for various reasons. Whenever an operation fails, further operations on the stream are suspended. It is possible to inspect, set and possibly clear the condition state of streams, allowing a program to repair the problem rather than having to abort. The members that are available for interrogating or manipulating the stream's state are described in the current section.
Conditions are represented by the following condition flags:
Several condition member functions are available to manipulate or determine the states of ios objects. Originally they returned int values, but their current return type is bool:
the value true is returned when the stream's badbit has been set and false otherwise. If true is returned it indicates that an illegal operation has been requested at the level of the streambuf object to which the stream interfaces. What does this mean? It indicates that the streambuf itself is behaving unexpectedly. Consider the following example:
std::ostream error(0);
Here an ostream object is constructed without providing it with a working streambuf object. Since this `streambuf' will never operate properly, its badbit flag is raised from the very beginning: error.bad() returns true.
the value true is returned when end of file (EOF) has been sensed (i.e., the eofbit flag has been set) and false otherwise. Assume we're reading lines line-by-line from cin, but the last line is not terminated by a final \n character. In that case std::getline attempting to read the \n delimiter hits end-of-file first. This raises the eofbit flag and cin.eof() returns true. For example, assume std::string str and main executing the statements:
getline(cin, str);
cout << cin.eof();
Then
echo "hello world" | program
prints the value 0 (no EOF sensed). But after
echo -n "hello world" | program
the value 1 (EOF sensed) is printed.
the value true is returned when bad returns true or when the failbit flag was set. The value false is returned otherwise. In the above example, cin.fail() returns false, whether we terminate the final line with a delimiter or not (as we've read a line). However, executing another getline results in raising the failbit flag, causing cin::fail() to return true. In general: fail returns true if the requested stream operation failed. A simple example showing this consists of an attempt to extract an int when the input stream contains the text hello world. The value not fail() is returned by the bool interpretation of a stream object (see below).
the value of the goodbit flag is returned. It equals true when none of the other condition flags (badbit, eofbit, failbit) was raised. Consider the following little program:
#include <iostream>
#include <string>
using namespace std;
void state()
{
cout << "\n"
"Bad: " << cin.bad() << " "
"Fail: " << cin.fail() << " "
"Eof: " << cin.eof() << " "
"Good: " << cin.good() << '\n';
}
int main()
{
string line;
int x;
cin >> x;
state();
cin.clear();
getline(cin, line);
state();
getline(cin, line);
state();
}
When this program processes a file having two lines, containing, respectively, hello and world, while the second line is not terminated by a \n character the following is shown:
Bad: 0 Fail: 1 Eof: 0 Good: 0
Bad: 0 Fail: 0 Eof: 0 Good: 1
Bad: 0 Fail: 0 Eof: 1 Good: 0
Thus, extracting x fails (good returning false). Then, the error state is cleared, and the first line is successfully read (good returning true). Finally the second line is read (incompletely): good returning false, and eof returning true.
streams may be used in expressions expecting logical values. Some examples are:
if (cin) // cin itself interpreted as bool
if (cin >> x) // cin interpreted as bool after an extraction
if (getline(cin, str)) // getline returning cin
When interpreting a stream as a logical value, it is actually `not fail()' that is interpreted. The above examples may therefore be rewritten as:
if (not cin.fail())
if (not (cin >> x).fail())
if (not getline(cin, str).fail())
The former incantation, however, is used almost exclusively.
The following members are available to manage error states:
When an error condition has occurred, and the condition can be repaired, then clear can be used to clear the error state of the file. An overloaded version exists accepting state flags, that are set after first clearing the current set of flags: clear(int state). Its return type is void
The current set of flags that are set for an ios object are returned (as an int). To test for a particular flag, use the bitwise and operator:
if (!(iosObject.rdstate() & ios::failbit))
{
// last operation didn't fail
}
Note that this test cannot be performed for the goodbit flag as its value equals zero. To test for `good' use a construction like:
if (iosObject.rdstate() == ios::goodbit)
{
// state is `good'
}
A stream may be assigned a certain set of states using setstate. Its return type is void. E.g.,
cin.setstate(ios::failbit); // set state to `fail'
To set multiple flags in one setstate() call use the bitor operator:
cin.setstate(ios::failbit | ios::eofbit)
The member clear is a shortcut to clear all error flags. Of course, clearing the flags doesn't automatically mean the error condition has been cleared too. The strategy should be:
C++ supports an exception mechanism to handle exceptional situations. According to the ANSI/ISO standard, exceptions can be used with stream objects. Exceptions are covered in chapter 10. Using exceptions with stream objects is covered in section 10.7.
6.3.2: Formatting output and input
The way information is written to streams (or, occasionally, read from streams) is controlled by formatting flags.
Formatting is used when it is necessary to, e.g., set the width of an output field or input buffer and to determine the form (e.g., the radix) in which values are displayed. Most formatting features belong to the realm of the ios class. Formatting is controlled by flags, defined by the ios class. These flags may be manipulated in two ways: using specialized member functions or using manipulators, which are directly inserted into or extracted from streams. There is no special reason for using either method; usually both methods are possible. In the following overview the various member functions are first introduced. Following this the flags and manipulators themselves are covered. Examples are provided showing how the flags can be manipulated and what their effects are.
Many manipulators are parameterless and are available once a stream header file (e.g., iostream) has been included. Some manipulators require arguments. To use the latter manipulators the header file iomanip must be included.
6.3.2.1: Format modifying member functions
Several member functions are available manipulating the I/O formatting flags. Instead of using the members listed below manipulators are often available that may directly be inserted into or extracted from streams. The available members are listed in alphabetical order, but the most important ones in practice are setf, unsetf and width.
the padding character is redefined, the padding character that was used before the redefinition is returned. Instead of using this member function the setfill manipulator may be inserted directly into an ostream. Example:
cout.fill('0'); // use '0' as padding char
cout << setfill('+'); // use '+' as padding char
if (cout.flags() & ios::hex)
cout << "Integral values are printed as hex numbers\n"
the previous set of flags are returned and the new set of flags are defined by flagset. Multiple flags are specified using the bitor operator. Example:
// change the representation to hexadecimal
cout.flags(ios::hex | cout.flags() & ~ios::dec);
the number of significant digits to use when outputting real values is set to signif. The previously used number of significant digits is returned. If the number of required digits exceeds signif then the number is displayed in `scientific' notation (cf. section 6.3.2.2). Manipulator: setprecision. Example:
cout.precision(3); // 3 digits precision
cout << setprecision(3); // same, using the manipulator
cout << 1.23 << " " << 12.3 << " " << 123.12 << " " << 1234.3 << '\n';
// displays: 1.23 12.3 123 1.23e+03
sets one or more formatting flags (use the bitor operator to combine multiple flags). Already set flags are not affected. The previous set of flags is returned. Instead of using this member function the manipulator setiosflags may be used. Examples are provided in the next section (6.3.2.2).
clears all flags mentioned in mask and sets the flags specified in flags. The previous set of flags is returned. Some examples are (but see the next section (6.3.2.2) for a more thorough discussion):
// left-adjust information in wide fields:
cout.setf(ios::left, ios::adjustfield);
// display integral values as hexadecimal numbers:
cout.setf(ios::hex, ios::basefield);
// display floating point values in scientific notation:
cout.setf(ios::scientific, ios::floatfield);
the specified formatting flags are cleared (leaving the remaining flags unaltered) and returns the previous set of flags. A request to unset an active default flag (e.g., cout.unsetf(ios::dec)) is ignored. Instead of this member function the manipulator resetiosflags may also be used. Example:
cout << 12.24; // displays 12.24
cout.setf(ios::fixed);
cout << 12.24; // displays 12.240000
cout.unsetf(ios::fixed); // undo a previous ios::fixed setting.
cout << 12.24; // displays 12.24
cout << resetiosflags(ios::fixed); // using manipulator rather
// than unsetf
the currently active output field width to use on the next insertion is returned. The default value is 0, meaning `as many characters as needed to write the value'.
the field width of the next insertion operation is set to nchars, returning the previously used field width. This setting is not persistent. It is reset to 0 after every insertion operation. Manipulator: std::setw(int). Example:
cout.width(5);
cout << 12; // using 5 chars field width
cout << setw(12) << "hello"; // using 12 chars field width
6.3.2.2: Formatting flags
Most formatting flags are related to outputting information. Information can be written to output streams in basically two ways: using binary output information is written directly to an output stream, without converting it first to some human-readable format and using formatted output by which values stored in the computer's memory are converted to human-readable text first. Formatting flags are used to define the way this conversion takes place. In this section all formatting flags are covered. Formatting flags may be (un)set using member functions, but often manipulators having the same effect may also be used. For each of the flags it is shown how they can be controlled by a member function or -if available- a manipulator.
To display information in wide fields:
to add fill characters (blanks by default) between the minus sign of negative numbers and the value itself. Other values and data types are right-adjusted. Manipulator: std::internal. Example:
cout.setf(ios::internal, ios::adjustfield);
cout << internal; // same, using the manipulator
cout << '\'' << setw(5) << -5 << "'\n"; // displays '- 5'
cout.setf(ios::left, ios::adjustfield);
cout << left; // same, using the manipulator
cout << '\'' << setw(5) << "hi" << "'\n"; // displays 'hi '
cout.setf(ios::right, ios::adjustfield);
cout << right; // same, using the manipulator
cout << '\'' << setw(5) << "hi" << "'\n"; // displays ' hi'
Using various number representations:
cout.setf(ios::dec, ios::basefield);
cout << dec; // same, using the manipulator
cout << 0x10; // displays 16
cout.setf(ios::hex, ios::basefield);
cout << hex; // same, using the manipulator
cout << 16; // displays 10
cout.setf(ios::oct, ios::basefield);
cout << oct; // same, using the manipulator
cout << 16; // displays 20
cout << setbase(8); // octal numbers, use 10 for
// decimal, 16 for hexadecimal
cout << 16; // displays 20
Fine-tuning displaying values:
cout.setf(ios::boolalpha);
cout << boolalpha; // same, using the manipulator
cout << (1 == 1); // displays true
cout.setf(ios::showbase);
cout << showbase; // same, using the manipulator
cout << hex << 16; // displays 0x10
cout.setf(ios::showpos);
cout << showpos; // same, using the manipulator
cout << 16; // displays +16
cout.unsetf(ios::showpos); // Undo showpos
cout << 16; // displays 16
cout.setf(ios::uppercase);
cout << uppercase; // same, using the manipulator
cout << hex << showbase <<
3735928559; // displays 0XDEADBEEF
Displaying floating point numbers
to display real values using a fixed decimal point (e.g., 12.25 rather than 1.225e+01), the fixed formatting flag is used. It can be used to set a fixed number of digits behind the decimal point. Manipulator: fixed. Example:
cout.setf(ios::fixed, ios::floatfield);
cout.precision(3); // 3 digits behind the .
// Alternatively:
cout << setiosflags(ios::fixed) << setprecision(3);
cout << 3.0 << " " << 3.01 << " " << 3.001 << '\n';
<< 3.0004 << " " << 3.0005 << " " << 3.0006 << '\n'
// Results in:
// 3.000 3.010 3.001
// 3.000 3.001 3.001
The example shows that 3.0005 is rounded away from zero, becoming 3.001 (likewise -3.0005 becomes -3.001). First setting precision and then fixed has the same effect.
cout.setf(ios::scientific, ios::floatfield);
cout << scientific; // same, using the manipulator
cout << 12.25; // displays 1.22500e+01
cout << fixed << setprecision(3); // 3 digits behind .
cout.setf(ios::showpoint); // set the flag
cout << showpoint; // same, using the manipulator
cout << 16.0 << ", " << 16.1 << ", " << 16;
// displays: 16.000, 16.100, 16
Note that the final 16 is an integral rather than a floating point number, so it has no decimal point. So showpoint has no effect. If ios::showpoint is not active trailing zeros are discarded. If the fraction is zero the decimal point is discarded as well. Example:
cout.unsetf(ios::fixed, ios::showpoint); // unset the flags
cout << 16.0 << ", " << 16.1;
// displays: 16, 16.1
Handling whitespace and flushing streams
cout << "hello" << endl; // prefer: << '\n';
cout << "hello" << flush; // avoid if possible.
cin.setf(ios::skipws); // to unset, use
// cin.unsetf(ios::skipws)
cin >> skipws; // same, using the manipulator
int value;
cin >> value; // skips initial blanks
cout.setf(ios::unitbuf);
cout << unitbuf; // same, using the manipulator
cout.write("xyz", 3); // flush follows write.
cin >> ws; // skip whitespace
cin.get(); // returns 'X'
6.4: Output
In C++ output is primarily based on the std::ostream class. The ostream class defines the basic operators and members inserting information into streams: the insertion operator (<<), and special members like write writing unformatted information to streams.
The class ostream acts as base class for several other classes, all offering the functionality of the ostream class, but adding their own specialties. In the upcoming sections the following classes are discussed:
6.4.1: Basic output: the class `ostream'
The class ostream defines basic output facilities. The cout, clog and cerr objects are all ostream objects. All facilities related to output as defined by the ios class are also available in the ostream class.
We may define ostream objects using the following ostream constructor:
this constructor creates an ostream object which is a wrapper around an existing std::streambuf object. It isn't possible to define a plain ostream object (e.g., using std::ostream out;) that can thereupon be used for insertions. When cout or its friends are used, we are actually using a predefined ostream object that has already been defined for us and interfaces to the standard output stream using a (also predefined) streambuf object handling the actual interfacing.
It is, however, possible to define an ostream object passing it a 0-pointer. Such an object cannot be used for insertions (i.e., it raises its ios::bad flag when something is inserted into it), but it may be given a streambuf later. Thus it may be preliminary constructed, suspending its use until an appropriate streambuf becomes available (see also section 14.8.3).
To define the ostream class in C++ sources, the <ostream> header file must be included. To use the predefined ostream objects (std::cerr, std::cout etc.) the <iostream> header file must be included.
6.4.1.1: Writing to `ostream' objects
The class ostream supports both formatted and binary output.
The insertion operator (<<) is used to insert values in a type safe way into ostream objects. This is called formatted output, as binary values which are stored in the computer's memory are converted to human-readable ASCII characters according to certain formatting rules.
The insertion operator points to the ostream object to receive the information. The normal associativity of << remains unaltered, so when a statement like
cout << "hello " << "world";
is encountered, the leftmost two operands are evaluated first (cout << "hello "), and an ostream & object, which is actually the same cout object, is returned. Now, the statement is reduced to
cout << "world";
and the second string is inserted into cout.
The << operator has a lot of (overloaded) variants, so many types of variables can be inserted into ostream objects. There is an overloaded <<-operator expecting an int, a double, a pointer, etc. etc.. Each operator returns the ostream object into which the information so far has been inserted, and can thus immediately be followed by the next insertion.
Streams lack facilities for formatted output like C's printf and vprintf functions. Although it is not difficult to implement these facilities in the world of streams, printf-like functionality is hardly ever required in C++ programs. Furthermore, as it is potentially type-unsafe, it might be better to avoid this functionality completely.
When binary files must be written, normally no text-formatting is used or required: an int value should be written as a series of raw bytes, not as a series of ASCII numeric characters 0 to 9. The following member functions of ostream objects may be used to write `binary files':
int x;
out.write(reinterpret_cast<char const *>(&x), sizeof(int));
The bytes written by the above write call are written to the ostream in an order depending on the endian-ness of the underlying hardware. Big-endian computers write the most significant byte(s) of multi-byte values first, little-endian computers first write the least significant byte(s).
6.4.1.2: `ostream' positioning
Although not every ostream object supports repositioning, they usually do. This means that it is possible to rewrite a section of the stream which was written earlier. Repositioning is frequently used in database applications where it must be possible to access the information in the database at random.
The current position can be obtained and modified using the following members:
The origin of the step, org is a value in the ios::seekdir enumeration. Its values are:
6.4.1.3: `ostream' flushing
Unless the ios::unitbuf flag has been set, information written to an ostream object is not immediately written to the physical stream. Rather, an internal buffer is filled during the write-operations, and when full it is flushed.
The stream's internal buffer can be flushed under program control:
6.4.2: Output to files: the class `ofstream'
The std::ofstream class is derived from the ostream class: it has the same capabilities as the ostream class, but can be used to access files or create files for writing.
In order to use the ofstream class in C++ sources, the <fstream> header file must be included. Including fstream does not automatically make available the standard streams cin, cout and cerr. Include iostream to declare these standard streams.
The following constructors are available for ofstream objects:
this is the basic constructor. It defines an ofstream object which may be associated with an actual file later, using its open() member (see below).
this constructor defines an ofstream object and associates it immediately with the file named name using output mode mode. Section 6.4.2.1 provides an overview of available output modes. Example:
ofstream out("/tmp/scratch");
It is not possible to open an ofstream using a file descriptor. The reason for this is (apparently) that file descriptors are not universally available over different operating systems. Fortunately, file descriptors can be used (indirectly) with a std::streambuf object (and in some implementations: with a std::filebuf object, which is also a streambuf). Streambuf objects are discussed in section 14.8, filebuf objects are discussed in section 14.8.2.
Instead of directly associating an ofstream object with a file, the object can be constructed first, and opened later.
ofstream out("/tmp/out");
out << "hello\n";
out.close(); // flushes and closes out
out.open("/tmp/out2");
out << "world\n";
#include <fstream>
#include <iostream>
using namespace std;
int main()
{
ofstream of;
cout << "of's open state: " << boolalpha << of.is_open() << '\n';
of.open("/dev/null"); // on Unix systems
cout << "of's open state: " << of.is_open() << '\n';
}
/*
Generated output:
of's open state: false
of's open state: true
*/
6.4.2.1: Modes for opening stream objects
The following file modes or file flags are available when constructing or opening ofstream (or istream, see section 6.5.2) objects. The values are of type ios::openmode. Flags may be combined using the bitor operator.
The following combinations of file flags have special meanings:
in | out: The stream may be read and written. However, the
file must exist.
in | out | trunc: The stream may be read and written. It is
(re)created empty first.
An interesting subtlety is that the open members of the ifstream, ofstream and fstream classes have a second parameter of type ios::openmode. In contrast to this, the bitor operator returns an int when applied to two enum-values. The question why the bitor operator may nevertheless be used here is answered in a later chapter (cf. section 11.12).
6.4.3: Output to memory: the class `ostringstream'
To write information to memory using stream facilities, std::ostringstream objects should be used. As the class ostringstream is derived from the class ostream all ostream's facilities are available to ostringstream objects as well. To use and define ostringstream objects the header file <sstream> must be included. In addition the class ostringstream offers the following constructors and members:
std::ostringstream out;
The following example illustrates the use of the ostringstream class: several values are inserted into the object. Then, the text contained by the ostringstream object is stored in a std::string, whose length and content are thereupon printed. Such ostringstream objects are most often used for doing `type to string' conversions, like converting int values to text. Formatting flags can be used with ostringstreams as well, as they are part of the ostream class.
Here is an example showing an ostringstream object being used:
#include <iostream>
#include <sstream>
using namespace std;
int main()
{
ostringstream ostr("hello ", ios::ate);
cout << ostr.str() << '\n';
ostr.setf(ios::showbase);
ostr.setf(ios::hex, ios::basefield);
ostr << 12345;
cout << ostr.str() << '\n';
ostr << " -- ";
ostr.unsetf(ios::hex);
ostr << 12;
cout << ostr.str() << '\n';
ostr.str("new text");
cout << ostr.str() << '\n';
ostr.seekp(4, ios::beg);
ostr << "world";
cout << ostr.str() << '\n';
}
/*
Output from this program:
hello
hello 0x3039
hello 0x3039 -- 12
new text
new world
*/
6.4.4: The `put_time' manipulator
The manipulator std::put_time(std::tm const *specs, char const *fmt) can be used to insert time specifications into std::ostream objects.
Time specifications are provided in std::tm objects, and the way the time should be displayed is defined by the format string fmt.
Starting with a chrono::time_point the following steps must be performed to insert the time point's time into a std::ostream:
time_t secs = system_clock::to_time_t( system_clock{}.now() );
// displays, e.g., Mon Nov 4 21:34:59 2019
time_t secs = system_clock::to_time_t( system_clock{}.now() );
std::cout << std::put_time(std::localtime(&secs), "%c") << '\n';
A simple function returning put_time's return value and expecting a time_point and format string can be defined which handles the above two statements. E.g., (omitting the std:: and std::chrono:: specifications for brevity):
auto localTime(time_point<system_clock> const &tp, char const *fmt)
{
time_t secs = system_clock::to_time_t( tp );
return put_time(localtime(&secs), fmt);
}
// used as:
cout << localTime(system_clock{}.now(), "%c") << '\n';
Many more format specifiers are recognized by put_time. Specifiers start with %. To display a percent character as part of the format string write it twice: %%. In addition to the standard escape sequences, %n can be used instead of \n, and %t can be used instead of \t.
| 5 | ||||
| Specifier | Meaning | std::tm field(s) | ||
%Y | year as a 4 digit decimal number | tm_year | ||
%EY | year in an alternative representation | tm_year | ||
%y | last 2 digits of year as a decimal number (range [00,99]) | tm_year | ||
%Oy | last 2 digits of year using an alternative numeric system | tm_year | ||
%Ey | year as offset from locale's alternative calendar period %EC (locale-dependent) | tm_year | ||
%C | first 2 digits of year as a decimal number (range [00,99]) | tm_year | ||
%EC | name of the base year (period) in the locale's alternative representation | tm_year | ||
%G | ISO 8601 week-based year, i.e. the year that contains the specified week | tm_year, | ||
%g | last 2 digits of ISO 8601 week-based year (range [00,99]) | tm_year, | ||
| 5 | ||||
| Specifier | Meaning | std::tm field(s) | ||
%b | abbreviated month name, e.g. Oct | tm_mon | ||
%m | month as a decimal number (range [01,12]) | tm_mon | ||
%Om | month using an alternative numeric system | tm_mon | ||
| 5 | ||||
| Specifier | Meaning | std::tm field(s) | ||
%U | week of the year as a decimal number (Sunday is the first day of the week) (range [00,53]) | tm_year, | ||
%OU | week of the year, as by %U, using an alternative numeric system | tm_year, | ||
%W | week of the year as a decimal number (Monday is the first day of the week) (range [00,53]) | tm_year, | ||
%OW | week of the year, as by %W, using an alternative numeric system | tm_year, | ||
%V | ISO 8601 week of the year (range [01,53]) | tm_year, | ||
%OV | week of the year, as by %V, using an alternative numeric system | tm_year, | ||
| 5 | ||||
| Specifier | Meaning | std::tm field(s) | ||
%j | day of the year as a decimal number (range [001,366]) | tm_yday | ||
%d | day of the month as a decimal number (range [01,31]) | tm_mday | ||
%Od | zero-based day of the month using an alternative numeric system | tm_mday | ||
%e | day of the month as a decimal number (range [1,31]) | tm_mday | ||
%Oe | one-based day of the month using an alternative numeric system | tm_mday | ||
| 5 | ||||
| Specifier | Meaning | std::tm field(s) | ||
%a | abbreviated weekday name, e.g. Fri | tm_wday | ||
%A | full weekday name, e.g. Friday | tm_wday | ||
%w | weekday as a decimal number, where Sunday is 0 (range [0-6]) | tm_wday | ||
%Ow | weekday, where Sunday is 0, using an alternative numeric system | tm_wday | ||
%u | weekday as a decimal number, where Monday is 1 (ISO 8601 format) (range [1-7]) | tm_wday | ||
%Ou | weekday, where Monday is 1, using an alternative numeric system | tm_wday | ||
| 5 | ||||
| Specifier | Meaning | std::tm field(s) | ||
%H | hour as a decimal number, 24 hour clock (range [00-23]) | tm_hour | ||
%OH | hour from 24-hour clock using an alternative numeric system | tm_hour | ||
%I | hour as a decimal number, 12 hour clock (range [01,12]) | tm_hour | ||
%OI | hour from 12-hour clock using the alternative numeric system | tm_hour | ||
%M | minute as a decimal number (range [00,59]) | tm_min | ||
%OM | minute using an alternative numeric system | tm_min | ||
%S | second as a decimal number (range [00,60]) | tm_sec | ||
%OS | second using an alternative numeric system | tm_sec | ||
| 5 | ||||
| Specifier | Meaning | std::tm field(s) | ||
%c | standard date and time string, e.g. Sun Oct 17 04:41:13 2010 | all | ||
%Ec | alternative date and time string | all | ||
%x | localized date representation | all | ||
%Ex | alternative date representation | all | ||
%X | localized time representation | all | ||
%EX | alternative time representation | all | ||
%D | equivalent to "%m/%d/%y" | tm_mon, | ||
%F | equivalent to "%Y-%m-%d" (the ISO 8601 date format) | tm_mon, | ||
%r | localized 12-hour clock time | tm_hour, | ||
%R | equivalent to "%H:%M" | tm_hour, | ||
%T | equivalent to "%H:%M:%S" (the ISO 8601 time format) | tm_hour, | ||
%p | localized a.m. or p.m. | tm_hour | ||
%z | offset from UTC in the ISO 8601 format (e.g. -0430; | tm_isdst | ||
%Z | time zone name or abbreviation | tm_isdst | ||
6.5: Input
In C++ input is primarily based on the std::istream class. The istream class defines the basic operators and members extracting information from streams: the extraction operator (>>), and special members like istream::read reading unformatted information from streams.
The class istream acts as base class for several other classes, all offering the functionality of the istream class, but adding their own specialties. In the upcoming sections the following classes are discussed:
6.5.1: Basic input: the class `istream'
The class istream defines basic input facilities. The cin object, is an istream object. All facilities related to input as defined by the ios class are also available in the istream class.
We may define istream objects using the following istream constructor:
this constructor can be used to construct a wrapper around an existing std::streambuf object. Similarly to ostream objects, istream objects may be defined by passing it initially a 0-pointer. See section 6.4.1 for a discussion, see also section 14.8.3, and see chapter 24 for examples.
To define the istream class in C++ sources, the <istream> header file must be included. To use the predefined istream object cin, the <iostream> header file must be included.
6.5.1.1: Reading from `istream' objects
The class istream supports both formatted and unformatted (binary) input. The extraction operator (operator>>) is used to extract values in a type safe way from istream objects. This is called formatted input, whereby human-readable ASCII characters are converted, according to certain formatting rules, to binary values.
The extraction operator points to the objects or variables to receive new values. The normal associativity of >> remains unaltered, so when a statement like
cin >> x >> y;
is encountered, the leftmost two operands are evaluated first (cin >> x), and an istream & object, which is actually the same cin object, is returned. Now, the statement is reduced to
cin >> y
and the y variable is extracted from cin.
The >> operator has many (overloaded) variants and thus many types of variables can be extracted from istream objects. There is an overloaded >> available for the extraction of an int, of a double, of a string, of an array of characters, possibly to the location pointed at by a pointer, etc., etc.. String or character array extraction by default first skips all whitespace characters, and then extracts all consecutive non-whitespace characters. Once an extraction operator has been processed the istream object from which the information was extracted is returned and it can immediately be used for additional istream operations that appear in the same expression.
Streams do not support facilities for formatted input as offered by C's scanf and vscanf functions. Although it is not difficult to add such facilities to the world of streams, scanf-like functionality is in practice never needed in C++ programs. Furthermore, as it is potentially type-unsafe, it is better to avoid using C-type formatted input.
When binary files must be read, the information should normally not be formatted: an int value should be read as a series of unaltered bytes, not as a series of ASCII numeric characters 0 to 9. The following member functions for reading information from istream objects are available:
Having stored the characters into buffer, a 0-valued character is written beyond the last character stored into the buffer. The functions eof and fail (see section 6.3.1) return 0 (false) if the delimiter was encountered before reading len - 1 characters or if the delimiter was not encountered after reading len - 1 characters. It is OK to specifiy a 0-valued character delimiter: this way NTBSs may be read from a (binary) file.
string value;
cin >> value;
cin.putback('X');
// displays: X
cout << static_cast<char>(cin.get());
6.5.1.2: `istream' positioning
Although not every istream object supports repositioning, some do. This means that it is possible to read the same section of a stream repeatedly. Repositioning is frequently used in database applications where it must be possible to access the information in the database randomly.
The current position can be obtained and modified using the following members:
The origin of the step, org is a value in the ios::seekdir enumeration. Its values are:
6.5.2: Input from files: the class `ifstream'
The std::ifstream class is derived from the istream class: it has the same capabilities as the istream class, but can be used to access files for reading.
In order to use the ifstream class in C++ sources, the <fstream> header file must be included. Including fstream does not automatically make available the standard streams cin, cout and cerr. Include iostream to declare these standard streams.
The following constructors are available for ifstream objects:
this is the basic constructor. It defines an ifstream object which may be associated with an actual file later, using its open() member (see below).
this constructor can be used to define an ifstream object and associate it immediately with the file named name using input mode mode. Section 6.4.2.1 provides an overview of available input modes. Example:
ifstream in("/tmp/input");
Instead of directly associating an ifstream object with a file, the object can be constructed first, and opened later.
ifstream in("/tmp/in");
in >> variable;
in.close(); // closes in
in.open("/tmp/in2");
in >> anotherVariable;
#include <fstream>
using namespace std;
int main(int argc, char **argv)
{
ifstream in(argv[1]);
double value;
// reads double in raw, binary form from file.
in.read(reinterpret_cast<char *>(&value), sizeof(double));
}
6.5.3: Input from memory: the class `istringstream'
To read information from memory using stream facilities, std::istringstream objects should be used. As the class istringstream is derived from the class istream all istream's facilities are available to istringstream objects as well. To use and define istringstream objects the header file <sstream> must be included. In addition the class istringstream offers the following constructors and members:
std::istringstream in;
The following example illustrates the use of the istringstream class: several values are extracted from the object. Such istringstream objects are most often used for doing `string to type' conversions, like converting text to int values (cf. C's atoi function). Formatting flags can be used with istringstreams as well, as they are part of the istream class. In the example note especially the use of the member seekg:
#include <iostream>
#include <sstream>
using namespace std;
int main()
{
istringstream istr("123 345"); // store some text.
int x;
istr.seekg(2); // skip "12"
istr >> x; // extract int
cout << x << '\n'; // write it out
istr.seekg(0); // retry from the beginning
istr >> x; // extract int
cout << x << '\n'; // write it out
istr.str("666"); // store another text
istr >> x; // extract it
cout << x << '\n'; // write it out
}
/*
output of this program:
3
123
666
*/
6.5.4: Copying streams
Usually, files are copied either by reading a source file character by character or line by line. The basic mold to process streams is as follows:
Note that reading must precede testing, as it is only possible to know after actually attempting to read from a file whether the reading succeeded or not. Of course, variations are possible: getline(istream &, string &) (see section 6.5.1.1) returns an istream &, so here reading and testing may be contracted using one expression. Nevertheless, the above mold represents the general case. So, the following program may be used to copy cin to cout:
#include <iostream>
using namespace::std;
int main()
{
while (true)
{
char c;
cin.get(c);
if (cin.fail())
break;
cout << c;
}
}
Contraction is possible here by combining get with the if-statement, resulting in:
if (!cin.get(c))
break;
Even so, this would still follow the basic rule: `read first, test later'.
Simply copying a file isn't required very often. More often a situation is encountered where a file is processed up to a certain point, followed by plain copying the file's remaining information. The next program illustrates this. Using ignore to skip the first line (for the sake of the example it is assumed that the first line is at most 80 characters long), the second statement uses yet another overloaded version of the <<-operator, in which a streambuf pointer is inserted into a stream. As the member rdbuf returns a stream's streambuf *, we have a simple means of inserting a stream's content into an ostream:
#include <iostream>
using namespace std;
int main()
{
cin.ignore(80, '\n'); // skip the first line and...
cout << cin.rdbuf(); // copy the rest through the streambuf *
}
This way of copying streams only assumes the existence of a streambuf object. Consequently it can be used with all specializations of the streambuf class.
6.5.5: Coupling streams
Ostream objects can be coupled to ios objects using the tie member function. Tying results in flushing the ostream's buffer whenever an input or output operation is performed on the ios object to which the ostream object is tied. By default cout is tied to cin (using cin.tie(cout)). This tie means that whenever an operation on cin is requested, cout is flushed first. To break the tie, ios::tie(0) can be called. In the example: cin.tie(0).
Another useful coupling of streams is shown by the tie between cerr and cout. Because of the tie standard output and error messages written to the screen are shown in sync with the time at which they were generated:
#include <iostream>
using namespace std;
int main()
{
cerr.tie(0); // untie
cout << "first (buffered) line to cout ";
cerr << "first (unbuffered) line to cerr\n";
cout << "\n";
cerr.tie(&cout); // tie cout to cerr
cout << "second (buffered) line to cout ";
cerr << "second (unbuffered) line to cerr\n";
cout << "\n";
}
/*
Generated output:
first (unbuffered) line to cerr
first (buffered) line to cout
second (buffered) line to cout second (unbuffered) line to cerr
*/
An alternative way to couple streams is to make streams use a common streambuf object. This can be implemented using the ios::rdbuf(streambuf *) member function. This way two streams can use, e.g. their own formatting, one stream can be used for input, the other for output, and redirection using the stream library rather than operating system calls can be implemented. See the next sections for examples.
6.6: Advanced topics
6.6.1: Moving streams
Stream classes (e.g.,, all stream classes covered in this chapter) are movable and can be swapped. This implies that factory functions can be designed for stream classes. Here is an example:
ofstream out(string const &name)
{
ofstream ret(name); // construct ofstream
return ret; // return value optimization, but
} // OK as moving is supported
int main()
{
ofstream mine(out("out")); // return value optimizations, but
// OK as moving is supported
ofstream base("base");
ofstream other;
base.swap(other); // swapping streams is OK
other = std::move(base); // moving streams is OK
// other = base; // this would fail: copy assignment
// is not available for streams
}
6.6.2: Redirecting streams
Using ios::rdbuf streams can be forced to share their streambuf objects. Thus information written to one stream is actually written to another stream; a phenomenon normally called redirection. Redirection is commonly implemented at the operating system level, and sometimes that is still necessary (see section 24.2.3).
A common situation where redirection is useful is when error messages should be written to file rather than to the standard error stream, usually indicated by its file descriptor number 2. In the Unix operating system using the bash shell, this can be realized as follows:
program 2>/tmp/error.log
Following this command any error messages written by program are written to /tmp/error.log, instead of appearing on the screen.
Here is an example showing how this can be implemented using streambuf objects. Assume program expects an argument defining the name of the file to write the error messages to. It could be called as follows:
program /tmp/error.log
The program looks like this, an explanation is provided below the program's source text:
#include <iostream>
#include <fstream>
using namespace std;
int main(int argc, char **argv)
{
ofstream errlog; // 1
streambuf *cerr_buffer = 0; // 2
if (argc == 2)
{
errlog.open(argv[1]); // 3
cerr_buffer = cerr.rdbuf(errlog.rdbuf()); // 4
}
else
{
cerr << "Missing log filename\n";
return 1;
}
cerr << "Several messages to stderr, msg 1\n";
cerr << "Several messages to stderr, msg 2\n";
cout << "Now inspect the contents of " <<
argv[1] << "... [Enter] ";
cin.get(); // 5
cerr << "Several messages to stderr, msg 3\n";
cerr.rdbuf(cerr_buffer); // 6
cerr << "Done\n"; // 7
}
/*
Generated output on file argv[1]
at cin.get():
Several messages to stderr, msg 1
Several messages to stderr, msg 2
at the end of the program:
Several messages to stderr, msg 1
Several messages to stderr, msg 2
Several messages to stderr, msg 3
*/
6.6.3: Reading AND Writing streams
Streams can be read and written using std::fstream objects. As with ifstream and ofstream objects, its constructor expects the name of the file to be opened:
fstream inout("iofile", ios::in | ios::out);
Note the use of the constants ios::in and ios::out, indicating that the file must be opened for both reading and writing. Multiple mode indicators may be used, concatenated by the bitor operator. Alternatively, instead of ios::out, ios::app could have been used and mere writing would become appending (at the end of the file).
Reading and writing to the same file is always a bit awkward: what to do when the file may not yet exist, but if it already exists it should not be rewritten? Having fought with this problem for some time I now use the following approach:
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
int main()
{
fstream rw("fname", ios::out | ios::in);
if (!rw) // file didn't exist yet
{
rw.clear(); // try again, creating it using ios::trunc
rw.open("fname", ios::out | ios::trunc | ios::in);
}
if (!rw) // can't even create it: bail out
{
cerr << "Opening `fname' failed miserably" << '\n';
return 1;
}
cerr << "We're at: " << rw.tellp() << '\n';
// write something
rw << "Hello world" << '\n';
rw.seekg(0); // go back and read what's written
string s;
getline(rw, s);
cout << "Read: " << s << '\n';
}
Under this approach if the first construction attempt fails fname doesn't exist yet. But then open can be attempted using the ios::trunc flag. If the file already existed, the construction would have succeeded. By specifying ios::ate when defining rw, the initial read/write action would by default have taken place at EOF.
Under DOS-like operating systems that use the multiple character sequence \r\n to separate lines in text files the flag ios::binary is required to process binary files ensuring that \r\n combinations are processed as two characters. In general, ios::binary should be specified when binary (non-text) files are to be processed. By default files are opened as text files. Unix operating systems do not distinguish text files from binary files.
With fstream objects, combinations of file flags are used to make sure that a stream is or is not (re)created empty when opened. See section 6.4.2.1 for details.
Once a file has been opened in read and write mode, the << operator can be used to insert information into the file, while the >> operator may be used to extract information from the file. These operations may be performed in any order, but a seekg or seekp operation is required when switching between insertions and extractions. The seek operation is used to activate the stream's data used for reading or those used for writing (and vice versa). The istream and ostream parts of fstream objects share the stream's data buffer and by performing the seek operation the stream either activates its istream or its ostream part. If the seek is omitted, reading after writing and writing after reading simply fails. The example shows a whitespace-delimited word being read from a file, writing another string to the file, just beyond the point where the just read word terminated. Finally yet another string is read which is found just beyond the location where the just written strings ended:
fstream f("filename", ios::in | ios::out);
string str;
f >> str; // read the first word
// write a well known text
f.seekg(0, ios::cur);
f << "hello world";
f.seekp(0, ios::cur);
f >> str; // and read again
Since a seek or clear operation is required when alternating between read and write (extraction and insertion) operations on the same file it is not possible to execute a series of << and >> operations in one expression statement.
Of course, random insertions and extractions are hardly ever used. Generally, insertions and extractions occur at well-known locations in a file. In those cases, the position where insertions or extractions are required can be controlled and monitored by the seekg, seekp, tellg and tellp members (see sections 6.4.1.2 and 6.5.1.2).
Error conditions (see section 6.3.1) occurring due to, e.g., reading beyond end of file, reaching end of file, or positioning before begin of file, can be cleared by the clear member function. Following clear processing may continue. E.g.,
fstream f("filename", ios::in | ios::out);
string str;
f.seekg(-10); // this fails, but...
f.clear(); // processing f continues
f >> str; // read the first word
A situation where files are both read and written is seen in database applications, using files consisting of records having fixed sizes, and where locations and sizes of pieces of information are known. For example, the following program adds text lines to a (possibly existing) file. It can also be used to retrieve a particular line, given its order-number in the file. A binary file index allows for the quick retrieval of the location of lines.
#include <iostream>
#include <fstream>
#include <string>
#include <climits>
using namespace std;
void err(char const *msg)
{
cout << msg << '\n';
}
void err(char const *msg, long value)
{
cout << msg << value << '\n';
}
void read(fstream &index, fstream &strings)
{
int idx;
if (!(cin >> idx)) // read index
{
cin.clear(); // allow reading again
cin.ignore(INT_MAX, '\n'); // skip the line
return err("line number expected");
}
index.seekg(idx * sizeof(long)); // go to index-offset
long offset;
if
(
!index.read // read the line-offset
(
reinterpret_cast<char *>(&offset),
sizeof(long)
)
)
return err("no offset for line", idx);
if (!strings.seekg(offset)) // go to the line's offset
return err("can't get string offset ", offset);
string line;
if (!getline(strings, line)) // read the line
return err("no line at ", offset);
cout << "Got line: " << line << '\n'; // show the line
}
void write(fstream &index, fstream &strings)
{
string line;
if (!getline(cin, line)) // read the line
return err("line missing");
strings.seekp(0, ios::end); // to strings
index.seekp(0, ios::end); // to index
long offset = strings.tellp();
if
(
!index.write // write the offset to index
(
reinterpret_cast<char *>(&offset),
sizeof(long)
)
)
return err("Writing failed to index: ", offset);
if (!(strings << line << '\n')) // write the line itself
return err("Writing to `strings' failed");
// confirm writing the line
cout << "Write at offset " << offset << " line: " << line << '\n';
}
int main()
{
fstream index("index", ios::trunc | ios::in | ios::out);
fstream strings("strings", ios::trunc | ios::in | ios::out);
cout << "enter `r <number>' to read line <number> or "
"w <line>' to write a line\n"
"or enter `q' to quit.\n";
while (true)
{
cout << "r <nr>, w <line>, q ? "; // show prompt
index.clear();
strings.clear();
string cmd;
cin >> cmd; // read cmd
if (cmd == "q") // process the cmd.
return 0;
if (cmd == "r")
read(index, strings);
else if (cmd == "w")
write(index, strings);
else if (cin.eof())
{
cout << "\n"
"Unexpected end-of-file\n";
return 1;
}
else
cout << "Unknown command: " << cmd << '\n';
}
}
Another example showing reading and writing of files is provided by the next program. It also illustrates the processing of NTBSs:
#include <iostream>
#include <fstream>
using namespace std;
int main()
{ // r/w the file
fstream f("hello", ios::in | ios::out | ios::trunc);
f.write("hello", 6); // write 2 NTB strings
f.write("hello", 6);
f.seekg(0, ios::beg); // reset to begin of file
char buffer[100]; // or: char *buffer = new char[100]
char c;
// read the first `hello'
cout << f.get(buffer, sizeof(buffer), 0).tellg() << '\n';
f >> c; // read the NTB delim
// and read the second `hello'
cout << f.get(buffer + 6, sizeof(buffer) - 6, 0).tellg() << '\n';
buffer[5] = ' '; // change asciiz to ' '
cout << buffer << '\n'; // show 2 times `hello'
}
/*
Generated output:
5
11
hello hello
*/
A completely different way to read and write streams may be implemented using streambuf members. All considerations mentioned so far remain valid (e.g., before a read operation following a write operation seekg must be used). When streambuf objects are used, either an istream is associated with the streambuf object of another ostream object, or an ostream object is associated with the streambuf object of another istream object. Here is the previous program again, now using associated streams:
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
void err(char const *msg); // see earlier example
void err(char const *msg, long value);
void read(istream &index, istream &strings)
{
index.clear();
strings.clear();
// insert the body of the read() function of the earlier example
}
void write(ostream &index, ostream &strings)
{
index.clear();
strings.clear();
// insert the body of the write() function of the earlier example
}
int main()
{
ifstream index_in("index", ios::trunc | ios::in | ios::out);
ifstream strings_in("strings", ios::trunc | ios::in | ios::out);
ostream index_out(index_in.rdbuf());
ostream strings_out(strings_in.rdbuf());
cout << "enter `r <number>' to read line <number> or "
"w <line>' to write a line\n"
"or enter `q' to quit.\n";
while (true)
{
cout << "r <nr>, w <line>, q ? "; // show prompt
string cmd;
cin >> cmd; // read cmd
if (cmd == "q") // process the cmd.
return 0;
if (cmd == "r")
read(index_in, strings_in);
else if (cmd == "w")
write(index_out, strings_out);
else
cout << "Unknown command: " << cmd << '\n';
}
}
In this example
filebuf fb("index", ios::in | ios::out | ios::trunc);
istream index_in(&fb);
ostream index_out(&fb);
Chapter 7: Classes
The C programming language offers two methods for structuring data of different types. The C struct holds data members of various types, and the C union also defines data members of various types. However, a union's data members all occupy the same location in memory and the programmer may decide on which one to use.
In this chapter classes are introduced. A class is a kind of struct, but its content is by default inaccessible to the outside world, whereas the content of a C++ struct is by default accessible to the outside world. In C++ structs find little use: they are mainly used to aggregate data within the context of classes or to define elaborate return values. Often a C++ struct merely contains plain old data (POD, cf. section 9.10). In C++ the class is the main data structuring device, by default enforcing two core concepts of current-day software engineering: data hiding and encapsulation (cf. sections 3.2.1 and 7.1.1).
The union is another data structuring device the language offers. The traditional C union is still available, but C++ also offers unrestricted unions. Unrestricted unions are unions whose data fields may be of class types. The C++ Annotations covers these unrestricted unions in section 9.9, after having introduced several other new concepts of C++,
C++ extends the C struct and union concepts by allowing the definition of member functions (introduced in this chapter) within these data types. Member functions are functions that can only be used with objects of these data types or within the scope of these data types. Some of these member functions are special in that they are always, usually automatically, called when an object starts its life (the so-called constructor) or ends its life (the so-called destructor). These and other types of member functions, as well as the design and construction of, and philosophy behind, classes are introduced in this chapter.
We step-by-step construct a class Person, which could be used in a database application to store a person's name, address and phone number.
Let's start by creating a class Person right away. From the onset, it is important to make the distinction between the class interface and its implementation. A class may loosely be defined as `a set of data and all the functions operating on those data'. This definition is later refined but for now it is sufficient to get us started.
A class interface is a definition, defining the organization of objects of that class. Normally a definition results in memory reservation. E.g., when defining int variable the compiler ensures that some memory is reserved in the final program storing variable's values. Although it is a definition no memory is set aside by the compiler once it has processed the class definition. But a class definition follows the one definition rule: in C++ entities may be defined only once. As a class definition does not imply that memory is being reserved the term class interface is preferred instead.
Class interfaces are normally contained in a class header file, e.g., person.h. We'll start our class Person interface here (cf section 7.7 for an explanation of the const keywords behind some of the class's member functions):
#include <string>
class Person
{
std::string d_name; // name of person
std::string d_address; // address field
std::string d_phone; // telephone number
size_t d_mass; // the mass in kg.
public: // member functions
void setName(std::string const &name);
void setAddress(std::string const &address);
void setPhone(std::string const &phone);
void setMass(size_t mass);
std::string const &name() const;
std::string const &address() const;
std::string const &phone() const;
size_t mass() const;
};
The member functions that are declared in the interface must still be implemented. The implementation of these members is properly called their definition.
In addition to member functions classes also commonly define the data that are manipulated by those member functions. These data are called the data members. In Person they are d_name, d_address, d_phone and d_mass. Data members should be given private access rights. Since the class uses private access rights by default they are usually simply listed at the top of the class interface.
All communication between the outer world and the class data is routed through the class's member functions. Data members may receive new values (e.g., using setName) or they may be retrieved for inspection (e.g., using name). Functions merely returning values stored inside the object, not allowing the caller to modify these internally stored values, are called accessors.
Syntactically there is only a marginal difference between a class and a struct. Classes by default define private members, structs define public members. Conceptually, though, there are differences. In C++ structs are used in the way they are used in C: to aggregate data, which are all freely accessible. Classes, on the other hand, hide their data from access by the outside world (which is aptly called data hiding) and offer member functions to define the communication between the outer world and the class's data members.
Following Lakos (Lakos, J., 2001) Large-Scale C++ Software Design (Addison-Wesley) I suggest the following setup of class interfaces:
Style conventions usually take a long time to develop. There is nothing obligatory about them, though. I suggest that readers who have compelling reasons not to follow the above style conventions use their own. All others are strongly advised to adopt the above style conventions.
Finally, referring back to section 3.1.2 that
using namespace std;
must be used in most (if not all) examples of source code. As explained in sections 7.11 and 7.11.1 the using directive should follow the preprocessor directive(s) including the header files, using a setup like the following:
#include <iostream>
#include "person.h"
using namespace std;
int main()
{
...
}
7.1: The constructor
C++ classes usually contain two special categories of member functions which are essential to the proper working of classes. These categories are the constructors and the destructor. The destructor's primary task is to return memory allocated by an object to the common pool when an object goes `out of scope'. Allocation of memory is discussed in chapter 9, and an in-depth coverage of destructors is therefore postponed until we reach that chapter. In the current chapter the emphasis is on the class's internal organization and on its constructors.
Constructors are recognized by their names which are equal to their class names. Constructors do not specify return values, not even void. E.g., the class Person may define a constructor Person::Person(). The C++ run-time system ensures that the constructor of a class is called when a variable of the class is defined. It is possible to define a class lacking any constructor. In that case the compiler defines a default constructor that is called when an object of that class is defined. What actually happens in that case depends on the data members that are defined by that class (cf. section 7.3.1).
Objects may be defined locally or globally. However, in C++ most objects are defined locally. Globally defined objects are hardly ever required and are somewhat deprecated.
When a function defines a local object, that object's constructor is called every time the function is called. The object's constructor is activated at the point where the object is defined (a subtlety is that an object may be defined implicitly as, e.g., a temporary variable in an expression).
When an object is defined as a static object it is constructed when the program starts. In this case its constructor is called even before the function main starts. Example:
#include <iostream>
using namespace std;
class Demo
{
public:
Demo();
};
Demo::Demo()
{
cout << "Demo constructor called\n";
}
Demo d;
int main()
{}
/*
Generated output:
Demo constructor called
*/
The program contains one global object of the class Demo with main having an empty body. Nonetheless, the program produces some output generated by the constructor of the globally defined Demo object.
Constructors have a very important and well-defined role. They must ensure that all the class's data members have sensible or at least well-defined values once the object has been constructed. We'll get back to this important task shortly. The default constructor has no argument. It is defined by the compiler unless another constructor is defined and unless its definition is suppressed (cf. section 7.6). If a default constructor is required in addition to another constructor then the default constructor must explicitly be defined as well. C++ provides special syntax to realize that without much effort, which is also covered by section 7.6.
7.1.1: A first application
Our example class Person has three string data members and a size_t d_mass data member. Access to these data members is controlled by interface functions.
Whenever an object is defined the class's constructor(s) ensure that its data members are given `sensible' values. Thus, objects never suffer from uninitialized values. Data members may be given new values, but that should never be directly allowed. It is a core principle (called data hiding) of good class design that its data members are private. The modification of data members is therefore fully controlled by member functions and thus, indirectly, by the class-designer. The class encapsulates all actions performed on its data members and due to this encapsulation the class object may assume the `responsibility' for its own data-integrity. Here is a minimal definition of Person's manipulating members:
#include "person.h" // given earlier
using namespace std;
void Person::setName(string const &name)
{
d_name = name;
}
void Person::setAddress(string const &address)
{
d_address = address;
}
void Person::setPhone(string const &phone)
{
d_phone = phone;
}
void Person::setMass(size_t mass)
{
d_mass = mass;
}
It's a minimal definition in that no checks are performed. But it should be clear that checks are easy to implement. E.g., to ensure that a phone number only contains digits one could define:
void Person::setPhone(string const &phone)
{
if (phone.empty())
d_phone = " - not available -";
else if (phone.find_first_not_of("0123456789") == string::npos)
d_phone = phone;
else
cout << "A phone number may only contain digits\n";
}
Note the double negation in this implementation. Double negations are very hard to read, and an encapsulating member bool hasOnly handles the test, and improves setPhone's readability:
bool Person::hasOnly(char const *characters, string const &object)
{
// object only contains 'characters'
return object.find_first_not_of(characters) == string::npos;
}
and setPhone becomes:
void Person::setPhone(string const &phone)
{
if (phone.empty())
d_phone = " - not available -";
else if (hasOnly("0123456789", phone))
d_phone = phone;
else
cout << "A phone number may only contain digits\n";
}
Since hasOnly is an encapsulated member function we can ensure that it's only used with non-empty string objects, so hasOnly itself doesn't have to check for that.
Access to the data members is controlled by accessor members. Accessors ensure that data members cannot suffer from uncontrolled modifications. Since accessors conceptually do not modify the object's data (but only retrieve the data) these member functions are given the predicate const. They are called const member functions, which, as they are guaranteed not to modify their object's data, are available to both modifiable and constant objects (cf. section 7.7).
To prevent backdoors we must also make sure that the data member is not modifiable through an accessor's return value. For values of built-in primitive types that's easy, as they are usually returned by value, which are copies of the values found in variables. But since objects may be fairly large making copies is usually prevented by returning objects by reference. A backdoor is created by returning a data member by reference, as in the following example, showing the allowed abuse below the function definition:
string &Person::name() const
{
return d_name;
}
Person somebody;
somebody.setName("Nemo");
somebody.name() = "Eve"; // Oops, backdoor changing the name
To prevent the backdoor objects are returned as const references from accessors. Here are the implementations of Person's accessors:
#include "person.h" // given earlier
using namespace std;
string const &Person::name() const
{
return d_name;
}
string const &Person::address() const
{
return d_address;
}
string const &Person::phone() const
{
return d_phone;
}
size_t Person::mass() const
{
return d_mass;
}
The Person class interface remains the starting point for the class design: its member functions define what can be asked of a Person object. In the end the implementation of its members merely is a technicality allowing Person objects to do their jobs.
The next example shows how the class Person may be used. An object is initialized and passed to a function printperson(), printing the person's data. Note the reference operator in the parameter list of the function printperson. Only a reference to an existing Person object is passed to the function, rather than a complete object. The fact that printperson does not modify its argument is evident from the fact that the parameter is declared const.
#include <iostream>
#include "person.h" // given earlier
using namespace std;
void printperson(Person const &p)
{
cout << "Name : " << p.name() << "\n"
"Address : " << p.address() << "\n"
"Phone : " << p.phone() << "\n"
"Mass : " << p.mass() << '\n';
}
int main()
{
Person p;
p.setName("Linus Torvalds");
p.setAddress("E-mail: Torvalds@cs.helsinki.fi");
p.setPhone("");
p.setMass(75); // kg.
printperson(p);
}
/*
Produced output:
Name : Linus Torvalds
Address : E-mail: Torvalds@cs.helsinki.fi
Phone : - not available -
Mass : 75
*/
7.1.2: Constructors: with and without arguments
The class Person's constructor so far has not received any parameters. C++ allows constructors to be defined with or without parameter lists. The arguments are supplied when an object is defined.
For the class Person a constructor expecting three strings and a size_t might be useful. Representing, respectively, the person's name, address, phone number and mass. This constructor can be implemented like this (but see also section 7.3.1):
Person::Person(string const &name, string const &address,
string const &phone, size_t mass)
{
d_name = name;
d_address = address;
setPhone(phone);
d_mass = mass;
}
It must of course also be declared in the class interface:
class Person
{
// data members (not altered)
public:
Person(std::string const &name, std::string const &address,
std::string const &phone, size_t mass);
// rest of the class interface (not altered)
};
Now that this constructor has been declared, the default constructor must explicitly be declared as well if we still want to be able to construct a plain Person object without any specific initial values for its data members. The class Person would thus support two constructors, and the part declaring the constructors now becomes:
class Person
{
// data members
public:
Person();
Person(std::string const &name, std::string const &address,
std::string const &phone, size_t mass);
// additional members
};
In this case, the default constructor doesn't have to do very much, as it doesn't have to initialize the string data members of the Person object. As these data members are objects themselves, they are initialized to empty strings by their own default constructor. However, there is also a size_t data member. That member is a variable of a built-in type and such variabes do not have constructors and so are not initialized automatically. Therefore, unless the value of the d_mass data member is explicitly initialized its value is:
The 0-value might not be too bad, but normally we don't want a random value for our data members. So, even the default constructor has a job to do: initializing the data members which are not initialized to sensible values automatically. Its implementation can be:
Person::Person()
{
d_mass = 0;
}
Using constructors with and without arguments is illustrated next. The object karel is initialized by the constructor defining a non-empty parameter list while the default constructor is used for the anon object. When constructing objects using constructors requiring arguments you are advised to surround the arguments by curly braces. Parentheses can often also be used, and sometimes even have to be used (cf. section 12.4.2), but mindlessly using parentheses instead of curly braces may easily result in unexpected problems (cf. section 7.2). Hence the advice to prefer curly braces rather than parentheses. Here's the example showing two constructor-calls:
int main()
{
Person karel{ "Karel", "Rietveldlaan 37", "542 6044", 70 };
Person anon;
}
The two Person objects are defined when main starts as they are local objects, living only for as long as main is active.
If Person objects must be definable using other arguments, corresponding constructors must be added to Person's interface. Apart from overloading class constructors it is also possible to provide constructors with default argument values. These default arguments must be specified with the constructor declarations in the class interface, like so:
class Person
{
public:
Person(std::string const &name,
std::string const &address = "--unknown--",
std::string const &phone = "--unknown--",
size_t mass = 0);
};
Often, constructors use highly similar implementions. This results from the fact that the constructor's parameters are often defined for convenience: a constructor not requiring a phone number but requiring a mass cannot be defined using default arguments, since phone is not the constructor's last parameter. Consequently a special constructor is required not having phone in its parameter list. However, this doesn't necessarily mean that constructors must duplicate their code, as constructors may call each other (called constructor delegation). Constructor delegation is illustrated in section 7.4.1 below.
7.1.2.1: The order of construction
The possibility to pass arguments to constructors allows us to monitor the construction order of objects during program execution. This is illustrated by the next program using a class Test. The program defines a global Test object and two local Test objects. The order of construction is as expected: first global, then main's first local object, then func's local object, and then, finally, main's second local object:
#include <iostream>
#include <string>
using namespace std;
class Test
{
public:
Test(string const &name); // constructor with an argument
};
Test::Test(string const &name)
{
cout << "Test object " << name << " created" << '\n';
}
Test globaltest("global");
void func()
{
Test functest("func");
}
int main()
{
Test first{ "main first" };
func();
Test second{ "main second" };
}
/*
Generated output:
Test object global created
Test object main first created
Test object func created
Test object main second created
*/
7.2: Ambiguity resolution
Calling constructors using parentheses may result in unexpected surprises. Assume the following class interface is available:
class Data
{
public:
Data();
Data(int one);
Data(int one, int two);
void display();
};
The intention is to define two objects of the class Data, using, respectively, the first and second constructors, while using parentheses in the object definitions. Your code looks like this (and compiles correctly):
#include "data.h"
int main()
{
Data d1();
Data d2(argc);
}
Now it's time to make some good use of the Data objects. Let's add two statements to main:
d1.display();
d2.display();
But, surprise, the compiler complains about the first of these two:
error: request for member 'display' in 'd1', which is of non-class type 'Data()'
What's going on here? First of all, notice the data type the compiler refers to: Data(), rather than Data. What are those () doing there?
Before answering that question, let's broaden our story somewhat. We know that somewhere in a library a factory function dataFactory exists. A factory function creates and returns an object of a certain type. This dataFactory function returns a Data object, constructed using Data's default constructor. Hence, dataFactory needs no arguments. We want to use dataFactory in our program, but must declare the function. So we add the declaration to main, as that's the only location where dataFactory will be used. It's a function, not requiring arguments, returning a Data object:
Data dataFactory();
This, however, looks remarkably similar to our d1 object definition:
Data d1();
We found the source of our problem: Data d1() apparently is not the definition of a d1 object, but the declaration of a function, returning a Data object. So, what's happening here and how should we define a Data object using Data's default constructor?
First: what's happening here is that the compiler, when confronted with Data d1(), actually had a choice. It could either define a Data object, or declare a function. It declares a function.
In fact, we're encountering an ambiguity in C++'s grammar here, which is solved, according to the language's standard, by always letting a declaration prevail over a definition. We'll encounter more situations where this ambiguity occurs later on in this section.
Second: there are several ways we can solve this ambiguity the way we want it to be solved. To define an object using its default constructor:
7.2.1: Types `Data' vs. `Data()'
Data() in the above context defines a default constructed anonymous Data object. This takes us back to the compiler error. According to the compiler, our original d1 apparently was not of type Data, but of type Data(). So what's that?
Let's first have a look at our second constructor. It expects an int. We would like to define another Data object, using the second constructor, but want to pass the default int value to the constructor, using int(). We know this defines a default int value, as cout << int() << '\n' nicely displays 0, and int x = int() also initialized x to 0. So we define `Data di(int())' in main.
Not good: again the compiler complains when we try to use di. After `di.display()' the compiler tells us:
error: request for member 'display' in 'di', which is of non-class type 'Data(int (*)())'
Oops, again not as expected.... Didn't we pass 0? Why the sudden pointer? It's that same `use a declaration when possible' strategy again. The notation Type() not only represents the default value of type Type, but it's also a shorthand notation for an anonymous pointer to a function, not expecting arguments, and returning a Type value, which you can verify by defining `int (*ip)() = nullptr', and passing ip as argument to di: di(ip) compiles fine.
So why doesn't the error occur when inserting int() or assigning int() to int x? In these latter cases nothing is declared. Rather, `cout' and `int x =' require expressions determining values, which is provided by int()'s `natural' interpretation. But with `Data di(int())' the compiler again has a choice, and (by design) it chooses a declaration because the declaration takes priority. Now int()'s interpretation as an anonymous pointer is available and therefore used.
Likewise, if int x has been defined, `Data b1(int(x))' declares b1 as a function, expecting an int (as int(x) represents a type), while `Data b2((int)x)' defines b2 as a Data object, using the constructor expecting a single int value.
Again, to use default entities, values or objects, prefer {} over (): Data di{ int{} } defines di of type Data, calling the Data(int x) constructor and uses int's default value 0.
7.2.2: Superfluous parentheses
Let's play some more. At some point in our program we defined int b. Then, in a compound statement we need to construct an anonymous Data object, initialized using b, followed by displaying b:
int b = 18;
{
Data(b);
cout << b;
}
About that cout statement the compiler tells us (I modified the error message to reveal its meaning):
error: cannot bind `std::ostream & << Data const &'
Here we didn't insert int b but Data b. Had we omitted the compound statement, the compiler would have complained about a doubly defined b entity, as Data(b) simply means Data b, a Data object constructed by default. The compiler may omit superfluous parentheses when parsing a definition or declaration.
Of course, the question now becomes how a temporary object Data, initialized with int b can be defined. Remember that the compiler may remove superfluous parentheses. So, what we need to do is to pass an int to the anonymous Data object, without using the int's name.
Values and types make big differences. Consider the following definitions:
Data (*d4)(int); // 1
Data (*d5)(3); // 2
Definition 1 should cause no problems: it's a pointer to a function, expecting an int, returning a Data object. Hence, d4 is a pointer variable.
Definition 2 is slightly more complex. Yes, it's a pointer. But it has nothing to do with a function. So what's that argument list containing 3 doing there? Well, it's not an argument list. It's an initialization that looks like an argument list. Remember that variables can be initialized using the assignment statement, by parentheses or by curly parentheses. So instead of `(3)' we could have written `= 3' or `{3}'. Let's pick the first alternative, resulting in:
Data (*d5) = 3;
Now we get to `play compiler' again. Removing some superfluous parentheses we get:
Data *d5 = 3;
It's a pointer to a Data object, initialized to 3. This is semantically incorrect, but that's only clear after the syntactical analysis. If I had initially written
Data (*d5)(&d1); // 2
the fun resulting from contrasting int and 3 would most likely have been spoiled.
7.2.3: Existing types
Once a type name has been defined it also prevails over identifiers representing variables, if the compiler is given a choice. This, too, can result in interesting constructions.
Assume a function process expecting an int exists in a library. We want to use this function to process some int data values. So in main process is declared and called:
int process(int Data);
process(argc);
No problems here. But unfortunately we once decided to `beautify' our code, by throwing in some superfluous parentheses, like so:
int process(int (Data));
process(argc);
Now we're in trouble. The compiler now generates an error, caused by its rule to let declarations prevail over definitions. Data now becomes the name of the class Data, and analogous to int (x) the parameter int (Data) is parsed as int (*)(Data): a pointer to a function, expecting a Data object, returning an int.
Here is another example. When, instead of declaring
int process(int Data[10]);
we declare, e.g., to emphasize the fact that an array is passed to process:
int process(int (Data[10]));
the process function does not expect a pointer to int values, but a pointer to a function expecting a pointer to Data elements, returning an int.
To summarize the findings in the `Ambiguity Resolution' section:
7.3: Objects inside objects: composition
In the class Person objects are used as data members. This construction technique is called composition.
Composition is neither extraordinary nor C++ specific: in C a struct or union field is commonly used in other compound types. In C++ it requires some special thought as their initialization sometimes is subject to restrictions, as discussed in the next few sections.
7.3.1: Composition and (const) objects: (const) member initializers
Unless specified otherwise object data members of classes are initialized by their default constructors. Using the default constructor might not always be the optimal way to intialize an object and it might not even be possible: a class might simply not define a default constructor.
Earlier we've encountered the following constructor of the Person:
Person::Person(string const &name, string const &address,
string const &phone, size_t mass)
{
d_name = name;
d_address = address;
d_phone = phone;
d_mass = mass;
}
Think briefly about what is going on in this constructor. In the constructor's body we encounter assignments to string objects. Since assignments are used in the constructor's body their left-hand side objects must exist. But when objects are coming into existence constructors must have been called. The initialization of those objects is thereupon immediately undone by the body of Person's constructor. That is not only inefficient but sometimes downright impossible. Assume that the class interface mentions a string const data member: a data member whose value is not supposed to change at all (like a birthday, which usually doesn't change very much and is therefore a good candidate for a string const data member). Constructing a birthday object and providing it with an initial value is OK, but changing the initial value isn't.
The body of a constructor allows assignments to data members. The initialization of data members happens before that. C++ defines the member initializer syntax allowing us to specify the way data members are initialized at construction time. Member initializers are specified as a list of constructor specifications between a colon following a constructor's parameter list and the opening curly brace of a constructor's body, as follows:
Person::Person(string const &name, string const &address,
string const &phone, size_t mass)
:
d_name(name),
d_address(address),
d_phone(phone),
d_mass(mass)
{}
In this example the member initialization used parentheses surrounding the intialization expression. Instead of parentheses curly braces may also be used. E.g., d_name could also be initialized this way:
d_name{ name },
Member initialization always occurs when objects are composed in classes: if no constructors are mentioned in the member initializer list the default constructors of the objects are called. Note that this only holds true for objects. Data members of primitive data types are not initialized automatically.
Member initialization can, however, also be used for primitive data members, like int and double. The above example shows the initialization of the data member d_mass from the parameter mass. When member initializers are used the data member could even have the same name as the constructor's parameter (although this is deprecated) as there is no ambiguity and the first (left) identifier used in a member initializer is always a data member that is initialized whereas the identifier between parentheses is interpreted as the parameter.
The order in which class type data members are initialized is defined by the order in which those members are defined in the composing class interface. If the order of the initialization in the constructor differs from the order in the class interface, the compiler complains, and reorders the initialization so as to match the order of the class interface.
Member initializers should be used as often as possible. As shown it may be required to use them (e.g., to initialize const data members, or to initialize objects of classes lacking default constructors) but not using member initializers also results in inefficient code as the default constructor of a data member is always automatically called unless an explicit member initializer is specified. Reassignment in the constructor's body following default construction is then clearly inefficient. Of course, sometimes it is fine to use the default constructor, but in those cases the explicit member initializer can be omitted.
As a rule of thumb: if a value is assigned to a data member in the constructor's body then try to avoid that assignment in favor of using a member initializer.
7.3.2: Composition and reference objects: reference member initializers
Apart from using member initializers to initialize composed objects (be they const objects or not), there is another situation where member initializers must be used. Consider the following situation.
A program uses an object of the class Configfile, defined in main to access the information in a configuration file. The configuration file contains parameters of the program which may be set by changing the values in the configuration file, rather than by supplying command line arguments.
Assume another object used in main is an object of the class Process, doing `all the work'. What possibilities do we have to tell the object of the class Process that an object of the class Configfile exists?
Process::Process(Configfile conf) // a copy from the caller
{
d_conf = conf; // copying to d_conf member
}
Process::Process(Configfile *conf) // pointer to external object
{
d_conf = conf; // d_conf is a Configfile *
}
This construction as such is OK, but forces us to use the `->' field selector operator, rather than the `.' operator, which is (disputably) awkward. Conceptually one tends to think of the Configfile object as an object, and not as a pointer to an object. In C this would probably have been the preferred method, but in C++ we can do better.
But a reference variable cannot be initialized using an assignment, and so the following is incorrect:
Process::Process(Configfile &conf)
{
d_conf = conf; // wrong: no assignment
}
The statement d_conf = conf fails, because it is not an initialization, but an assignment of one Configfile object (i.e., conf), to another (d_conf). An assignment to a reference variable is actually an assignment to the variable the reference variable refers to. But which variable does d_conf refer to? To no variable at all, since we haven't initialized d_conf. After all, the whole purpose of the statement d_conf = conf was to initialize d_conf....
How to initialize d_conf? We once again use the member initializer syntax. Here is the correct way to initialize d_conf:
Process::Process(Configfile &conf)
:
d_conf(conf) // initializing reference member
{}
The above syntax must be used in all cases where reference data members are used. E.g., if d_ir would have been an int reference data member, a construction like
Process::Process(int &ir)
:
d_ir(ir)
{}
would have been required.
7.4: Data member initializers
Non-static data members of classes are usually initialized by the class's constructors. Frequently (but not always) the same initializations are used by different constructors, resulting in multiple points where the initializations are performed, which in turn complicates class maintenance.
Consider a class defining several data members: a pointer to data, a data member storing the number of data elements the pointer points at, a data member storing the sequence number of the object. The class also offer a basic set of constructors, as shown in the following class interface:
class Container
{
Data *d_data;
size_t d_size;
size_t d_nr;
static size_t s_nObjects;
public:
Container();
Container(Container const &other);
Container(Data *data, size_t size);
Container(Container &&tmp);
};
The initial values of the data members are easy to describe, but somewhat hard to implement. Consider the initial situation and assume the default constructor is used: all data members should be set to 0, except for d_nr which must be given the value ++s_nObjects. Since these are non-default actions, we can't declare the default constructor using = default, but we must provide an actual implementation:
Container()
:
d_data(0),
d_size(0),
d_nr(++s_nObjects)
{}
In fact, all constructors require us to state the d_nr(++s_nObjects) initialization. So if d_data's type would have been a (move aware) class type, we would still have to provide implementations for all of the above constructors.
C++, however, also supports data member initializers, simplifying the initialization of non-static data members. Data member initializers allow us to assign initial values to data members. The compiler must be able to compute these initial values from initialization expressions, but the initial values do not have to be constant expressions. So ++s_nObjects can be an initial value.
Using data member initializers for the class Container we get:
class Container
{
Data *d_data = 0;
size_t d_size = 0;
size_t d_nr = ++s_nObjects;
static size_t s_nObjects;
public:
Container() = default;
Container(Container const &other);
Container(Data *data, size_t size);
Container(Container &&tmp);
};
Note that the data member initializations are recognized by the compiler, and are applied to its implementation of the default constructor. In fact, all constructors will apply the data member initializations, unless explicitly initialized otherwise. E.g., the move-constructor may now be implemented like this:
Container(Container &&tmp)
:
d_data(tmp.d_data),
d_size(tmp.d_size)
{
tmp.d_data = 0;
}
Although d_nr's intialization is left out of the implementation it is initialized due to the data member initialization provided in the class's interface.
An aggregate is an array or a class (usually a struct with no user-defined constructors, no private or protected non-static data members, no base classes (cf. chapter 13), and no virtual functions (cf. chapter 14)). E.g.,
struct POD // defining aggregate POD
{
int first = 5;
double second = 1.28;
std::string hello{ "hello" };
};
To initialize such aggregates braced initializer lists can be used. In fact, their use is preferred over using the older form (using parentheses), as using braces avoids confusion with function declarations. E.g.,
POD pod{ 4, 13.5, "hi there" };
When using braced-initializer lists not all data members need to be initialized. Specification may stop at any data member, in which case the default (or explicitly defined initialization values) of the remaining data members are used. E.g.,
POD pod{ 4 }; // uses second: 1.28, hello: "hello"
7.4.1: Delegating constructors
Often constructors are specializations of each other, allowing objects to be constructed specifying only subsets of arguments for all of its data members, using default argument values for the remaining data members.
Before the C++11 standard common practice was to define a member like init performing all initializations common to constructors. Such an init function, however, cannot be used to initialize const or reference data members, nor can it be used to perform so-called base class initializations (cf. chapter 13).
Here is an example where such an init function might have been used. A class Stat is designed as a wrapper class around C's stat(2) function. The class might define three constructors: one expecting no arguments and initializing all data members to appropriate values; a second one doing the same, but it calls stat for the filename provided to the constructor; and a third one expecting a filename and a search path for the provided file name. Instead of repeating the initialization code in each constructor, the common code can be factorized into a member init which is called by the constructors.
C++ offers an alternative by allowing constructors to call each other. This is called delegating constructors which is illustrated by the next example:
class Stat
{
public:
Stat()
:
Stat("", "") // no filename/searchpath
{}
Stat(std::string const &fileName)
:
Stat(fileName, "") // only a filename
{}
Stat(std::string const &fileName, std::string const &searchPath)
:
d_filename(fileName),
d_searchPath(searchPath)
{
// remaining actions to be performed by the constructor
}
};
C++ allows static const integral data members to be initialized within the class interfaces (cf. chapter 8). The C++11 standard adds to this the facility to define default initializations for plain data members in class interfaces (these data members may or may not be const or of integral types, but (of course) they cannot be reference data members).
These default initializations may be overruled by constructors. E.g., if the class Stat uses a data member bool d_hasPath which is false by default but the third constructor (see above) should initialize it to true then the following approach is possible:
class Stat
{
bool d_hasPath = false;
public:
Stat(std::string const &fileName, std::string const &searchPath)
:
d_hasPath(true) // overrule the interface-specified
{} // value
};
Here d_hasPath receives its value only once: it's always initialized to false except when the shown constructor is used in which case it is initialized to true.
7.5: Uniform initialization
When defining variables and objects they may immediately be given initial values. Class type objects are always initialized using one of their available constructors. C already supports the array and struct initializer list consisting of a list of constant expressions surrounded by a pair of curly braces.
C++ supports a comparable initialization, called uniform initialization. It uses the following syntax:
Type object{ value list };
When defining objects using a list of objects each individual object may use its own uniform initialization.
The advantage of uniform initialization over using constructors is that using constructor arguments may sometimes result in an ambiguity as constructing an object may sometimes be confused with using the object's overloaded function call operator (cf. section 11.10). As initializer lists can only be used with plain old data (POD) types (cf. section 9.10) and with classes that are `initializer list aware' (like std::vector) the ambiguity does not arise when initializer lists are used.
Uniform initialization can be used to initialize an object or variable, but also to initialize data members in a constructor or implicitly in the return statement of functions. Examples:
class Person
{
// data members
public:
Person(std::string const &name, size_t mass)
:
d_name {name},
d_mass {mass}
{}
Person copy() const
{
return {d_name, d_mass};
}
};
Object definitions may be encountered in unexpected places, easily resulting in (human) confusion. Consider a function `func' and a very simple class Fun (struct is used, as data hiding is not an issue here; in-class implementations are used for brevity):
void func();
struct Fun
{
Fun(void (*f)())
{
std::cout << "Constructor\n";
};
void process()
{
std::cout << "process\n";
}
};
Assume that in main a Fun object is defined as follows:
Fun fun(func);
Running this program displays Constructor, confirming that the object fun is constructed.
Next we change this line of code, intending to call process from an anonymous Fun object:
Fun(func).process();
As expected, Constructor appears, followed by the text process.
What about just defining an anonymous Fun object? We do:
Fun(func);
Now we're in for a surprise. The compiler complains that Fun's default constructor is missing. Why's that? Insert some blanks immediately after Fun and you get Fun (func). Parentheses around an identifier are OK, and are stripped off once the parenthesized expression has been parsed. In this case: (func) equals func, and so we have Fun func: the definition of a Fun func object, using Fun's default constructor (which isn't provided).
So why does Fun(func).process() compile? In this case we have a member selector operator, whose left-hand operand must be an class-type object. The object must exist, and Fun(func) represents that object. It's not the name of an existing object, but a constructor expecting a function like func exists. The compiler now creates an anonymous Fun, passing it func as its argument.
Clearly, in this example, parentheses cannot be used to create an anonymous Fun object. However, the uniform initialization can be used. To define the anonymous Fun object use this syntax:
Fun{ func };
(which can also be used to immediately call one of its members. E.g., Fun{func}.process()).
Although the uniform intialization syntax is slightly different from the syntax of an initializer list (the latter using the assignment operator) the compiler nevertheless uses the initializer list if a constructor supporting an initializer list is available. As an example consider:
class Vector
{
public:
Vector(size_t size);
Vector(std::initializer_list<int> const &values);
};
Vector vi = {4};
When defining vi the constructor expecting the initializer list is called rather than the constructor expecting a size_t argument. If the latter constructor is required the definition using the standard constructor syntax must be used. I.e., Vector vi(4).
Initializer lists are themselves objects that may be constructed using another initializer list. However, values stored in an initializer list are immutable. Once the initializer list has been defined their values remain as-is.
Before using initializer lists the initializer_list header file must be included.
Initializer lists support a basic set of member functions and constructors:
7.6: Defaulted and deleted class members
In everyday class design two situations are frequently encountered:
Once a class defines at least one constructor its default constructor is not automatically defined by the compiler. C++ relaxes that restriction somewhat by offering the `= default' syntax. A class specifying `= default' with its default constructor declaration indicates that the trivial default constructor should be provided by the compiler. A trivial default constructor performs the following actions:
Trivial implementations can also be provided for the copy constructor, the overloaded assignment operator, and the destructor. Those members are introduced in chapter 9.
Conversely, situations exist where some (otherwise automatically provided) members should not be made available. This is realized by specifying `= delete'. Using = default and = delete is illustrated by the following example. The default constructor receives its trivial implementation, copy-construction is prevented:
class Strings
{
public:
Strings() = default;
Strings(std::string const *sp, size_t size);
Strings(Strings const &other) = delete;
};
7.7: Const member functions and const objects
The keyword const is often used behind the parameter list of member functions. This keyword indicates that a member function does not alter the data members of its object. Such member functions are called const member functions. In the class Person, we see that the accessor functions were declared const:
class Person
{
public:
std::string const &name() const;
std::string const &address() const;
std::string const &phone() const;
size_t mass() const;
};
The rule of thumb given in section 3.1.1 applies here too: whichever appears to the left of the keyword const, is not altered. With member functions this should be interpreted as `doesn't alter its own data'.
When implementing a const member function the const attribute must be repeated:
string const &Person::name() const
{
return d_name;
}
The compiler prevents the data members of a class from being modified by one of its const member functions. Therefore a statement like
d_name[0] = toupper(static_cast<unsigned char>(d_name[0]));
results in a compiler error when added to the above function's definition.
Const member functions are used to prevent inadvertent data modification. Except for constructors and the destructor (cf. chapter 9) only const member functions can be used with (plain, references or pointers to) const objects.
Const objects are frequently encountered as const & parameters of functions. Inside such functions only the object's const members may be used. Here is an example:
void displayMass(ostream &out, Person const &person)
{
out << person.name() << " weighs " << person.mass() << " kg.\n";
}
Since person is defined as a Person const & the function displayMass cannot call, e.g.,
person.setMass(75).
The const member function attribute can be used to overload member functions. When functions are overloaded by their const attribute the compiler uses the member function matching most closely the const-qualification of the object:
The next example illustrates how (non) const member functions are selected:
#include <iostream>
using namespace std;
class Members
{
public:
Members();
void member();
void member() const;
};
Members::Members()
{}
void Members::member()
{
cout << "non const member\n";
}
void Members::member() const
{
cout << "const member\n";
}
int main()
{
Members const constObject;
Members nonConstObject;
constObject.member();
nonConstObject.member();
}
/*
Generated output:
const member
non const member
*/
As a general principle of design: member functions should always be given the const attribute, unless they actually modify the object's data.
7.7.1: Anonymous objects
Sometimes objects are used because they offer a certain functionality. The objects only exist because of their functionality, and nothing in the objects themselves is ever changed. The following class Print offers a facility to print a string, using a configurable prefix and suffix. A partial class interface could be:
class Print
{
public:
Print(ostream &out);
void print(std::string const &prefix, std::string const &text,
std::string const &suffix) const;
};
An interface like this would allow us to do things like:
Print print{ cout };
for (int idx = 0; idx != argc; ++idx)
print.print("arg: ", argv[idx], "\n");
This works fine, but it could greatly be improved if we could pass print's invariant arguments to Print's constructor. This would simplify print's prototype (only one argument would need to be passed rather than three) and we could wrap the above code in a function expecting a Print object:
void allArgs(Print const &print, int argc, char **argv)
{
for (int idx = 0; idx != argc; ++idx)
print.print(argv[idx]);
}
The above is a fairly generic piece of code, at least it is with respect to Print. Since prefix and suffix don't change they can be passed to the constructor which could be given the prototype:
Print(ostream &out, string const &prefix = "", string const &suffix = "");
Now allArgs may be used as follows:
Print p1{ cout, "arg: ", "\n" }; // prints to cout
Print p2{ cerr, "err: --", "--\n" };// prints to cerr
allArgs(p1, argc, argv); // prints to cout
allArgs(p2, argc, argv); // prints to cerr
But now we note that p1 and p2 are only used inside the allArgs function. Furthermore, as we can see from print's prototype, print doesn't modify the internal data of the Print object it is using.
In such situations it is actually not necessary to define objects before they are used. Instead anonymous objects may be used. Anonymous objects can be used:
When passing anonymous objects as arguments of const & parameters of functions they are considered constant as they merely exist for passing the information of (class type) objects to those functions. This way, they cannot be modified, nor may their non-const member functions be used. Of course, a const_cast could be used to cast away the const reference's constness, but that's considered bad practice on behalf of the function receiving the anonymous objects. Also, any modification to the anonymous object is lost once the function returns as the anonymous object ceases to exist after calling the function. These anonymous objects used to initialize const references should not be confused with passing anonymous objects to parameters defined as rvalue references (section 3.3.2) which have a completely different purpose in life. Rvalue references primarily exist to be `swallowed' by functions receiving them. Thus, the information made available by rvalue references outlives the rvalue reference objects which are also anonymous.
Anonymous objects are defined when a constructor is used without providing a name for the constructed object. Here is the corresponding example:
allArgs(Print{ cout, "arg: ", "\n" }, argc, argv); // prints to cout
allArgs(Print{ cerr, "err: --", "--\n" }, argc, argv);// prints to cerr
In this situation the Print objects are constructed and immediately passed as first arguments to the allArgs functions, where they are accessible as the function's print parameter. While the allArgs function is executing they can be used, but once the function has completed, the anonymous Print objects are no longer accessible.
7.7.1.1: Subtleties with anonymous objects
Anonymous objects can be used to initialize function parameters that are const references to objects. These objects are created just before such a function is called, and are destroyed once the function has terminated. C++'s grammar allows us to use anonymous objects in other situations as well. Consider the following snippet of code:
int main()
{
// initial statements
Print{ "hello", "world" }; // assume a matching constructor
// is available
// later statements
}
In this example an anonymous Print object is constructed, and it is immediately destroyed thereafter. So, following the `initial statements' our Print object is constructed. Then it is destroyed again followed by the execution of the `later statements'.
The example illustrates that the standard lifetime rules do not apply to anonymous objects. Their lifetimes are limited to the statements, rather than to the end of the block in which they are defined.
Plain anonymous object are at least useful in one situation. Assume we want to put markers in our code producing some output when the program's execution reaches a certain point. An object's constructor could be implemented so as to provide that marker-functionality allowing us to put markers in our code by defining anonymous, rather than named objects.
C++'s grammar contains another remarkable characteristic illustrated by the next example:
int main(int argc, char **argv)
{
// assume a matching constructor is available:
Print p{ cout, "", "" }; // 1
allArgs(Print{ p }, argc, argv); // 2
}
In this example a non-anonymous object p is constructed in statement 1, which is then used in statement 2 to initialize an anonymous object. The anonymous object, in turn, is then used to initialize allArgs's const reference parameter. This use of an existing object to initialize another object is common practice, and is based on the existence of a so-called copy constructor. A copy constructor creates an object (as it is a constructor) using an existing object's characteristics to initialize the data of the object that's created. Copy constructors are discussed in depth in chapter 9, but presently only the concept of a copy constructor is used.
In the above example a copy constructor is used to initialize an anonymous object. The anonymous object was then used to initialize a parameter of a function. However, when we try to apply the same trick (i.e., using an existing object to initialize an anonymous object) to a plain statement, the compiler generates an error: the object p can't be redefined (in statement 3, below):
int main(int argc, char *argv[])
{
Print p{ "", "" }; // 1
allArgs(Print(p), argc, argv); // 2
Print(p); // 3 error!
}
Does this mean that using an existing object to initialize an anonymous object that is used as function argument is OK, while an existing object can't be used to initialize an anonymous object in a plain statement?
The compiler actually provides us with the answer to this apparent contradiction. About statement 3 the compiler reports something like:
error: redeclaration of 'Print p'
which solves the problem when realizing that within a compound statement objects and variables may be defined. Inside a compound statement, a type name followed by a variable name is the grammatical form of a variable definition. Parentheses can be used to break priorities, but if there are no priorities to break, they have no effect, and are simply ignored by the compiler. In statement 3 the parentheses allowed us to get rid of the blank that's required between a type name and the variable name, but to the compiler we wrote
Print (p);
which is, since the parentheses are superfluous, equal to
Print p;
thus producing p's redeclaration.
As a further example: when we define a variable using a built-in type (e.g., double) using superfluous parentheses the compiler quietly removes these parentheses for us:
double ((((a)))); // weird, but OK.
To summarize our findings about anonymous variables:
7.8: The keyword `inline'
Let us take another look at the implementation of the function Person::name():
std::string const &Person::name() const
{
return d_name;
}
This function is used to retrieve the name field of an object of the class Person. Example:
void showName(Person const &person)
{
cout << person.name();
}
To insert person's name the following actions are performed:
Especially the first part of these actions causes some time loss, since an extra function call is necessary to retrieve the value of the name field. Sometimes a faster procedure immediately making the d_name data member available is preferred without ever actually calling a function name. This can be realized using inline functions. An inline function is a request to the compiler to insert the function's code at the location of the function's call. This may speed up execution by avoiding a function call, which typically comes with some (stack handling and parameter passing) overhead. Note that inline is a request to the compiler: the compiler may decide to ignore it, and will probably ignore it when the function's body contains much code. Good programming discipline suggests to be aware of this, and to avoid inline unless the function's body is fairly small. More on this in section 7.8.2.
7.8.1: Defining members inline
Inline functions may be implemented in the class interface itself. For the class Person this results in the following implementation of name:
class Person
{
public:
std::string const &name() const
{
return d_name;
}
};
Note that the inline code of the function name now literally occurs inline in the interface of the class Person. The keyword const is again added to the function's header.
Although members can be defined in-class (i.e., inside the class interface itself), it is considered bad practice for the following reasons:
Because of the above considerations inline members should not be defined in-class. Rather, they should be defined following the class interface. The Person::name member is therefore preferably defined as follows:
class Person
{
public:
std::string const &name() const;
};
inline std::string const &Person::name() const
{
return d_name;
}
If it is ever necessary to cancel Person::name's inline implementation, then this becomes its non-inline implementation:
#include "person.ih"
std::string const &Person::name() const
{
return d_name;
}
Only the inline keyword needs to be removed to obtain the correct non-inline implementation.
Defining members inline has the following effect: whenever an inline-defined function is called, the compiler may insert the function's body at the location of the function call. It may be that the function itself is never actually called.
This construction, where the function code itself is inserted rather than a call to the function, is called an inline function. Note that using inline functions may result in multiple occurrences of the code of those functions in a program: one copy for each invocation of the inline function. This is probably OK if the function is a small one, and needs to be executed fast. It's not so desirable if the code of the function is extensive. The compiler knows this too, and handles the use of inline functions as a request rather than a command. If the compiler considers the function too long, it will not grant the request. Instead it will treat the function as a normal function.
7.8.2: When to use inline functions
When should inline functions be used, and when not? There are some rules of thumb which may be followed:
inline void Person::printname() const
{
cout << d_name << '\n';
}
This function contains only one statement. However, the statement takes a relatively long time to execute. In general, functions which perform input and output take lots of time. The effect of the conversion of this function printname() to inline would therefore lead to an insignificant gain in execution time.
All inline functions have one disadvantage: the actual code is inserted by the compiler and must therefore be known at compile-time. Therefore, as mentioned earlier, an inline function can never be located in a run-time library. Practically this means that an inline function is found near the interface of a class, usually in the same header file. The result is a header file which not only shows the declaration of a class, but also part of its implementation, thus always blurring the distinction between interface and implementation.
7.8.2.1: A prelude: when NOT to use inline functions
As a prelude to chapter 14 (Polymorphism), there is one situation in which inline functions should definitely be avoided. At this point in the C++ Annotations it's a bit too early to expose the full details, but since the keyword inline is the topic of this section this is considered the appropriate location for the advice.
There are situations where the compiler is confronted with so-called vague linkage
(cf. http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Vague-Linkage.html). These situations occur when the compiler does not have a clear indication in what object file to put its compiled code. This happens, e.g., with inline functions, which are usually encountered in multiple source files. Since the compiler may insert the code of ordinary inline functions in places where these functions are called, vague linking is usually no problem with these ordinary functions.
However, as explained in chapter 14, when using polymorphism the compiler must ignore the inline keyword and define so-called virtual members as true (out-of-line) functions. In this situation the vague linkage may cause problems, as the compiler must decide in what object s to put their code. Usually that's not a big problem as long as the function is at least called once. But virtual functions are special in the sense that they may very well never be explicitly called. On some architectures (e.g., armel) the compiler may fail to compile such inline virtual functions. This may result in missing symbols in programs using them. To make matters slightly more complex: the problem may emerge when shared libraries are used, but not when static libraries are used.
To avoid all of these problems virtual functions should never be defined inline, but they should always be defined out-of-line. I.e., they should be defined in source files.
7.8.3: Inline variables
In addition to inline functions, inline variables can be defined (and identically initialized) in multiple translation units. E.g., a header file could contain
inline int value = 15; // OK
class Demo
{
// static int s_value = 15; // ERROR
static int constexpr s_value = 15; // OK
static int s_inline; // OK: see below: the inline
// definition follows the
// class declaration
};
inline int Demo::s_inline = 20; // OK
7.9: Local classes: classes inside functions
Classes are usually defined at the global or namespace level. However, it is entirely possible to define a local class, i.e., inside a function. Such classes are called local classes.
Local classes can be very useful in advanced applications involving inheritance or templates (cf. section 13.8). At this point in the C++ Annotations they have limited use, although their main features can be described. At the end of this section an example is provided.
#include <iostream>
#include <string>
using namespace std;
int main(int argc, char **argv)
{
static size_t staticValue = 0;
class Local
{
int d_argc; // non-static data members OK
public:
enum // enums OK
{
VALUE = 5
};
Local(int argc) // constructors and member functions OK
: // in-class implementation required
d_argc(argc)
{
// global data: accessible
cout << "Local constructor\n";
// static function variables: accessible
staticValue += 5;
}
static void hello() // static member functions: OK
{
cout << "hello world\n";
}
};
Local::hello(); // call Local static member
Local loc{ argc }; // define object of a local class.
}
7.10: The keyword `mutable'
Earlier, in section 7.7, the concepts of const member functions and const objects were introduced.
C++ also allows the declaration of data members which may be modified, even by const member function. Declarations of such data members start with the keyword mutable.
Mutable should be used for those data members that may be modified without logically changing the object, which might therefore still be considered a constant object.
An example of a situation where mutable is appropriately used is found in the implementation of a string class. Consider the std::string's c_str and data members. The actual data returned by the two members are identical, but c_str must ensure that the returned string is terminated by an 0-byte. As a string object has both a length and a capacity an easy way to implement c_str is to ensure that the string's capacity exceeds its length by at least one character. This invariant allows c_str to be implemented as follows:
char const *string::c_str() const
{
d_data[d_length] = 0;
return d_data;
}
This implementation logically does not modify the object's data as the bytes beyond the object's initial (length) characters have undefined values. But in order to use this implementation d_data must be declared mutable:
mutable char *d_data;
The keyword mutable is also useful in classes implementing, e.g., reference counting. Consider a class implementing reference counting for strings. The object doing the reference counting might be a const object, but the class may define a copy constructor. Since const objects can't be modified, how would the copy constructor be able to increment the reference count? Here the mutable keyword may profitably be used, as it can be incremented and decremented, even though its object is a const object.
The keyword mutable should sparingly be used. Data modified by const member functions should never logically modify the object, and it should be easy to demonstrate this. As a rule of thumb: do not use mutable unless there is a very clear reason (the object is logically not altered) for violating this rule.
7.11: Header file organization
In section 2.5.10 the requirements for header files when a C++ program also uses C functions were discussed. Header files containing class interfaces have additional requirements.
First, source files. With the exception of the occasional classless function, source files contain the code of member functions of classes. Basically, there are two approaches:
The first alternative has the advantage of economy for the compiler: it only needs to read the header files that are necessary for a particular source file. It has the disadvantage that the program developer must include multiple header files again and again in source files: it both takes time to type the include-directives and to think about the header files which are needed in a particular source file.
The second alternative has the advantage of economy for the program developer: the header file of the class accumulates header files, so it tends to become more and more generally useful. It has the disadvantage that the compiler frequently has to process many header files which aren't actually used by the function to compile.
With computers running faster and faster (and compilers getting smarter and smarter) I think the second alternative is to be preferred over the first alternative. So, as a starting point source files of a particular class MyClass could be organized according to the following example:
#include <myclass.h>
int MyClass::aMemberFunction()
{}
There is only one include-directive. Note that the directive refers to a header file in a directory mentioned in the INCLUDE-file environment variable. Local header files (using #include "myclass.h") could be used too, but that tends to complicate the organization of the class header file itself somewhat.
The organization of the header file itself requires some attention. Consider the following example, in which two classes File and String are used.
Assume the File class has a member gets(String &destination), while the class String has a member function getLine(File &file). The (partial) header file for the class String is then:
#ifndef STRING_H_
#define STRING_H_
#include <project/file.h> // to know about a File
class String
{
public:
void getLine(File &file);
};
#endif
Unfortunately a similar setup is required for the class File:
#ifndef FILE_H_
#define FILE_H_
#include <project/string.h> // to know about a String
class File
{
public:
void gets(String &string);
};
#endif
Now we have created a problem. The compiler, trying to compile the source file of the function File::gets proceeds as follows:
The solution to this problem is to use a forward class reference before the class interface, and to include the corresponding class header file beyond the class interface. So we get:
#ifndef STRING_H_
#define STRING_H_
class File; // forward reference
class String
{
public:
void getLine(File &file);
};
#include <project/file.h> // to know about a File
#endif
A similar setup is required for the class File:
#ifndef FILE_H_
#define FILE_H_
class String; // forward reference
class File
{
public:
void gets(String &string);
};
#include <project/string.h> // to know about a String
#endif
This works well in all situations where either references or pointers to other classes are involved and with (non-inline) member functions having class-type return values or parameters.
This setup doesn't work with composition, nor with in-class inline member functions. Assume the class File has a composed data member of the class String. In that case, the class interface of the class File must include the header file of the class String before the class interface itself, because otherwise the compiler can't tell how big a File object is. A File object contains a String member, but the compiler can't determine the size of that String data member and thus, by implication, it can't determine the size of a File object.
In cases where classes contain composed objects (or are derived from other classes, see chapter 13) the header files of the classes of the composed objects must have been read before the class interface itself. In such a case the class File might be defined as follows:
#ifndef FILE_H_
#define FILE_H_
#include <project/string.h> // to know about a String
class File
{
String d_line; // composition !
public:
void gets(String &string);
};
#endif
The class String can't declare a File object as a composed member: such a situation would again result in an undefined class while compiling the sources of these classes.
All remaining header files (appearing below the class interface itself) are required only because they are used by the class's source files.
This approach allows us to introduce yet another refinement:
The .ih file should be defined in the same directory as the source files of the class. It has the following characteristics:
#ifndef FILE_H_
#define FILE_H_
#include <fstream> // for composed 'ifstream'
class Buffer; // forward reference
class File // class interface
{
std::ifstream d_instream;
public:
void gets(Buffer &buffer);
};
#endif
#include <myheaders/file.h> // make the class File known
#include <buffer.h> // make Buffer known to File
#include <string> // used by members of the class
#include <sys/stat.h> // File.
7.11.1: Using namespaces in header files
When entities from namespaces are used in header files, no using directive should be specified in those header files if they are to be used as general header files declaring classes or other entities from a library. When the using directive is used in a header file then users of such a header file are forced to accept and use the declarations in all code that includes the particular header file.
For example, if in a namespace special an object Inserter cout is declared, then special::cout is of course a different object than std::cout. Now, if a class Flaw is constructed, in which the constructor expects a reference to a special::Inserter, then the class should be constructed as follows:
class special::Inserter;
class Flaw
{
public:
Flaw(special::Inserter &ins);
};
Now the person designing the class Flaw may be in a lazy mood, and might get bored by continuously having to prefix special:: before every entity from that namespace. So, the following construction is used:
using namespace special;
class Inserter;
class Flaw
{
public:
Flaw(Inserter &ins);
};
This works fine, up to the point where somebody wants to include flaw.h in other source files: because of the using directive, this latter person is now by implication also using namespace special, which could produce unwanted or unexpected effects:
#include <flaw.h>
#include <iostream>
using std::cout;
int main()
{
cout << "starting\n"; // won't compile
}
The compiler is confronted with two interpretations for cout: first, because of the using directive in the flaw.h header file, it considers cout a special::Inserter, then, because of the using directive in the user program, it considers cout a std::ostream. Consequently, the compiler reports an error.
As a rule of thumb, header files intended for general use should not contain using declarations. This rule does not hold true for header files which are only included by the sources of a class: here the programmer is free to apply as many using declarations as desired, as these directives never reach other sources.
7.12: Modules
Since the introduction of header files in the C language header files have been the main tool for declaring elements that are not defined but are used in source files. E.g., when using printf in main the preprocessor directive #include <stdio.h> had to be specified.
This method still works in C++, but gradually proved to be inefficient. One reason being that header files have to be processed again for every source file of a set of source files each including that header file. The drawback of this approach quickly becomes apparent once classes are used, as the compiler will repeatedly have to process the class's header file for each source file using that class. Usually it's not just that one header file, but header files tend to include other header files, resulting in an avalanche of header files that must be processed by the compiler again and again for every single source file that the compiler must compile. If a typical source file includes h header files, and s source files must be compiled, then that results in a significant compilation load, as the compiler must process s * h header files.
Precompiled headers offered an initial attempt to reduce this excessive workload. But precompiled headers have problems of their own: they're enormously big (a precompiled header file of less than 100 bytes can easily result in a precompiled header of 25 MB or more), and they're kind of fragile: simply recompiling a header if it's younger than its precompiled form may quickly result in much overhead, e.g., if merely some comment is added to the header.
Another common defense mechanism encountered in traditional headers is the use of include guards, ensuring that a header file is processed once if it is included by multiple other header files. Such include guards are macros, and were extensively discussed in section 7.11. Include guards work, but completely depend on the uniqueness of the guard-identifier, which is usually a long name, written in capitals using several underscores to increase the probability of their uniqueness.
By offering modules the C++2a standard provides solutions to the problems mentioned above. At the time of this writing the Gnu g++ compiler doesn't yet support modules, but the clang++ compiler (cf. http://clang.llvm.org) does. The current section therefore heavily depends on clang's documentation of modules provided in http://clang.llvm.org/docs/Modules.html and is subject to future changes once the modules definition and implementation of the C++2a standard reaches its final stage. In this section it is assumed that a fairly recent clang compiler is available.
7.12.1: An minimal demo example
In this section modules are introduced using a simple demo example. More extensive coverage of the module-definition language is provided in subsequent sections.
To create a module from an existing header file the directory (or its parent directory) must contain a file module.modulemap. It contains the specifications for creating a module from one or more available header files.
Assume a directory module contains the following file header file:
struct Data
{
int data;
};
int fun();
int gun();
For the benefit of the example it merely declares a simple struct and a function fun (its content in fact is irrelevant: it could actually be completely empty).
To create a module from this header file define the following minimal module.modulemap and main.cc files:
1: module minimal
2: {
3: header "module/module.h"
4: }
main.cc:
#include "module/module.h"
int main()
{
}
Here the function main is defined, because that's a requirement for creating a program, but any other source including a header that's mentioned in module.modulemap would also be OK. The above minimal main function's source file does exactly that: it includes module/module.h.
The file module.modulemap itself has a simple organization:
To create the module the source file must be compiled using the following command:
clang++-7 -fmodules --std=c++2a -O2 -c main.cc
All options are required:
Following this command main.o and the module are created. By default the module is created in a system-defined cache location (but see also section 7.12.2). In my system this system-defined cache location is /tmp/org.llvm.clang.frank/ModuleCache/, containing
Once the module is available it will be used if sources including at least one of its header files are recompiled. The module is rebuilt if one of its headers have changed.
Compare these sizes to the size of the precompiled header module.h.gch (created using clang++ -x c++-header module.h). On my system the compiled header (module.h.gch) is a file of some 195 KB large.
Note that the file module.h doesn't contain include guards. As modules handle the administration of which header has already been included, it's OK if module.h is included multiple times (e.g., add another #include "module/module.h" line in main.cc) and recompile: compilation succeeds.
7.12.2: Compiler options
Clang offers several options for handling modules. The most important ones are:
7.12.3: The file `module.modulemap'
The module.modulemap file defines the organization of one or more modules. It relates header files to defined module(s). The name module.modulemap is a predefined name, and module specifications must use this name. Module.modulemap files may contain comment: standard C and/or end-of-line comment.
A module specification defines a name and possibly options for a module. The elements of a module specification are specified inside a curly-braced section (note that when using [xxx] the square brackets are not optional).
The following description does not cover the full syntax of module.map, as some specifications apply only to some operating systems. For the full description the reader is referred to the http://clang.llvm.org/docs/Modules.html document.
The generic layout of a module.modulemap file starts with the module header, defining the name of the module. This name is used as the first part of the compiled module file (e.g., minimal-2ORZEBL9H54OZ.pcm for a module called minimal). Different programs may use identical module names, as modules receives unique `last names' (in the example: 2ORZEBL9H54OZ).
Inside a module definition headers commonly are included in module specifications of their own. So the generic syntax looks like this (in the syntax specifications the following conventions are used: blank lines separate syntax definitions; syntax elements followed by a * may be omitted or may be used once or multiple times; vertical bars separate alternatives; quoted names and characters should literally be used, without the quotes; 'ident' must be replaced by a standard C++ identifier; double quoted strings are NTBSs, (their meanings are provided inside the double quoted strings); syntax elements preceded by opt_ (e.g., 'opt_[extern_c]') are optional (such elements are either omitted or are used without the opt_ prefix: 'opt_[extern_c]' means: [extern_c])):
module-declarations:
module_declaration*
module_declaration:
header
'{'
module_member*
'}'
|
'extern' 'module' 'ident' " TO DO "
header:
'module' 'ident' 'opt_[extern_c]' // [extern_c]: the module holds
// C code that can be used from
// within C++
module_member:
cf_modules_html // refer to clang's Modules.html document
| // for these member declarations
export_declaration
|
header_declaration
|
link_declaration
|
module_declarations // nested declarations are commonly used
|
requires_declaration
|
umbrella_dir_declaration
cf_modules_html:
config_macros_declaration
|
conflict_declaration
|
export_as_declaration
|
submodule_declaration
|
use_declaration
export_declaration: // see below
'export' module_id
feature_list: // see below
feature_list ',' 'ident'
|
'ident'
header_declaration:
link_declaration: // add '-llibraryName' to the linker
'link' "libraryName" // when using the module
requires_declaration
'requires' 'opt_!' feature_list
umbrella_dir_declaration
'umbrella' "directory-specification" // e.g., ".", see below
In this overview,
Usually when defining a a module its module.modulemap defines the module's name, and then uses the headers of its (sub)directories to define submodules for each directory, exporting all their symbols. E.g., the program ssh-cron (cf. https://fbb-git.gitlab.io/ssh-cron/) defines eight classes, each in its own subdirectory. To create the module ssh_cron the following module.modulemap can be used:
module ssh_cron
{
module main {
header "main.ih"
export *
}
module cron {
header "cron/cron.ih"
export *
}
module crondata {
header "crondata/crondata.ih"
export *
}
module cronentry {
header "cronentry/cronentry.ih"
export *
}
module daemon {
header "daemon/daemon.ih"
export *
}
module ipcfunction {
header "ipcfunction/ipcfunction.ih"
export *
}
module options {
header "options/options.ih"
export *
}
module parser {
header "parser/parser.ih"
export *
}
module parserpre {
header "parser/parserpre.ih"
export *
}
module scanner {
header "scanner/scanner.ih"
export *
}
}
resulting in the module ssh_cron-2D64GM0XFP9U2.pcm which is about 11MB large.
7.12.4: Evaluation
As mentioned in the introductory section, modules reduce the compiler's workload by performing h + s instead of h * s header compilations when s sources each including h header files are compiled. Furthermore, using modules no longer requires the use of include guards or other defensive measures to avoid repeated inclusion of headers, which is particularly unwelcome in C++ as C++ header files typically not only declare functions and variables, but also define class interfaces and templates (cf. chapter 21 and beyond).
So what's the gain? In this final section about modules we compare the compilation times of a relatively large program (bisonc++, cf. http://fbb-git.gitlab.io/bisoncpp/), consisting of almost 30 classes.
Compilation is performed by clang++-7, using three variants:
--std=c++2a -Wall -O2 -pthread
-fmodules --std=c++2a -Wall -O2 -pthread
and merely compiling main.cc. The generated module was bisoncpp-2VBAIMWQCR12B.pcm, whose size was 13 MB. Following the module's construction the main.o file was removed and the program was built using the above options (so including -fmodules).
Compilating bisonc++ using the plain source files (no module, no precompiled headers) required slightly more than 7 minutes. The time(1) program reported:
442.894u 25.751s 7:57.73 98.0% 0+0k 6416+14560io 31pf+0w
It took Gnu's g++ compiler a comparable amount of time to compile the sources:
467.053u 32.818s 8:20.39 99.8% 0+0k 1064+26264io 10pf+0w
This comparison is important, as we'll see below.
Next, after first constructing the program's module, and then timing the full program's construction time reported:
420.305u 23.804s 7:29.43 98.8% 0+0k 0+39672io 0pf+0w
A somewhat unexpected (and disappointing) result. There is a minimal gain in compilation time, but it's marginal. In fact at a second attempt a compilation time of 458 seconds was reported. Some variation is to be expected, but the compilation times of both methods clearly don't notably differ.
Finally using precompiled headers. For this test Gnu's g++ compiler was used, as clang doesn't automatically use available precompiled headers (cf. clang's users manual). At the start of the compilation process the headers used by bisonc++'s almost 500 source files were first precompiled (the time it took to precompile the headers is included in the time reported below). Now time reported:
138.040u 18.447s 2:38.57 98.6% 0+0k 32+2245104io 0pf+0w
The total size of the precompiled headers is definitely exceeding the size of the module bisoncpp-2VBAIMWQCR12B.pcm: 1.1 GB. But then, the compilation time is reduced to about 1/3rd of the other two compilation methods.
Considering the above results the added benefit of using modules isn't immediately clear. Using modules doesn't result in an observable gain in compilation time, and so the main advantage appears to be that include guards are no longer required. Personally, I've never experienced problems with using include guards. Using of long, capitalized preprocessor identifiers has never been a problem, and has never resulted in colliding identifiers.
On the other hand, modules are a new element of C++ and the clang documentation explicitly states that the compiler's implementation and module definition language is subject to future changes. In that respect, modules are definitely an interesting addition to C++ that is absolutely worth monitoring.
7.13: Sizeof applied to class data members
In C++ the well-known sizeof operator can be applied to data members of classes without the need to specify an object as well. Consider:
class Data
{
std::string d_name;
...
};
To obtain the size of Data's d_name member the following expression can be used:
sizeof(Data::d_name);
However, note that the compiler observes data protection here as well. Sizeof(Data::d_name) can only be used where d_name may be visible as well, i.e., by Data's member functions and friends.
Chapter 8: Static Data And Functions
In the previous chapters we provided examples of classes where each object had its own set of data members data. Each of the class's member functions could access any member of any object of its class.
In some situations it may be desirable to define common data fields, that may be accessed by all objects of the class. For example, the name of the startup directory, used by a program that recursively scans the directory tree of a disk. A second example is a variable that indicates whether some specific initialization has occurred. In that case the object that was constructed first would perform the initialization and would set the flag to `done'.
Such situations are also encountered in C, where several functions need to access the same variable. A common solution in C is to define all these functions in one source file and to define the variable static: the variable name is invisible outside the scope of the source file. This approach is quite valid, but violates our philosophy of using only one function per source file. Another C-solution is to give the variable in question an unusual name, e.g., _6uldv8, hoping that other program parts won't use this name by accident. Neither the first, nor the second legacy C solution is elegant.
C++ solves the problem by defining static members: data and functions, common to all objects of a class and (when defined in the private section) inaccessible outside of the class. These static members are this chapter's topic.
Static members cannot be defined as virtual functions. A virtual member function is an ordinary member in that it has a this pointer. As static member functions have no this pointer, they cannot be declared virtual.
8.1: Static data
Any data member of a class can be declared static; be it in the public or private section of the class interface. Such a data member is created and initialized only once, in contrast to non-static data members which are created again and again for each object of the class.
Static data members are created as soon as the program starts. Even though they're created at the very beginning of a program's execution cycle they are nevertheless true members of their classes.
It is suggested to prefix the names of static member with s_ so they may easily be distinguished (in class member functions) from the class's data members (which should preferably start with d_).
Public static data members are global variables. They may be accessed by all of the program's code, simply by using their class names, the scope resolution operator and their member names. Example:
class Test
{
static int s_private_int;
public:
static int s_public_int;
};
int main()
{
Test::s_public_int = 145; // OK
Test::s_private_int = 12; // wrong, don't touch
// the private parts
}
The example does not present an executable program. It merely illustrates the interface, and not the implementation of static data members, which is discussed next.
8.1.1: Private static data
To illustrate the use of a static data member which is a private variable in a class, consider the following:
class Directory
{
static char s_path[];
public:
// constructors, destructors, etc.
};
The data member s_path[] is a private static data member. During the program's execution only one Directory::s_path[] exists, even though multiple objects of the class Directory may exist. This data member could be inspected or altered by the constructor, destructor or by any other member function of the class Directory.
Since constructors are called for each new object of a class, static data members are not initialized by constructors. At most they are modified. The reason for this is that static data members exist before any constructor of the class has been called. Static data members are initialized when they are defined, outside of any member function, exactly like the initialization of ordinary (non-class) global variables.
The definition and initialization of a static data member usually occurs in one of the source files of the class functions, preferably in a source file dedicated to the definition of static data members, called data.cc.
The data member s_path[], used above, could thus be defined and initialized as follows in a file data.cc:
#include "directory.ih"
char Directory::s_path[200] = "/usr/local";
In the class interface the static member is actually only declared. In its implementation (definition) its type and class name are explicitly mentioned. Note also that the size specification can be left out of the interface, as shown above. However, its size is (either explicitly or implicitly) required when it is defined.
Note that any source file could contain the definition of the static data members of a class. A separate data.cc source file is advised, but the source file containing, e.g., main() could be used as well. Of course, any source file defining static data of a class must also include the header file of that class, in order for the static data member to be known to the compiler.
A second example of a useful private static data member is given below. Assume that a class Graphics defines the communication of a program with a graphics-capable device (e.g., a VGA screen). The initialization of the device, which in this case would be to switch from text mode to graphics mode, is an action of the constructor and depends on a static flag variable s_nobjects. The variable s_nobjects simply counts the number of Graphics objects which are present at one time. Similarly, the destructor of the class may switch back from graphics mode to text mode when the last Graphics object ceases to exist. The class interface for this Graphics class might be:
class Graphics
{
static int s_nobjects; // counts # of objects
public:
Graphics();
~Graphics(); // other members not shown.
private:
void setgraphicsmode(); // switch to graphics mode
void settextmode(); // switch to text-mode
}
The purpose of the variable s_nobjects is to count the number of objects existing at a particular moment in time. When the first object is created, the graphics device is initialized. At the destruction of the last Graphics object, the switch from graphics mode to text mode is made:
int Graphics::s_nobjects = 0; // the static data member
Graphics::Graphics()
{
if (!s_nobjects++)
setgraphicsmode();
}
Graphics::~Graphics()
{
if (!--s_nobjects)
settextmode();
}
Obviously, when the class Graphics would define more than one constructor, each constructor would need to increase the variable s_nobjects and would possibly have to initialize the graphics mode.
8.1.2: Public static data
Data members could also be declared in the public section of a class. This, however, is deprecated (as it violates the principle of data hiding). The static data member s_path[] (cf. section 8.1) could be declared in the public section of the class definition. This would allow all the program's code to access this variable directly:
int main()
{
getcwd(Directory::s_path, 199);
}
A declaration is not a definition. Consequently the variable s_path still has to be defined. This implies that some source file still needs to contain s_path[] array's definition.
8.1.3: Initializing static const data
Static const data members should be initialized like any other static data member: in source files defining these data members.
Usually, if these data members are of integral or built-in primitive data types the compiler accepts in-class initializations of such data members. However, there is no formal rule requiring the compiler to do so. Compilations may or may not succeed depending on the optimizations used by the compiler (e.g., using -O2 may result in a successful compilation, but -O0 (no-optimizations) may fail to compile, but then maybe only when shared libraries are used...).
In-class initializations of integer constant values (e.g., of types char, int, long, etc, maybe unsigned) is nevertheless possible using (e.g., anonymous) enums. The following example illustrates how this can be done:
class X
{
public:
enum { s_x = 34 };
enum: size_t { s_maxWidth = 100 };
};
To avoid confusion caused by different compiler options static data members should always explicitly be defined and initialized in a source file, whether or not const.
8.1.4: Generalized constant expressions (constexpr)
In C macros are often used to let the preprocessor perform simple calculations. These macro functions may have arguments, as illustrated in the next example:
#define xabs(x) ((x) < 0 ? -(x) : (x))
The disadvantages of macros are well-known. The main reason for avoiding macros is that they are not parsed by the compiler, but are processed by the preprocessor resulting in mere text replacements and thus avoid type-safety or syntactic checks of the macro definition by itself. Furthermore, since macros are processed by the preprocessor their use is unconditional, without acknowledging the context in which they are applied. NULL is an infamous example. Ever tried to define an enum symbol NULL? or EOF? Chances are that, if you did, the compiler threw strange error messages at you.
Generalized const expressions can be used as an alternative.
Generalized const expressions are recognized by the modifier constexpr (a keyword), that is applied to the expression's type.
There is a small syntactic difference between the use of the const modifier and the use of the constexpr modifier. While the const modifier can be applied to definitions and declarations alike, the constexpr modifier can only be applied to definitions:
extern int const externInt; // OK: declaration of const int
extern int constexpr error; // ERROR: not a definition
Variables defined with the constexpr modifier have constant (immutable) values. But generalized const expressions are not just used to define constant variables; they have other applications as well. The constexpr keyword is usually applied to functions, turning the function into a constant-expression function.
A constant-expression function should not be confused with a function returning a const value (although a constant-expression function does return a (const) value). A constant expression function has the following characteristics:
Such functions are also called named constant expressions with parameters.
These constant expression functions may or may not be called with arguments that have been evaluated at compile-time (not just `const arguments', as a const parameter value is not evaluated at compile-time). If they are called with compile-time evaluated arguments then the returned value is considered a const value as well.
This allows us to encapsulate expressions that can be evaluated at compile-time in functions, and it allows us to use these functions in situations where previously the expressions themselves had to be used. The encapsulation reduces the number of occurrences of the expressions to one, simplifying maintenance and reduces the probability of errors.
If arguments that could not be compile-time evaluated are passed to constant-expression functions, then these functions act like any other function, in that their return values are no longer considered constant expressions.
Assume some two-dimensional arrays must be converted to one-dimensional arrays. The one-dimensional array must have nrows * ncols + nrows + ncols + 1 elements, to store row, column, and total marginals, as well as the elements of the source array itself. Furthermore assume that nrows and ncols have been defined as globally available size_t const values (they could be a class's static data). The one-dimensional arrays are data members of a class or struct, or they are also defined as global arrays.
Now that constant-expression functions are available the expression returning the number of the required elements can be encapsulated in such a function:
size_t const nRows = 45;
size_t const nCols = 10;
size_t constexpr nElements(size_t rows, size_t cols)
{
return rows * cols + rows + cols + 1;
}
....
int intLinear[ nElements(nRows, nCols) ];
struct Linear
{
double d_linear[ nElements(nRows, nCols) ];
};
If another part of the program needs to use a linear array for an array of different sizes then the constant-expression function can also be used. E.g.,
string stringLinear[ nElements(10, 4) ];
Constant-expression functions can be used in other constant expression functions as well. The following constant-expression function returns half the value, rounded upwards, that is returned by nElements:
size_t constexpr halfNElements(size_t rows, size_t cols)
{
return (nElements(rows, cols) + 1) >> 1;
}
Classes should not expose their data members to external software, so as to reduce coupling between classes and external software. But if a class defines a static const size_t data member then that member's value could very well be used to define entities living outside of the class's scope, like the number of elements of an array or to define the value of some enum. In situations like these constant-expression functions are the perfect tool to maintain proper data hiding:
class Data
{
static size_t const s_size = 7;
public:
static size_t constexpr size();
size_t constexpr mSize();
};
size_t constexpr Data::size()
{
return s_size;
}
size_t constexpr Data::mSize()
{
return size();
}
double data[ Data::size() ]; // OK: 7 elements
short data2[ Data().mSize() ]; // also OK: see below
Please note the following:
Since the C++14 standard the requirements of constexpr functions have been relaxed. Starting at this standard, constexpr functions may
In addition, C++14 allows constexpr member functions to be non-const. But note that non-const constexpr member functions can only modify data members of objects that were defined local to the constexpr function calling the non-const constexpr member function.
8.1.4.1: Constant expression data
As we've seen, (member) functions and variables of primitive data types can be defined using the constexpr modifier. What about class-type objects?
Objects of classes are values of class type, and like values of primitive types they can be defined with the constexpr specifier. Constant expression class-type objects must be initialized with constant expression arguments; the constructor that is actually used must itself have been declared with the constexpr modifier. Note again that the constexpr constructor's definition must have been seen by the compiler before the constexpr object can be constructed:
class ConstExpr
{
public:
constexpr ConstExpr(int x);
};
ConstExpr ok{ 7 }; // OK: not declared as constexpr
constexpr ConstExpr err{ 7 }; // ERROR: constructor's definition
// not yet seen
constexpr ConstExpr::ConstExpr(int x)
{}
constexpr ConstExpr ok{ 7 }; // OK: definition seen
constexpr ConstExpr okToo = ConstExpr{ 7 }; // also OK
A constant-expression constructor has the following characteristics:
An object constructed with a constant-expression constructor is called a user-defined literal. Destructors and copy constructors of user-defined literals must be trivial.
The constexpr characteristic of user-defined literals may or may not be maintained by its class's members. If a member is not declared with a constexpr return value, then using that member does not result in a constant-expression. If a member does declare a constexpr return value then that member's return value is considered a constexpr if it is by itself a constant expression function. To maintain its constexpr characteristics it can refer to its classes' data members only if its object has been defined with the constexpr modifier, as illustrated by the example:
class Data
{
int d_x;
public:
constexpr Data(int x)
:
d_x(x)
{}
int constexpr cMember()
{
return d_x;
}
int member() const
{
return d_x;
}
};
Data d1{ 0 }; // OK, but not a constant expression
enum e1 {
ERR = d1.cMember() // ERROR: cMember(): no constant
}; // expression anymore
constexpr Data d2{ 0 }; // OK, constant expression
enum e2 {
OK = d2.cMember(), // OK: cMember(): now a constant
// expression
ERR = d2.member(), // ERR: member(): not a constant
}; // expression
8.2: Static member functions
In addition to static data members, C++ allows us to define static member functions. Similar to static data that are shared by all objects of the class, static member functions also exist without any associated object of their class.
Static member functions can access all static members of their class, but also the members (private or public) of objects of their class if they are informed about the existence of these objects (as in the upcoming example). As static member functions are not associated with any object of their class they do not have a this pointer. In fact, a static member function is completely comparable to a global function, not associated with any class (i.e., in practice they are. See the next section (8.2.1) for a subtle note). Since static member functions do not require an associated object, static member functions declared in the public section of a class interface may be called without specifying an object of its class. The following example illustrates this characteristic of static member functions:
class Directory
{
string d_currentPath;
static char s_path[];
public:
static void setpath(char const *newpath);
static void preset(Directory &dir, char const *newpath);
};
inline void Directory::preset(Directory &dir, char const *newpath)
{
// see the text below
dir.d_currentPath = newpath; // 1
}
char Directory::s_path[200] = "/usr/local"; // 2
void Directory::setpath(char const *newpath)
{
if (strlen(newpath) >= 200)
throw "newpath too long";
strcpy(s_path, newpath); // 3
}
int main()
{
Directory dir;
Directory::setpath("/etc"); // 4
dir.setpath("/etc"); // 5
Directory::preset(dir, "/usr/local/bin"); // 6
dir.preset(dir, "/usr/local/bin"); // 7
}
Note that static member functions can be defined as inline functions.
In the example only public static member functions were used. C++ also allows the definition of private static member functions. Such functions can only be called by member functions of their class.
8.2.1: Calling conventions
As noted in the previous section, static (public) member functions are comparable to classless functions. However, formally this statement is not true, as the C++ standard does not prescribe the same calling conventions for static member functions as for classless global functions.
In practice the calling conventions are identical, implying that the address of a static member function could be used as an argument of functions having parameters that are pointers to (global) functions.
If unpleasant surprises must be avoided at all cost, it is suggested to create global classless wrapper functions around static member functions that must be used as call back functions for other functions.
Recognizing that the traditional situations in which call back functions are used in C are tackled in C++ using template algorithms (cf. chapter 19), let's assume that we have a class Person having data members representing the person's name, address, phone and mass. Furthermore, assume we want to sort an array of pointers to Person objects, by comparing the Person objects these pointers point to. Keeping things simple, we assume that the following public static member exists:
int Person::compare(Person const *const *p1, Person const *const *p2);
A useful characteristic of this member is that it may directly inspect the required data members of the two Person objects passed to the member function using pointers to pointers (double pointers).
Most compilers allow us to pass this function's address as the address of the comparison function for the standard C qsort() function. E.g.,
qsort
(
personArray, nPersons, sizeof(Person *),
reinterpret_cast<int(*)(void const *, void const *)>(Person::compare)
);
However, if the compiler uses different calling conventions for static members and for classless functions, this might not work. In such a case, a classless wrapper function like the following may be used profitably:
int compareWrapper(void const *p1, void const *p2)
{
return
Person::compare
(
static_cast<Person const *const *>(p1),
static_cast<Person const *const *>(p2)
);
}
resulting in the following call of the qsort() function:
qsort(personArray, nPersons, sizeof(Person *), compareWrapper);
Note:
Chapter 9: Classes And Memory Allocation
In contrast to the set of functions that handle memory allocation in C (i.e., malloc etc.), memory allocation in C++ is handled by the operators new and delete. Important differences between malloc and new are:
A comparable relationship exists between free and delete: delete makes sure that when an object is deallocated, its destructor is automatically called.
The automatic calling of constructors and destructors when objects are created and destroyed has consequences which we shall discuss in this chapter. Many problems encountered during C program development are caused by incorrect memory allocation or memory leaks: memory is not allocated, not freed, not initialized, boundaries are overwritten, etc.. C++ does not `magically' solve these problems, but it does provide us with tools to prevent these kinds of problems.
As a consequence of malloc and friends becoming deprecated the very frequently used str... functions, like strdup, that are all malloc based, should be avoided in C++ programs. Instead, the facilities of the string class and operators new and delete should be used.
Memory allocation procedures influence the way classes dynamically allocating their own memory should be designed. Therefore, in this chapter these topics are discussed in addition to discussions about operators new and delete. We'll first cover the peculiarities of operators new and delete, followed by a discussion about:
9.1: Operators `new' and `delete'
C++ defines two operators to allocate memory and to return it to the `common pool'. These operators are, respectively, new and delete.
Here is a simple example illustrating their use. An int pointer variable points to memory allocated by operator new. This memory is later released by operator delete.
int *ip = new int;
delete ip;
Here are some characteristics of operators new and delete:
Operator new can be used to allocate primitive types but also to allocate objects. When a primitive type or a struct type without a constructor is allocated the allocated memory is not guaranteed to be initialized to 0, but an initialization expression may be provided:
int *v1 = new int; // not guaranteed to be initialized to 0
int *v1 = new int(); // initialized to 0
int *v2 = new int(3); // initialized to 3
int *v3 = new int(3 * *v2); // initialized to 9
When a class-type object is allocated, the arguments of its constructor (if any) are specified immediately following the type specification in the new expression and the object is initialized by to the thus specified constructor. For example, to allocate string objects the following statements could be used:
string *s1 = new string; // uses the default constructor
string *s2 = new string{}; // same
string *s3 = new string(4, ' '); // initializes to 4 blanks.
In addition to using new to allocate memory for a single entity or an array of entities (see the next section) there also exists a variant allocating raw memory: operator new(sizeInBytes). Raw memory is returned as a void *. Here new allocates a block of memory for unspecified purpose. Although raw memory may consist of multiple characters it should not be interpreted as an array of characters. Since raw memory returned by new is returned as a void * its return value can be assigned to a void * variable. More often it is assigned to a char * variable, using a cast. Here is an example:
char *chPtr = static_cast<char *>(operator new(numberOfBytes));
The use of raw memory is frequently encountered in combination with the placement new operator, discussed in section 9.1.5.
9.1.1: Allocating arrays
Operator new[] is used to allocate arrays. The generic notation new[] is used in the C++ Annotations. Actually, the number of elements to be allocated must be specified between the square brackets and it must, in turn, be prefixed by the type of the entities that must be allocated. Example:
int *intarr = new int[20]; // allocates 20 ints
string *stringarr = new string[10]; // allocates 10 strings.
Operator new is a different operator than operator new[]. A consequence of this difference is discussed in the next section (9.1.2).
Arrays allocated by operator new[] are called dynamic arrays. They are constructed during the execution of a program, and their lifetime may exceed the lifetime of the function in which they were created. Dynamically allocated arrays may last for as long as the program runs.
When new[] is used to allocate an array of primitive values or an array of objects, new[] must be specified with a type and an (unsigned) expression between its square brackets. The type and expression together are used by the compiler to determine the required size of the block of memory to make available. When new[] is used the array's elements are stored consecutively in memory. An array index expression may thereafter be used to access the array's individual elements: intarr[0] represents the first int value, immediately followed by intarr[1], and so on until the last element (intarr[19]).
With non-class types (primitive types, POD types without constructors) the block of memory returned by operator new[] is not guaranteed to be initialized to 0. Alternatively, adding () to the new expression will initialize the block of memory to zeroes. E.g.,
struct POD
{
int iVal;
double dVal;
};
new POD[5](); // returns a pointer to 5 0-initialized PODs
new double[9](); // returns a pointer to 9 0-initialized doubles
If there are members of the struct POD that are explicitly initialized in the struct's interface (e.g., int iVal = 12), or if the struct uses composition, and the composed data member's type defines a default constructor, then initializations in the struct's interface and initializations performed by the composed data member's constructor takes precedence over the 0-initialization. Here is an example:
struct Data
{
int value = 100;
};
struct POD
{
int iVal = 12;
double dVal;
Data data;
};
POD *pp = new POD[5]();
Here, pp points to five POD objects, each having their iVal data members initialized to 12, their dVal data members initialized to 0, and their data.value members initialized to 100.
When operator new[] is used to allocate arrays of objects of class types defining default constructors these constructors are automatically used. Consequently new string[20] results in a block of 20 initialized string objects. A non-default constructor cannot be called, but often it is possible to work around that (as discussed in section 13.8).
The expression between brackets of operator new[] represents the number of elements of the array to allocate. The C++ standard allows allocation of 0-sized arrays. The statement new int[0] is correct C++. However, it is also pointless and confusing and should be avoided. It is pointless as it doesn't refer to any element at all, it is confusing as the returned pointer has a useless non-0 value. A pointer intending to point to an array of values should be initialized (like any pointer that isn't yet pointing to memory) to 0, allowing for expressions like if (ptr) ...
Without using operator new[], arrays of variable sizes can also be constructed as local arrays. Such arrays are not dynamic arrays and their lifetimes are restricted to the lifetime of the block in which they were defined.
Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++ has no operator `renew'. Section 9.1.3 illustrates how to enlarge arrays.
9.1.2: Deleting arrays
Dynamically allocated arrays are deleted using operator delete[]. It expects a pointer to a block of memory, previously allocated by operator new[].
When operator delete[]'s operand is a pointer to an array of objects two actions are performed:
Here is an example showing how to allocate and delete an array of 10 string objects:
std::string *sp = new std::string[10];
delete[] sp;
No special action is performed if a dynamically allocated array of primitive typed values is deleted. Following int *it = new int[10] the statement delete[] it simply returns the memory pointed at by it. Realize that, as a pointer is a primitive type, deleting a dynamically allocated array of pointers to objects does not result in the proper destruction of the objects the array's elements point at. So, the following example results in a memory leak:
string **sp = new string *[5];
for (size_t idx = 0; idx != 5; ++idx)
sp[idx] = new string;
delete[] sp; // MEMORY LEAK !
In this example the only action performed by delete[] is to return an area the size of five pointers to strings to the common pool.
Here's how the destruction in such cases should be performed:
Example:
for (size_t idx = 0; idx != 5; ++idx)
delete sp[idx];
delete[] sp;
One of the consequences is of course that by the time the memory is going to be returned not only the pointer must be available but also the number of elements it contains. This can easily be accomplished by storing pointer and number of elements in a simple class and then using an object of that class.
Operator delete[] is a different operator than operator delete. The rule of thumb is: if new[] was used, also use delete[].
9.1.3: Enlarging arrays
Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++ has no renew operator. The basic steps to take when enlarging an array are the following:
Static and local arrays cannot be resized. Resizing is only possible for dynamically allocated arrays. Example:
#include <string>
using namespace std;
string *enlarge(string *old, size_t oldsize, size_t newsize)
{
string *tmp = new string[newsize]; // allocate larger array
for (size_t idx = 0; idx != oldsize; ++idx)
tmp[idx] = old[idx]; // copy old to tmp
delete[] old; // delete the old array
return tmp; // return new array
}
int main()
{
string *arr = new string[4]; // initially: array of 4 strings
arr = enlarge(arr, 4, 6); // enlarge arr to 6 elements.
}
The procedure to enlarge shown in the example also has several drawbacks.
Depending on the context various solutions exist to improve the efficiency of this rather inefficient procedure. An array of pointers could be used (requiring only the pointers to be copied, no destruction, no superfluous initialization) or raw memory in combination with the placement new operator could be used (an array of objects remains available, no destruction, no superfluous construction).
9.1.4: Managing `raw' memory
As we've seen operator new allocates the memory for an object and subsequently initializes that object by calling one of its constructors. Likewise, operator delete calls an object's destructor and subsequently returns the memory allocated by operator new to the common pool.
In the next section we'll encounter another use of new, allowing us to initialize objects in so-called raw memory: memory merely consisting of bytes that have been made available by either static or dynamic allocation.
Raw memory is made available by operator new(sizeInBytes) and also by operator new[](sizeInBytes). The returned memory should not be interpreted as an array of any kind but just a series of memory locations that were dynamically made available. No initialization whatsoever is performed by these variants of new.
Both variants return void *s so (static) casts are required to use the return values as memory of some type.
Here are two examples:
// room for 5 ints:
int *ip = static_cast<int *>(operator new(5 * sizeof(int)));
// same as the previous example:
int *ip2 = static_cast<int *>(operator new[](5 * sizeof(int)));
// room for 5 strings:
string *sp = static_cast<string *>(operator new(5 * sizeof(string)));
As operator new has no concept of data types the size of the intended data type must be specified when allocating raw memory for a certain number of objects of an intended type. The use of operator new therefore somewhat resembles the use of malloc.
The counterpart of operator new is operator delete. Operator delete (or, equivalently, operator delete[]), expects a void * (so a pointer to any type can be passed to it). The pointer is interpreted as a pointer to raw memory which is returned to the common pool without any further action. In particular, no destructors are called by operator delete. The use of operator delete therefore resembles the use of free. To return the memory pointed at by the abovementioned variables ip and sp operator delete should be used:
// delete raw memory allocated by operator new
operator delete(ip);
operator delete[](ip2);
operator delete(sp);
9.1.5: The `placement new' operator
A remarkable form of operator new is called the placement new operator. Before using placement new the <memory> header file must be included.
Placement new is passed an existing block of memory into which new initializes an object or value. The block of memory should be large enough to contain the object, but apart from that there are no further requirements. It is easy to determine how much memory is used by en entity (object or variable) of type Type: the sizeof operator returns the number of bytes used by an Type entity.
Entities may of course dynamically allocate memory for their own use. Dynamically allocated memory, however, is not part of the entity's memory `footprint' but it is always made available externally to the entity itself. This is why sizeof returns the same value when applied to different string objects that return different length and capacity values.
The placement new operator uses the following syntax (using Type to indicate the used data type):
Type *new(void *memory) Type{ arguments };
Here, memory is a block of memory of at least sizeof(Type) bytes and Type(arguments) is any constructor of the class Type.
The placement new operator is useful in situations where classes set aside memory to be used later. This is used, e.g., by std::string to change its capacity. Calling string::reserve may enlarge that capacity without making memory beyond the string's length immediately available to the string object's users. But the object itself may use its additional memory. E.g, when information is added to a string object it can draw memory from its capacity rather than performing a reallocation for each single character that is added to its content.
Let's apply that philosophy to a class Strings storing std::string objects. The class defines a string *d_memory accessing the memory holding its d_size string objects as well as d_capacity - d_size reserved memory. Assuming that a default constructor initializes d_capacity to 1, doubling d_capacity whenever an additional string must be stored, the class must support the following essential operations:
The private member void Strings::reserve is called when the current capacity must be enlarged to d_capacity. It operates as follows: First new, raw, memory is allocated (line 1). This memory is in no way initialized with strings. Then the available strings in the old memory are copied into the newly allocated raw memory using placement new (line 2). Next, the old memory is deleted (line 3).
void Strings::reserve()
{
using std::string;
string *newMemory = static_cast<string *>( // 1
operator new(d_capacity * sizeof(string)));
for (size_t idx = 0; idx != d_size; ++idx) // 2
new (newMemory + idx) string{ d_memory[idx] };
destroy(); // 3
d_memory = newMemory;
}
The member append adds another string object to a Strings object. A (public) member reserve(request) (enlarging d_capacity if necessary and if enlarged calling reserve()) ensures that the String object's capacity is sufficient. Then placement new is used to install the latest string into the raw memory's appropriate location:
void Strings::append(std::string const &next)
{
reserve(d_size + 1);
new (d_memory + d_size) std::string{ next };
++d_size;
}
At the end of the String object's lifetime, and during enlarging operations all currently used dynamically allocated memory must be returned. This is made the responsibility of the member destroy, which is called by the class's destructor and by reserve(). More about the destructor itself in the next section, but the implementation of the support member destroy is discussed below.
With placement new an interesting situation is encountered. Objects, possibly themselves allocating memory, are installed in memory that may or may not have been allocated dynamically, but that is usually not completely filled with such objects. So a simple delete[] can't be used. On the other hand, a delete for each of the objects that are available can't be used either, since those delete operations would also try to delete the memory of the objects themselves, which wasn't dynamically allocated.
This peculiar situation is solved in a peculiar way, only encountered in cases where placement new is used: memory allocated by objects initialized using placement new is returned by explicitly calling the object's destructor. The destructor is declared as a member having as its name the class name preceded by a tilde, not using any arguments. So, std::string's destructor is named ~string. An object's destructor only returns memory allocated by the object itself and, despite of its name, does not destroy its object. Any memory allocated by the strings stored in our class Strings is therefore properly destroyed by explicitly calling their destructors. Following this d_memory is back to its initial status: it again points to raw memory. This raw memory is then returned to the common pool by operator delete:
void Strings::destroy()
{
for (std::string *sp = d_memory + d_size; sp-- != d_memory; )
sp->~string();
operator delete(d_memory);
}
So far, so good. All is well as long as we're using only one object. What about allocating an array of objects? Initialization is performed as usual. But as with delete, delete[] cannot be called when the buffer was allocated statically. Instead, when multiple objects were initialized using placement new in combination with a statically allocated buffer all the objects' destructors must be called explicitly, as in the following example:
using std::string;
char buffer[3 * sizeof(string)];
string *sp = new(buffer) string [3];
for (size_t idx = 0; idx < 3; ++idx)
sp[idx].~string();
9.2: The destructor
Comparable to the constructor, classes may define a destructor. This function is the constructor's counterpart in the sense that it is invoked when an object ceases to exist. A destructor is usually called automatically, but that's not always true. The destructors of dynamically allocated objects are not automatically activated, but in addition to that: when a program is interrupted by an exit call, only the destructors of already initialized global objects are called. In that situation destructors of objects defined locally by functions are also not called. This is one (good) reason for avoiding exit in C++ programs.
Destructors obey the following syntactical requirements:
Destructors are declared in their class interfaces. Example:
class Strings
{
public:
Strings();
~Strings(); // the destructor
};
By convention the constructors are declared first. The destructor is declared next, to be followed by other member functions.
A destructor's main task is to ensure that memory allocated by an object is properly returned when the object ceases to exist. Consider the following interface of the class Strings:
class Strings
{
std::string *d_string;
size_t d_size;
public:
Strings();
Strings(char const *const *cStrings, size_t n);
~Strings();
std::string const &at(size_t idx) const;
size_t size() const;
};
The constructor's task is to initialize the data fields of the object. E.g, its constructors are defined as follows:
Strings::Strings()
:
d_string(0),
d_size(0)
{}
Strings::Strings(char const *const *cStrings, size_t size)
:
d_string(new string[size]),
d_size(size)
{
for (size_t idx = 0; idx != size; ++idx)
d_string[idx] = cStrings[idx];
}
As objects of the class Strings allocate memory a destructor is clearly required. Destructors may or may not be called automatically, but note that destructors are only called (or, in the case of dynamically allocated objects: should only be called) for fully constructed objects.
C++ considers objects `fully constructed' once at least one of its constructors could normally complete. It used to be the constructor, but as C++ supports constructor delegation, multiple constructors can be activated for a single object; hence `at least one constructor'. The remaining rules apply to fully constructed objects;
The destructor's task is to ensure that all memory that is dynamically allocated and controlled only by the object itself is returned. The task of the Strings's destructor would therefore be to delete the memory to which d_string points. Its implementation is:
Strings::~Strings()
{
delete[] d_string;
}
The next example shows Strings at work. In process a Strings store is created, and its data are displayed. It returns a dynamically allocated Strings object to main. A Strings * receives the address of the allocated object and deletes the object again. Another Strings object is then created in a block of memory made available locally in main, and an explicit call to ~Strings is required to return the memory allocated by that object. In the example only once a Strings object is automatically destroyed: the local Strings object defined by process. The other two Strings objects require explicit actions to prevent memory leaks.
#include "strings.h"
#include <iostream>
using namespace std;;
void display(Strings const &store)
{
for (size_t idx = 0; idx != store.size(); ++idx)
cout << store.at(idx) << '\n';
}
Strings *process(char *argv[], size_t argc)
{
Strings store{ argv, argc };
display(store);
return new Strings{ argv, argc };
}
int main(int argc, char *argv[])
{
Strings *sp = process(argv, argc);
delete sp;
char buffer[sizeof(Strings)];
sp = new (buffer) Strings{ argv, static_cast<size_t>(argc) };
sp->~Strings();
}
9.2.1: Object pointers revisited
Operators new and delete are used when an object or variable is allocated. One of the advantages of the operators new and delete over functions like malloc and free is that new and delete call the corresponding object constructors and destructors.
The allocation of an object by operator new is a two-step process. First the memory for the object itself is allocated. Then its constructor is called, initializing the object. Analogously to the construction of an object, the destruction is also a two-step process: first, the destructor of the class is called deleting the memory controlled by the object. Then the memory used by the object itself is freed.
Dynamically allocated arrays of objects can also be handled by new and delete. When allocating an array of objects using operator new the default constructor is called for each object in the array. In cases like this operator delete[] must be used to ensure that the destructor is called for each of the objects in array.
However, the addresses returned by new Type and new Type[size] are of identical types, in both cases a Type *. Consequently it cannot be determined by the type of the pointer whether a pointer to dynamically allocated memory points to a single entity or to an array of entities.
What happens if delete rather than delete[] is used? Consider the following situation, in which the destructor ~Strings is modified so that it tells us that it is called. In a main function an array of two Strings objects is allocated using new, to be deleted by delete[]. Next, the same actions are repeated, albeit that the delete operator is called without []:
#include <iostream>
#include "strings.h"
using namespace std;
Strings::~Strings()
{
cout << "Strings destructor called" << '\n';
}
int main()
{
Strings *a = new Strings[2];
cout << "Destruction with []'s" << '\n';
delete[] a;
a = new Strings[2];
cout << "Destruction without []'s" << '\n';
delete a;
}
/*
Generated output:
Destruction with []'s
Strings destructor called
Strings destructor called
Destruction without []'s
Strings destructor called
*/
From the generated output, we see that the destructors of the individual Strings objects are called when delete[] is used, while only the first object's destructor is called if the [] is omitted.
Conversely, if delete[] is called in a situation where delete should have been called the results are unpredictable, and the program will most likely crash. This problematic behavior is caused by the way the run-time system stores information about the size of the allocated array (usually right before the array's first element). If a single object is allocated the array-specific information is not available, but it is nevertheless assumed present by delete[]. Thus this latter operator encounters bogus values in the memory locations just before the array's first element. It then dutifully interprets the value it encounters there as size information, usually causing the program to fail.
If no destructor is defined, a trivial destructor is defined by the compiler. The trivial destructor ensures that the destructors of composed objects (as well as the destructors of base classes if a class is a derived class, cf. chapter 13) are called. This has serious implications: objects allocating memory create memory leaks unless precautionary measures are taken (by defining an appropriate destructor). Consider the following program:
#include <iostream>
#include "strings.h"
using namespace std;
Strings::~Strings()
{
cout << "Strings destructor called" << '\n';
}
int main()
{
Strings **ptr = new Strings* [2];
ptr[0] = new Strings[2];
ptr[1] = new Strings[2];
delete[] ptr;
}
This program produces no output at all. Why is this? The variable ptr is defined as a pointer to a pointer. The dynamically allocated array therefore consists of pointer variables and pointers are of a primitive type. No destructors exist for primitive typed variables. Consequently only the array itself is returned, and no Strings destructor is called.
Of course, we don't want this, but require the Strings objects pointed to by the elements of ptr to be deleted too. In this case we have two options:
#include <iostream>
using namespace std;
class Strings // partially implemented
{
public:
~Strings();
};
inline Strings::~Strings()
{
cout << "destructor called\n";
}
class Wrapper
{
Strings *d_strings;
public:
Wrapper();
~Wrapper();
};
inline Wrapper::Wrapper()
:
d_strings(new Strings{})
{}
inline Wrapper::~Wrapper()
{
delete d_strings;
}
int main()
{
auto ptr = new Strings *[4];
// ... code assigning `new Strings' to ptr's elements
delete[] ptr; // memory leak: ~Strings() not called
cout << "===========\n";
delete[] new Wrapper[4]; // OK: 4 x destructor called
}
/*
Generated output:
===========
destructor called
destructor called
destructor called
destructor called
*/
9.2.2: The function set_new_handler()
The C++ run-time system ensures that when memory allocation fails an error function is activated. By default this function throws a bad_alloc exception (see section 10.8), terminating the program. Therefore it is not necessary to check the return value of operator new. Operator new's default behavior may be modified in various ways. One way to modify its behavior is to redefine the function that's called when memory allocation fails. Such a function must comply with the following requirements:
A redefined error function might, e.g., print a message and terminate the program. The user-written error function becomes part of the allocation system through the function set_new_handler.
Such an error function is illustrated below ( This implementation applies to the GNU C/C++ requirements. Actually using the program given in the next example is not advised, as it probably enormously slows down your computer due to the resulting use of the operating system's swap area.):
#include <iostream>
#include <string>
using namespace std;
void outOfMemory()
{
cout << "Memory exhausted. Program terminates." << '\n';
exit(1);
}
int main()
{
long allocated = 0;
set_new_handler(outOfMemory); // install error function
while (true) // eat up all memory
{
new int [100000]();
allocated += 100000 * sizeof(int);
cout << "Allocated " << allocated << " bytes\n";
}
}
Once the new error function has been installed it is automatically invoked when memory allocation fails, and the program is terminated. Memory allocation may fail in indirectly called code as well, e.g., when constructing or using streams or when strings are duplicated by low-level functions.
So far for the theory. On some systems the `out of memory' condition may actually never be reached, as the operating system may interfere before the run-time support system gets a chance to stop the program.
The traditional memory allocation functions (like strdup, malloc, realloc etc.) do not trigger the new handler when memory allocation fails and should be avoided in C++ programs.
9.3: The assignment operator
In C++ struct and class type objects can be directly assigned new values in the same way as this is possible in C. The default action of such an assignment for non-class type data members is a straight byte-by-byte copy from one data member to another. For now we'll use the following simple class Person:
class Person
{
char *d_name;
char *d_address;
char *d_phone;
public:
Person();
Person(char const *name, char const *addr, char const *phone);
~Person();
private:
char *strdupnew(char const *src); // returns a copy of src.
};
// strdupnew is easily implemented, here is its inline implementation:
inline char *Person::strdupnew(char const *src)
{
return strcpy(new char [strlen(src) + 1], src);
}
Person's data members are initialized to zeroes or to copies of the NTBSs passed to Person's constructor, using some variant of strdup. The allocated memory is eventually returned by Person's destructor.
Now consider the consequences of using Person objects in the following example:
void tmpPerson(Person const &person)
{
Person tmp;
tmp = person;
}
Here's what happens when tmpPerson is called:
Now a potentially dangerous situation has been created. The actual values in person are pointers, pointing to allocated memory. After the assignment this memory is addressed by two objects: person and tmp.
This problematic assignment is illustrated in Figure 5.
Figure 5: Private data and public interface functions of the class Person, using byte-by-byte assignment
Having executed tmpPerson, the object referenced by person now contains pointers to deleted memory.
This is undoubtedly not a desired effect of using a function like tmpPerson. The deleted memory is likely to be reused by subsequent allocations. The pointer members of person have effectively become wild pointers, as they don't point to allocated memory anymore. In general it can be concluded that
every class containing pointer data members is a potential candidate for trouble.
Fortunately, it is possible to prevent these troubles, as discussed next.
9.3.1: Overloading the assignment operator
Obviously, the right way to assign one Person object to another, is not to copy the content of the object bytewise. A better way is to make an equivalent object. One having its own allocated memory containing copies of the original strings.
The way to assign a Person object to another is illustrated in Figure 6.
Figure 6: Private data and public interface functions of the class Person, using the `correct' assignment.
There are several ways to assign a Person object to another. One way would be to define a special member function to handle the assignment. The purpose of this member function would be to create a copy of an object having its own name, address and phone strings. Such a member function could be:
void Person::assign(Person const &other)
{
// delete our own previously used memory
delete[] d_name;
delete[] d_address;
delete[] d_phone;
// copy the other Person's data
d_name = strdupnew(other.d_name);
d_address = strdupnew(other.d_address);
d_phone = strdupnew(other.d_phone);
}
Using assign we could rewrite the offending function tmpPerson:
void tmpPerson(Person const &person)
{
Person tmp;
// tmp (having its own memory) holds a copy of person
tmp.assign(person);
// now it doesn't matter that tmp is destroyed..
}
This solution is valid, although it only tackles a symptom. It requires the programmer to use a specific member function instead of the assignment operator. The original problem (assignment produces wild pointers) is still not solved. Since it is hard to `strictly adhere to a rule' a way to solve the original problem is of course preferred.
Fortunately a solution exists using operator overloading: the possibility C++ offers to redefine the actions of an operator in a given context. Operator overloading was briefly mentioned earlier, when the operators << and >> were redefined to be used with streams (like cin, cout and cerr), see section 3.1.4.
Overloading the assignment operator is probably the most common form of operator overloading in C++. A word of warning is appropriate, though. The fact that C++ allows operator overloading does not mean that this feature should indiscriminately be used. Here's what you should keep in mind:
An operator should simply do what it is designed to do. The phrase that's often encountered in the context of operator overloading is do as the ints do. The way operators behave when applied to ints is what is expected, all other implementations probably cause surprises and confusion. Therefore, overloading the insertion (<<) and extraction (>>) operators in the context of streams is probably ill-chosen: the stream operations have nothing in common with bitwise shift operations.
9.3.1.1: The member 'operator=()'
To add operator overloading to a class, the class interface is simply provided with a (usually public) member function naming the particular operator. That member function is thereupon implemented.
To overload the assignment operator =, a member operator=(Class const &rhs) is added to the class interface. Note that the function name consists of two parts: the keyword operator, followed by the operator itself. When we augment a class interface with a member function operator=, then that operator is redefined for the class, which prevents the default operator from being used. In the previous section the function assign was provided to solve the problems resulting from using the default assignment operator. Rather than using an ordinary member function C++ commonly uses a dedicated operator generalizing the operator's default behavior to the class in which it is defined.
The assign member mentioned before may be redefined as follows (the member operator= presented below is a first, rather unsophisticated, version of the overloaded assignment operator. It will shortly be improved):
class Person
{
public: // extension of the class Person
// earlier members are assumed.
void operator=(Person const &other);
};
Its implementation could be
void Person::operator=(Person const &other)
{
delete[] d_name; // delete old data
delete[] d_address;
delete[] d_phone;
d_name = strdupnew(other.d_name); // duplicate other's data
d_address = strdupnew(other.d_address);
d_phone = strdupnew(other.d_phone);
}
This member's actions are similar to those of the previously mentioned member assign, but this member is automatically called when the assignment operator = is used. Actually there are two ways to call overloaded operators as shown in the next example:
void tmpPerson(Person const &person)
{
Person tmp;
tmp = person;
tmp.operator=(person); // the same thing
}
Overloaded operators are seldom called explicitly, but explicit calls must be used (rather than using the plain operator syntax) when you explicitly want to call the overloaded operator from a pointer to an object (it is also possible to dereference the pointer first and then use the plain operator syntax, see the next example):
void tmpPerson(Person const &person)
{
Person *tmp = new Person;
tmp->operator=(person);
*tmp = person; // yes, also possible...
delete tmp;
}
9.4: The `this' pointer
A member function of a given class is always called in combination with an object of its class. There is always an implicit `substrate' for the function to act on. C++ defines a keyword, this, to reach this substrate.
The this keyword is a pointer variable that always contains the address of the object for which the member function was called. The this pointer is implicitly declared by each member function (whether public, protected, or private). The this pointer is a constant pointer to an object of the member function's class. For example, the members of the class Person implicitly declare:
extern Person *const this;
A member function like Person::name could be implemented in two ways: with or without using the this pointer:
char const *Person::name() const // implicitly using `this'
{
return d_name;
}
char const *Person::name() const // explicitly using `this'
{
return this->d_name;
}
The this pointer is seldom explicitly used, but situations do exist where the this pointer is actually required (cf. chapter 16).
9.4.1: Sequential assignments and this
C++'s syntax allows for sequential assignments, with the assignment operator associating from right to left. In statements like:
a = b = c;
the expression b = c is evaluated first, and its result in turn is assigned to a.
The implementation of the overloaded assignment operator we've encountered thus far does not permit such constructions, as it returns void.
This imperfection can easily be remedied using the this pointer. The overloaded assignment operator expects a reference to an object of its class. It can also return a reference to an object of its class. This reference can then be used as an argument in sequential assignments.
The overloaded assignment operator commonly returns a reference to the current object (i.e., *this). The next version of the overloaded assignment operator for the class Person thus becomes:
Person &Person::operator=(Person const &other)
{
delete[] d_address;
delete[] d_name;
delete[] d_phone;
d_address = strdupnew(other.d_address);
d_name = strdupnew(other.d_name);
d_phone = strdupnew(other.d_phone);
// return current object as a reference
return *this;
}
Overloaded operators may themselves be overloaded. Consider the string class, having overloaded assignment operators operator=(std::string const &rhs), operator=(char const *rhs), and several more overloaded versions. These additional overloaded versions are there to handle different situations which are, as usual, recognized by their argument types. These overloaded versions all follow the same mold: when necessary dynamically allocated memory controlled by the object is deleted; new values are assigned using the overloaded operator's parameter values and *this is returned.
9.5: The copy constructor: initialization vs. assignment
Consider the class Strings, introduced in section 9.2, once again. As it contains several primitive type data members as well as a pointer to dynamically allocated memory it needs a constructor, a destructor, and an overloaded assignment operator. In fact the class offers two constructors: in addition to the default constructor it offers a constructor expecting a char const *const * and a size_t.
Now consider the following code fragment. The statement references are discussed following the example:
int main(int argc, char **argv)
{
Strings s1(argv, argc); // (1)
Strings s2; // (2)
Strings s3(s1); // (3)
s2 = s1; // (4)
}
Strings s3 = s1;
This is a construction and therefore an initialization. It is not an assignment as an assignment needs a left-hand operand that has already been defined. C++ allows the assignment syntax to be used for constructors having only one parameter. It is somewhat deprecated, though.
In the above example three objects were defined, each using a different constructor. The actually used constructor was deduced from the constructor's argument list.
The copy constructor encountered here is new. It does not result in a compilation error even though it hasn't been declared in the class interface. This takes us to the following rule:
A copy constructor is (almost) always available, even if it isn't declared in the class's interface.
The reason for the `(almost)' is given in section 9.7.1.
The copy constructor made available by the compiler is also called the trivial copy constructor. Its use can easily be suppressed (using the = delete idiom). The trivial copy constructor performs a byte-wise copy operation of the existing object's primitive data to the newly created object, calls copy constructors to intialize the object's class data members from their counterparts in the existing object and, when inheritance is used, calls the copy constructors of the base class(es) to initialize the new object's base classes.
Consequently, in the above example the trivial copy constructor is used. As it performs a byte-by-byte copy operation of the object's primitive type data members that is exactly what happens at statement 3. By the time s3 ceases to exist its destructor deletes its array of strings. Unfortunately d_string is of a primitive data type and so it also deletes s1's data. Once again we encounter wild pointers as a result of an object going out of scope.
The remedy is easy: instead of using the trivial copy constructor a copy constructor must explicitly be added to the class's interface and its definition must prevent the wild pointers, comparably to the way this was realized in the overloaded assignment operator. An object's dynamically allocated memory is duplicated, so that it contains its own allocated data. But note that if a class also reserves extra (raw) memory, i.e., if it supports extra memory capacity, then that unused extra capacity is not made available in the copy-constructed object.
Copy construction can therefore be used to shed excess capacity. The copy constructor is simpler than the overloaded assignment operator in that it doesn't have to delete previously allocated memory. Since the object is going to be created no memory has already been allocated.
Strings's copy constructor can be implemented as follows:
Strings::Strings(Strings const &other)
:
d_string(new string[other.d_size]),
d_size(other.d_size)
{
for (size_t idx = 0; idx != d_size; ++idx)
d_string[idx] = other.d_string[idx];
}
The copy constructor is always called when an object is initialized using another object of its class. Apart from the plain copy construction that we encountered thus far, here are other situations where the copy constructor is used:
void process(Strings store) // no pointer, no reference
{
store.at(3) = "modified"; // doesn't modify `outer'
}
int main(int argc, char **argv)
{
Strings outer(argv, argc);
process(outer);
}
Strings copy(Strings const &store)
{
return store;
}
Here store is used to initialize copy's return value. The returned Strings object is a temporary, anonymous object that may be immediately used by code calling copy but no assumptions can be made about its lifetime thereafter.
9.6: Revising the assignment operator
The overloaded assignment operator has characteristics also encountered with the copy constructor and the destructor:
The copy constructor and the destructor clearly are required. If the overloaded assignment operator also needs to return allocated memory and to assign new values to its data members couldn't the destructor and copy constructor be used for that?
As we've seen in our discussion of the destructor (section 9.2) the destructor can explicitly be called, but that doesn't hold true for the (copy) constructor. But let's briefly summarize what an overloaded assignment operator is supposed to do:
The second part surely looks a lot like copy construction. Copy construction becomes even more attractive after realizing that the copy constructor also initializes any reference data members the class might have. Realizing the copy construction part is easy: just define a local object and initialize it using the assignment operator's const reference parameter, like this:
Strings &operator=(Strings const &other)
{
Strings tmp(other);
// more to follow
return *this;
}
You may think the optimization operator=(Strings tmp) is attractive, but let's postpone that for a little while (at least until section 9.7).
Now that we've done the copying part, what about the deleting part? And isn't there another slight problem as well? After all we copied all right, but not into our intended (current, *this) object.
At this point it's time to introduce swapping. Swapping two variables means that the two variables exchange their values. We'll discuss swapping in detail in the next section, but let's for now assume that we've added a member swap(Strings &other) to our class Strings. This allows us to complete String's operator= implementation:
Strings &operator=(Strings const &other)
{
Strings tmp(other);
swap(tmp);
return *this;
}
This implementation of operator= is generic: it can be applied to every class whose objects are swappable. How does it work?
Nice?
9.6.1: Swapping
Many classes (e.g., std::string) offer swap members allowing us to swap two of their objects. The Standard Template Library (STL, cf. chapter 18) offers various functions related to swapping. There is even a swap generic algorithm (cf. section 19.1.61), which is commonly implemented using the assignment operator. When implementing a swap member for our class Strings it could be used, provided that all of String's data members can be swapped. As this is true (why this is true is discussed shortly) we can augment class Strings with a swap member:
void Strings::swap(Strings &other)
{
swap(d_string, other.d_string);
swap(d_size, other.d_size);
}
Having added this member to Strings the copy-and-swap implementation of String::operator= can now be used.
When two variables (e.g., double one and double two) are swapped, each one holds the other one's value after the swap. So, if one == 12.50 and two == -3.14 then after swap(one, two) one == -3.14 and two == 12.50.
Variables of primitive data types (pointers and the built-in types) can be swapped, class-type objects can be swapped if their classes offer a swap member.
So should we provide our classes with a swap member, and if so, how should it be implemented?
The above example (Strings::swap) shows the standard way to implement a swap member: each of its data members are swapped in turn. But there are situations where a class cannot implement a swap member this way, even if the class only defines data members of primitive data types. Consider the situation depicted in figure 7.
Figure 7: Swapping a linked list
In this figure there are four objects, each object has a pointer pointing to the next object. The basic organization of such a class looks like this:
class List
{
List *d_next;
...
};
Initially four objects have their d_next pointer set to the next object: 1 to 2, 2 to 3, 3 to 4. This is shown in the upper half of the figure. At the bottom half it is shown what happens if objects 2 and 3 are swapped: 3's d_next point is now at object 2, which still points to 4; 2's d_next pointer points to 3's address, but 2's d_next is now at object 3, which is therefore pointing to itself. Bad news!
Another situation where swapping of objects goes wrong happens with classes having data members pointing or referring to data members of the same object. Such a situation is shown in figure 8.
Figure 8: Swapping objects with self-referential data
Here, objects have two data members, as in the following class setup:
class SelfRef
{
size_t *d_ownPtr; // initialized to &d_data
size_t d_data;
};
The top-half of figure 8 shows two objects; their upper data members pointing to their lower data members. But if these objects are swapped then the situation shown in the figure's bottom half is encountered. Here the values at addresses a and c are swapped, and so, rather than pointing to their bottom data members they suddenly point to other object's data members. Again: bad news.
The common cause of these failing swapping operations is easily recognized: simple swapping operations must be avoided when data members point or refer to data that is involved in the swapping. If, in figure 8 the a and c data members would point to information outside of the two objects (e.g., if they would point to dynamically allocated memory) then the simple swapping would succeed.
However, the difficulty encountered with swapping SelfRef objects does not imply that two SelfRef objects cannot be swapped; it only means that we must be careful when designing swap members. Here is an implementation of SelfRef::swap:
void SelfRef::swap(SelfRef &other)
{
swap(d_data, other.d_data);
}
In this implementation swapping leaves the self-referential data member as-is, and merely swaps the remaining data. A similar swap member could be designed for the linked list shown in figure 7.
9.6.1.1: Fast swapping
As we've seen with placement new objects can be constructed in blocks of memory of sizeof(Class) bytes large. And so, two objects of the same class each occupy sizeof(Class) bytes.
If objects of our class can be swapped, and if our class's data members do not refer to data actually involved in the swapping operation then a very fast swapping method that is based on the fact that we know how large our objects are can be implemented.
In this fast-swap method we merely swap the content of the sizeof(Class) bytes. This procedure may be applied to classes whose objects may be swapped using a member-by-member swapping operation and can (in practice, although this probably overstretches the allowed operations as described by the C++ ANSI/ISO standard) also be used in classes having reference data members. It simply defines a buffer of sizeof(Class) bytes and performs a circular memcpy operation. Here is its implementation for a hypothetical class Class. It results in very fast swapping:
#include <cstring>
void Class::swap(Class &other)
{
char buffer[sizeof(Class)];
memcpy(buffer, &other, sizeof(Class));
memcpy(static_cast<void *>(&other), this, sizeof(Class));
memcpy(static_cast<void *>(this), buffer, sizeof(Class));
}
The static_cast for memcpy's destination address is used to prevent a compiler complaint: since Class is a class-type, the compiler (rightly) warns against bluntly copying bytes. But using memcpy is fine if you're Class's developer and know what you're doing.
Here is a simple example of a class defining a reference data member and offering a swap member implemented like the one above. The reference data members are initialized to external streams. After running the program one contains two hello to 1 lines, two contains two hello to 2 lines (for brevity all members of Reference are defined inline):
#include <fstream>
#include <cstring>
class Reference
{
std::ostream &d_out;
public:
Reference(std::ostream &out)
:
d_out(out)
{}
void swap(Reference &other)
{
char buffer[sizeof(Reference)];
memcpy(buffer, this, sizeof(Reference));
memcpy(static_cast<void *>(this), &other, sizeof(Reference));
memcpy(static_cast<void *>(&other), buffer,
sizeof(Reference));
}
std::ostream &out()
{
return d_out;
}
};
int main()
{
std::ofstream one{ "one" };
std::ofstream two{ "two" };
Reference ref1{ one }; // ref1/ref2 hold references to
Reference ref2{ two }; // the streams
ref1.out() << "hello to 1\n"; // generate some output
ref2.out() << "hello to 2\n";
ref1.swap(ref2);
ref2.out() << "hello to 1\n"; // more output
ref1.out() << "hello to 2\n";
}
Fast swapping should only be used for self-defined classes for which it can be proven that fast-swapping does not corrupt its objects, when swapped.
9.7: Moving data
Traditionally, C++ offered two ways to assign the information pointed to by a data member of a temporary object to an lvalue object. Either a copy constructor or reference counting had to be used. In addition to these two methods C++ now also supports move semantics, allowing transfer of the data pointed to by a temporary object to its destination.
Moving information is based on the concept of anonymous (temporary) data. Temporary values are returned by functions like operator-() and operator+(Type const &lhs, Type const &rhs), and in general by functions returning their results `by value' instead of returning references or pointers.
Anonymous values are always short-lived. When the returned values are primitive types (int, double, etc.) nothing special happens, but if a class-type object is returned by value then its destructor can be called immediately following the function call that produced the value. In any case, the value itself becomes inaccessible immediately after the call. Of course, a temporary return value may be bound to a reference (lvalue or rvalue), but as far as the compiler is concerned the value now has a name, which by itself ends its status as a temporary value.
In this section we concentrate on anonymous temporary values and show how they can be used to improve the efficiency of object construction and assignment. These special construction and assignment methods are known as move construction and move assignment. Classes supporting move operations are called move-aware.
Classes allocating their own memory usually benefit from becoming move-aware. But a class does not have to use dynamic memory allocation before it can benefit from move operations. Most classes using composition (or inheritance where the base class uses composition) can benefit from move operations as well.
Movable parameters for class Class take the form Class &&tmp. The parameter is an rvalue reference, and a rvalue reference only binds to an anonymous temporary value. The compiler is required to call functions offering movable parameters whenever possible. This happens when the class defines functions supporting Class && parameters and an anonymous temporary value is passed to such functions. Once a temporary value has a name (which already happens inside functions defining Class const & or Class &&tmp parameters as within such functions the names of these parameters are available) it is no longer an anonymous temporary value, and within such functions the compiler no longer calls functions expecting anonymous temporary values when the parameters are used as arguments.
The next example (using inline member implementations for brevity) illustrates what happens if a non-const object, a temporary object and a const object are passed to functions fun for which these kinds of parameters were defined. Each of these functions call a function gun for which these kinds of parameters were also defined. The first time fun is called it (as expected) calls gun(Class &). Then fun(Class &&) is called as its argument is an anonymous (temporary) object. However, inside fun the anonymous value has received a name, and so it isn't anonymous anymore. Consequently, gun(Class &) is called once again. Finally fun(Class const &) is called, and (as expected) gun(Class const &) is now called.
#include <iostream>
using namespace std;
class Class
{
public:
Class()
{};
void fun(Class const &other)
{
cout << "fun: Class const &\n";
gun(other);
}
void fun(Class &other)
{
cout << "fun: Class &\n";
gun(other);
}
void fun(Class &&tmp)
{
cout << "fun: Class &&\n";
gun(tmp);
}
void gun(Class const &other)
{
cout << "gun: Class const &\n";
}
void gun(Class &other)
{
cout << "gun: Class &\n";
}
void gun(Class &&tmp)
{
cout << "gun: Class &&\n";
}
};
int main()
{
Class c1;
c1.fun(c1);
c1.fun(Class());
Class const c0;
c1.fun(c0);
}
Generally it is pointless to define a function having an rvalue reference return type. The compiler decides whether or not to use an overloaded member expecting an rvalue reference on the basis of the provided argument. If it is an anonymous temporary it calls the function defining the rvalue reference parameter, if such a function is available. An rvalue reference return type is used, e.g., with the std::move call, to keep the rvalue reference nature of its argument, which is known to be a temporary anonymous object. Such a situation can be exploited also in a situation where a temporary object is passed to (and returned from) a function which must be able to modify the temporary object. The alternative, passing a const &, is less attractive as it requires a const_cast before the object can be modified. Here is an example:
std::string &&doubleString(std::string &&tmp)
{
tmp += tmp;
return std::move(tmp);
}
This allows us to do something like
std::cout << doubleString("hello "s);
to insert hello hello into cout.
The compiler, when selecting a function to call applies a fairly simple algorithm, and also considers copy elision. This is covered shortly (section 9.8).
9.7.1: The move constructor (dynamic data)
Our class Strings has, among other members, a data member string *d_string. Clearly, Strings should define a copy constructor, a destructor and an overloaded assignment operator.
Now consider the following function loadStrings(std::istream &in) extracting the strings for a Strings object from in. Next, the Strings object filled by loadStrings is returned by value. The function loadStrings returns a temporary object, which can then used to initialize an external Strings object:
Strings loadStrings(std::istream &in)
{
Strings ret;
// load the strings into 'ret'
return ret;
}
// usage:
Strings store(loadStrings(cin));
In this example two full copies of a Strings object are required:
We can improve the above procedure by defining a move constructor. Here is the declaration of the Strings class move constructor:
Strings(Strings &&tmp);
Move constructors of classes using dynamic memory allocation are allowed to assign the values of pointer data members to their own pointer data members without requiring them to make a copy of the source's data. Next, the temporary's pointer value is set to zero to prevent its destructor from destroying data now owned by the just constructed object. The move constructor has grabbed or stolen the data from the temporary object. This is OK as the temporary object cannot be referred to again (as it is anonymous, it cannot be accessed by other code) and the temporary objects cease to exist shortly after the constructor's call. Here is the implementation of Strings move constructor:
Strings::Strings(Strings &&tmp)
:
d_string(tmp.d_string),
d_size(tmp.d_size),
d_capacity(tmp.d_capacity)
{
tmp.d_string = 0;
tmp.d_size = 0;
tmp.d_capacity = 0;
}
Move construction (in general: moving) must leave the object from which information was moved in a valid state. It is not specified in what way that valid state must be realized, but a good rule of thumb might be to return the object to its default constructed state. Therefore its d_size and d_capacity are also set to 0 when its d_string pointer is set to 0.
In section 9.5 it was stated that the copy constructor is almost always available. Almost always as the declaration of a move constructor suppresses the default availability of the copy constructor. The default copy constructor is also suppressed if a move assignment operator is declared (cf. section 9.7.3).
The following example shows a simple class Class, declaring a move constructor. In the main function following the class interface a Class object is defined which is then passed to the constructor of a second Class object. Compilation fails with the compiler reporting:
error: cannot bind 'Class' lvalue to 'Class&&'
error: initializing argument 1 of 'Class::Class(Class&&)'
class Class
{
public:
Class() = default;
Class(Class &&tmp)
{}
};
int main()
{
Class one;
Class two{ one };
}
The cure is easy: after declaring a (possibly default) copy constructor the error disappears:
class Class
{
public:
Class() = default;
Class(Class const &other) = default;
Class(Class &&tmp)
{}
};
int main()
{
Class one;
Class two{ one };
}
9.7.2: The move constructor (composition)
Classes not using pointer members pointing to memory controlled by its objects (and not having base classes doing so, see chapter 13) may also benefit from overloaded members expecting rvalue references. The class benefits from move operations when one or more of the composed data members themselves support move operations.
Move operations cannot be implemented if the class type of a composed data member does not support moving or copying. Currently, stream classes fall into this category.
An example of a move-aware class is the class std:string. A class Person could use composition by defining std::string d_name and std::string d_address. Its move constructor would then have the following prototype:
Person(Person &&tmp);
However, the following implementation of this move constructor is incorrect:
Person::Person(Person &&tmp)
:
d_name(tmp.d_name),
d_address(tmp.d_address)
{}
It is incorrect as string's copy constructors rather than string's move constructors are called. If you're wondering why this happens then remember that move operations are only performed for anonymous objects. To the compiler anything having a name isn't anonymous. And so, by implication, having available a rvalue reference does not mean that we're referring to an anonymous object. But we know that the move constructor is only called for anonymous arguments. To use the corresponding string move operations we have to inform the compiler that we're talking about anonymous data members as well. For this a cast could be used (e.g., static_cast<Person &&>(tmp)), but the C++-0x standard provides the function std::move to anonymize a named object. The correct implementation of Person's move construction is, therefore:
Person::Person(Person &&tmp)
:
d_name( std::move(tmp.d_name) ),
d_address( std::move(tmp.d_address) )
{}
The function std::move is (indirectly) declared by many header files. If no header is already declaring std::move then include utility.
When a class using composition not only contains class type data members but also other types of data (pointers, references, primitive data types), then these other data types can be initialized as usual. Primitive data type members can simply be copied; references can be initialized as usual and pointers may use move operations as discussed in the previous section.
The compiler never calls move operations for variables having names. Let's consider the implications of this by looking at the next example, assuming the class Class offers a move constructor and a copy constructor:
Class factory();
void fun(Class const &other); // a
void fun(Class &&tmp); // b
void callee(Class &&tmp)
{
fun(tmp); // 1
}
int main()
{
callee(factory());
}
Realizing that fun(tmp) might be called twice the compiler's choice is understandable. If tmp's data would have been grabbed at the first call, the second call would receive tmp without any data. But at the last call we might know that tmp is never used again and so we might like to ensure that fun(Class &&) is called. For this, once again, std::move is used:
fun(std::move(tmp)); // last call!
9.7.3: Move-assignment
In addition to the overloaded assignment operator a move assignment operator may be implemented for classes supporting move operations. In this case, if the class supports swapping the implementation is surprisingly simple. No copy construction is required and the move assignment operator can simply be implemented like this:
Class &operator=(Class &&tmp)
{
swap(tmp);
return *this;
}
If swapping is not supported then the assignment can be performed for each of the data members in turn, using std::move as shown in the previous section with a class Person. Here is an example showing how to do this with that class Person:
Person &operator=(Person &&tmp)
{
d_name = std::move(tmp.d_name);
d_address = std::move(tmp.d_address);
return *this;
}
As noted previously (section 9.7.1) declaring a move assignment operator suppresses the default availability of the copy constructor. It is made available again by declaring the copy constructor in the class's interface (and of course by providing an explicit implementation or by using the = default default implementation).
9.7.4: Revising the assignment operator (part II)
Now that we've familiarized ourselves with the overloaded assignment operator and the move-assignment, let's once again have a look at their implementations for a class Class, supporting swapping through its swap member. Here is the generic implementation of the overloaded assignment operator:
Class &operator=(Class const &other)
{
Class tmp{ other };
swap(tmp);
return *this;
}
and this is the move-assignment operator:
Class &operator=(Class &&tmp)
{
swap(tmp);
return *this;
}
They look remarkably similar in the sense that the overloaded assignment operator's code is identical to the move-assignment operator's code once a copy of the other object is available. Since the overloaded assignment operator's tmp object really is nothing but a temporary Class object we can use this fact by implementing the overloaded assignment operator in terms of the move-assignment. Here is a second revision of the overloaded assignment operator:
Class &operator=(Class const &other)
{
Class tmp{ other };
return *this = std::move(tmp);
}
9.7.5: Moving and the destructor
Once a class becomes a move-aware class one should realize that its destructor still performs its job as implemented. Consequently, when moving pointer values from a temporary source to a destination the move constructor should make sure that the temporary's pointer value is set to zero, to prevent doubly freeing memory.
If a class defines pointers to pointer data members there usually is not only a pointer that is moved, but also a size_t defining the number of elements in the array of pointers.
Once again, consider the class Strings. Its destructor is implemented like this:
Strings::~Strings()
{
for (string **end = d_string + d_size; end-- != d_string; )
delete *end;
delete[] d_string;
}
The move constructor (and other move operations!) must realize that the destructor not only deletes d_string, but also considers d_size. A member implementing move operations should therefore not only set d_string to zero but also d_size. The previously shown move constructor for Strings is therefore incorrect. Its improved implementation is:
Strings::Strings(Strings &&tmp)
:
d_string(tmp.d_string),
d_size(tmp.d_size),
d_capacity(tmp.d_capacity)
{
tmp.d_string = 0;
tmp.d_size = 0;
}
If operations by the destructor all depend on d_string having a non-zero value then variations of the above approach are possible. The move operations could merely set d_string to 0, testing whether d_string == 0 in the destructor (and if so, end the destructor's actions). In the latter variant the d_size assignment can be omitted.
9.7.6: Move-only classes
Classes may very well allow move semantics without offering copy semantics. Most stream classes belong to this category. Extending their definition with move semantics greatly enhances their usability. Once move semantics becomes available for such classes, so called factory functions (functions returning an object constructed by the function) can easily be implemented. E.g.,
// assume char *filename
ifstream inStream(openIstream(filename));
For this example to work an ifstream constructor must offer a move constructor. This ensures that only one object refers to the open istream.
Once classes offer move semantics their objects can also safely be stored in standard containers (cf. chapter 12). When such containers perform reallocations (e.g., when their sizes are enlarged) they use the object's move constructors rather than their copy constructors. As move-only classes suppress copy semantics containers storing objects of move-only classes implement the correct behavior in that it is impossible to assign such containers to each other.
9.7.7: Default move constructors and assignment operators
As we've seen, classes by default offer a copy constructor and assignment operator. These class members are implemented so as to provide basic support: data members of primitive data types are copied byte-by-byte, but for class type data members their corresponding copy constructors c.q. assignment operators are called. The compiler also attempts to provide default implementations for move constructors and move assignment operators. However, the default constructors and assignment operators cannot always be provided.
These are the rules the compiler applies when deciding what to provide or not to provide:
If default implementations of copy or move constructors or assignment operators are suppressed, but they should be available, then it's easy to provide the default implementations by specifying the required signatures, to which the specification `= default' is added.
Here is an example of a class offering all defaults: constructor, copy constructor, move constructor, copy assignment operator and move assignment operator:
class Defaults
{
int d_x;
Mov d_mov;
};
Assuming that Mov is a class offering move operations in addition to the standard copy operations, then the following actions are performed on the destination's d_mov and d_x:
Defaults factory();
int main()
{ Mov operation: d_x:
---------------------------
Defaults one; Mov(), undefined
Defaults two(one); Mov(Mov const &), one.d_x
Defaults three(factory()); Mov(Mov &&tmp), tmp.d_x
one = two; Mov::operator=( two.d_x
Mov const &),
one = factory(); Mov::operator=( tmp.d_x
Mov &&tmp)
}
If, Defaults declares at least one constructor (not being the copy- or move constructor) as well as the copy assignment operators then only the default copy- and declared assignment operator are available. E.g.:
class Defaults
{
int d_x;
Mov d_mov;
public:
Defaults(int x);
Defaults &operator=(Default const &rhs);
};
Defaults factory();
int main()
{ Mov operation: resulting d_x:
--------------------------------
Defaults one; ERROR: not available
Defaults two(one); Mov(Mov const &), one.d_x
Defaults three(factory()); Mov(Mov const &), one.d_x
one = two; Mov::operatpr=( two.d_x
Mov const &)
one = factory(); Mov::operator=( tmp.d_x
Mov const &)
}
To reestablish the defaults, append = default to the appropriate declarations:
class Defaults
{
int d_x;
Mov d_mov;
public:
Defaults() = default;
Defaults(int x);
// Defaults(Default const &) remains available (by default)
Defaults(Defaults &&tmp) = default;
Defaults &operator=(Defaults const &rhs);
Defaults &operator=(Defaults &&tmp) = default;
};
Be cautious declaring defaults, as default implementations copy data members of primitive types byte-by-byte from the source object to the destination object. This is likely to cause problems with pointer type data members.
The = default suffix can only be used when declaring constructors or assignment operators in the class's public section.
9.7.8: Moving: implications for class design
Here are some general rules to apply when designing classes offering value semantics (i.e., classes whose objects can be used to initialize other objects of their class and that can be asssigned to other objects of their class):
In the previous sections we've also encountered an important design principle that can be applied to move-aware classes:
Whenever a member of a class receives a const & to an object of its own class and creates a copy of that object to perform its actual actions on, then that function's implementation can be implemented by an overloaded function expecting an rvalue reference.
The former function can now call the latter by passing std::move(tmp) to it. The advantages of this design principle should be clear: there is only one implementation of the actual actions, and the class automatically becomes move-aware with respect to the involved function.
We've seen an initial example of the use of this principle in section 9.7.4. Of course, the principle cannot be applied to the copy constructor itself, as you need a copy constructor to make a copy. The copy- and move constructors must always be implemented independently from each other.
9.8: Copy Elision and Return Value Optimization
When the compiler selects a member function (or constructor) it applies a simple set of rules, matching arguments with parameter types.
Below two tables are shown. The first table should be used in cases where a function argument has a name, the second table should be used in cases where the argument is anonymous. In each table select the const or non-const column and then use the topmost overloaded function that is available having the specified parameter type.
The tables do not handle functions defining value parameters. If a function has overloads expecting, respectively, a value parameter and some form of reference parameter the compiler reports an ambiguity when such a function is called. In the following selection procedure we may assume, without loss of generality, that this ambiguity does not occur and that all parameter types are reference parameters.
Parameter types matching a function's argument of type T if the argument is:
| the argument is: | ||
| non-const | const | |
| Use the topmost | (T &) | |
| available function | (T const &) | (T const &) |
| the argument is: | ||
| non-const | const | |
| Use the topmost | (T &&) | |
| available function | (T const &) | (T const &) |
The tables show that eventually all arguments can be used with a function specifying a T const & parameter. For anonymous arguments a similar catch all is available having a higher priority: T const && matches all anonymous arguments. Functions having this signature are normally not defined as their implementations are (should be) identical to the implementations of the functions expecting a T const & parameter. Since the temporary can apparently not be modified a function defining a T const && parameter has no alternative but to copy the temporary's resources. As this task is already performed by functions expecting a T const &, there is no need for implementing functions expecting T const && parameters, and it's considered bad style if you do.
As we've seen the move constructor grabs the information from a temporary for its own use. That is OK as the temporary is going to be destroyed after that anyway. It also means that the temporary's data members are modified.
Having defined appropriate copy and/or move constructors it may be somewhat surprising to learn that the compiler may decide to stay clear of a copy or move operation. After all making no copy and not moving is more efficient than copying or moving.
The option the compiler has to avoid making copies (or perform move operations) is called copy elision or return value optimization. In all situations where copy or move constructions are appropriate the compiler may apply copy elision. Here are the rules. In sequence the compiler considers the following options, stopping once an option can be selected:
All modern compilers apply copy elision. Here are some examples where it may be encountered:
class Elide;
Elide fun() // 1
{
Elide ret;
return ret;
}
void gun(Elide par);
Elide elide(fun()); // 2
gun(fun()); // 3
9.9: Unrestricted Unions
We end this chapter about abstract containers with a small detour, introducing extensions to the union concept. Although unions themselves aren't `abstract containers', having covered containers puts us in a good position to introduce and illustrate unrestricted unions.
Whereas traditional unions can only contain primitive data, unrestricted unions allow addition of data fields of types for which non-trivial constructors were defined. Such data fields commonly are of class-types. Here is an example of such an unrestricted union:
union Union
{
int u_int;
std::string u_string;
};
One of its fields is defined as a std::string (having a constructor), turning this union into an unrestricted union. As an unrestricted union defines at least one field of a type having a constructor the question becomes how these unions can be constructed and destroyed.
The destructor of a union consisting of, e.g. a std::string and an int should of course not call the string's destructor if the union's last (or only) use referred to its int field. Likewise, when the std::string field is used, and processing switches from the std::string to the int field, std::string's destructor should be called before any assignment to the int field takes place.
The compiler does not solve the issue for us, and in fact does not at all implement default constructors or destructors for unrestricted unions. If we try to define an unrestricted union like the one shown above, an error message is issued. E.g.,
error: use of deleted function 'Union::Union()'
error: 'Union::Union()' is implicitly deleted because the default
definition would be ill-formed:
error: union member 'Union::u_string' with non-trivial
'std::basic_string<...>::basic_string() ...'
9.9.1: Implementing the destructor
Although the compiler won't provide (default) implementations for constructors and destructors of unrestricted unions, we can (and must). The task isn't difficult, but there are some caveats.
Consider our unrestricted union's destructor. It clearly should destroy u_string's data if that is its currently active field; but it should do nothing if u_int is its currently active field. But how does the destructor know what field to destroy? It doesn't, as the unrestricted union contains no information about what field is currently active.
This problem is tackled by embedding the unrestricted union in a larger aggregate (like a class or a struct) where it becomes a regular data member. We still consider the unrestricted union a data type by itself, but its use requires caution. The surrounding class is provided with a d_field data member keeping track of the currently active union-field. The d_field value is an enumeration value which is defined by the union. The actual use of the unrestricted union is completely controlled by the aggregate, freeing the aggregate's users from any administration related to the unrestricted union.
Using this design we start out with an explicit and empty implementation of the destructor, as there's no way to tell the destructor itself what field to destroy:
Data::Union::~Union()
{};
Nevertheless, unrestricted unions must properly destroy their class-type fields. Since an unrestricted union itself doesn't know what its active field is, it must be informed about that by its surrounding class. To simplify the generalization to other types a static array of pointers to functions destroying the current field's value is used. This array is defined in the union's private section as
static void (Union::*s_destroy[])();
and it is initialized as:
void (Union::*Union::s_destroy[])() =
{
&Union::destroyText,
&Union::destroyValue
};
Primitive data types normally don't need any special attention when they go out of scope, so destroyValue can be defined as an empty function:
void Union::destroyValue()
{}
On the other hand, the member destroyText must explicitly call u_text's destructor:
void Union::destroyText()
{
u_text.std::string::~string();
}
Proper destruction can now be realized by a single function void destroy(Field field) which simply calls the appropriate function:
void Union::destroy(Field type)
{
(this->*s_destroy[type])();
}
Since the unrestricted union is defined as a data member of a surrounding class, the surrounding class's destructor is responsible for the proper destruction of its unrestricted union. As the surrounding class keeps track of the currently active unrestricted union's field its implementation is easy:
Data::~Data()
{
d_union.destroy(d_field);
}
9.9.2: Embedding an unrestricted union in a surrounding class
The unrestricted union becomes a data member of the surrounding aggregate (e.g., class Data). The class Data is provided with a data member Union::Field d_field and Data's users might query the currently active field from, e.g., an accessor field:
class Data
{
Union::Field d_field;
Union d_union;
public:
Data(int value = 0);
Data(Data const &other);
Data(Data &&tmp);
Data(std::string const &text);
~Data(); // empty body
Union::Field field() const;
...
};
Data's constructors receive int or string values. To pass these values to d_union, we need Union constructors for the various union fields.
The unrestricted union itself starts out like this:
union Union
{
enum Field
{
TEXT,
VALUE
};
private:
std::string u_text;
int u_value;
public:
Union(Union const &other) = delete;
~Union(); // empty
Union(int value);
Union(std::string const &text);
Union(Union const &other, Field type);
Union(Union &&tmp, Field type);
...
};
The last two Union constructors are comparable to the standard copy- and move constructors. With unrestricted unions, however, the existing union's actual type needs to be specified so that the correct field is initialized. To simplify the generalization to other types we apply a procedure that is comparable to the procedure we followed for destroying an understricted union: we define a static array of pointers to copy-functions. This array is declared in the union's private section as
static void (Union::*s_copy[])(Union const &other);
and it is defined as:
void (Union::*Union::s_copy[])(Union const &other) =
{
&Union::copyText,
&Union::copyValue
};
The copyText and copyValue private members are responsible for copying other's data fields. However, there is a little snag. Although basic types can directly be assigned, class-type fields cannot. Destination fields cannot be initialized using member initializers as the field to initialize depends on the Field type that's passed to the constructor. Because of that the initialization must be performed inside the constructors' bodies. At that point the data fields are merely a series of uninitialized bytes, and so placement new is used to copy-construct class-type fields. Here are the implementations of the copy functions:
void Union::copyValue(Union const &other)
{
u_value = other.u_value;
}
void Union::copyText(Union const &other)
{
new(&u_text) string{ other.u_text };
}
When implementing the union's move constructor other considerations must be taken into account. Since we're free to do whatever we want with the move constructor's Union &&tmp object, we can simply grab its current field, and store a VALUE type of value into tmp. For that we use the Union's swap facility, the current object's field, another Union object, and the other Union's field type (swapping is discussed in the next section). Of course, if there isn't any primitive typed field this doesn't work. In that case field-specific move functions must be used, comparable to the ones used when copy-constructing a Union object.
Now we're ready for the constructors' implementations:
Union::Union(std::string const &text)
:
u_text(text)
{}
Union::Union(int value)
:
u_value(value)
{}
Union::Union(Union &&tmp, Field type)
{
swap(VALUE, tmp, type);
}
Union::Union(Union const &other, Field type)
{
(this->*s_copy[type])(other);
}
Data::Data(Data const &other)
:
d_field(other.d_field),
d_union(other.d_union, d_field)
{}
Data::Data(int value)
:
d_field(Union::VALUE),
d_union(value)
{}
Data::Data(Data const &other)
:
d_field(other.d_field),
d_union(other.d_union, d_field)
{}
9.9.3: Swapping unrestricted unions
Unrestricted unions should define a non-throwing swap member. It needs three arguments: the current object's field, another union object, and that union's field. The prototype of our unrestricted union's swap member, therefore, is:
void swap(Field current, Union &other, Field next);
To implement it similar considerations as encountered with the copy constructor apply. An unrestricted union having k fields must support k * k different swap situations. Representing these in a k * k matrix we note that the diagonal elements refer to swapping identical elements for which no special considerations apply (assuming swapping of identical data types is supported). The lower-triangle elements are identical to their transposed upper-triangle elements, and so they can use those elements after reverting the current and other union objects. All field-specific swap functions can be organized in a k x k static matrix of pointers to swapping members. For Union the declaration of that matrix is
static void (Union::*s_swap[][2])(Union &other);
and its definition is
void (Union::*Union::s_swap[][2])(Union &other) =
{
{ &Union::swap2Text, &Union::swapTextValue},
{ &Union::swapValueText, &Union::swap2Value},
};
The diagonal and lower-triangle elements are straightforwardly implemented. E.g.,
void Union::swap2Text(Union &other)
{
u_text.swap(other.u_text);
}
void Union::swapValueText(Union &other)
{
other.swapTextValue(*this);
}
but implementing the upper-triangle elements requires some thought. To install a class-type field placement new must again be used. But this time we're not copying but moving, as the current object is going to lose its content. Like swapping, moving should always succeed. Following the move construction the other object has received the current object's data. As the current object keeps its valid state after the move, it must also explicitly be destroyed to properly end its lifetime. Here is the implementation of swapTextValue:
void Union::swapTextValue(Union &other)
{
int value = other.u_value; // save the int value
// install string at other
new(&other.u_text) string{ std::move(u_text) };
u_text.~string(); // remove the old field's union
u_value = value; // store current's new value
}
When an unrestricted union has multiple class-type fields then when swapping move construction must be applied to both unrestricted unions. This requires a temporary. Assume an unrestricted union supports fields of classes This and That then to swap unrestricted unions using, respectively the This and That fields we do as follows:
void ThisThat::swapThisThat(ThisThat &other)
{
This tmp{ std::move(u_this) }; // save the current object
u_this.~This(); // properly destroy it
// install the other object at
// this object
new(&u_that) That{ std::move(other.u_that) };
other.u_that.~That(); // properly destroy the other
// object
// install this object's original
// value at the other object
new(&other.u_this) This{ std::move(tmp) };
} // tmp is automatically destroyed
Now that unrestricted unions can be swapped, their swap member can be used by swap members of surrounding classes. E.g.,
void Data::swap(Data &other)
{
d_union.swap(d_field, other.d_union, other.d_field);
Union::Field field = d_field; // swap the fields
d_field = other.d_field;
other.d_field = field;
}
9.9.4: Assignment
There are two ways to assign a Data object to another one: copy assignment and move assignment. Their implementations are standard:
Data &Data::operator=(Data const &other) // copy-assignment
{
Data tmp{ other };
swap(tmp);
return *this;
}
Data &Data::operator=(Data &&tmp) // move-assignment
{
swap(tmp);
return *this;
}
Since swap has already been defined the assignment operators need no further attention: they are implemented using their standard implementations.
When unrestricted unions are used outside of surrounding classes a situation may arise where two unrestricted unions are directly assigned to each other. In that case the unions' active fields must somehow be available. Since operator= can only be defined having one parameter, simply passing an unrestricted union as its rvalue would lack information about the lvalue's and rvalue's active fields. Instead two members are suggested: copy, doing copy assignment and move, doing move assignment. Their implementations closely resemble those of the standard assignment operators:
void Union::copy(Field type, Union const &other, Field next)
{
Union tmp{ other, next }; // create a copy
swap(type, tmp, next); // swap *this and tmp
tmp.destroy(type); // destroy tmp
}
void Union::move(Field type, Union &&tmp, Field next)
{
swap(type, tmp, next);
}
In the source distribution you'll find a directory yo/memory/examples/unions. It contains a small demo-program in which Union and Data are used.
9.10: Aggregate Data Types
C++ inherited the struct concept from C and extended it with the class concept. Structs are still used in C++, mainly to store and pass around aggregates of different data types. A commonly used term for these structs is aggregate (in some languages known as plain old data (pod)). Aggregates are commonly used in C++ programs to merely combine data in dedicated (struct) types. E.g., when a function must return a double, a bool and std::string these three different data types may be aggregated using a struct that merely exists to pass along values. Data protection and functionality is hardly ever an issue. For such cases C and C++ use structs. But as a C++ struct is just a class with special access rights some members (constructors, destructor, overloaded assignment operator) may implicitly be defined. The aggregates capitalizes on this concept by requiring that its definition remains as simple as possible. Aggregates show the following characteristics:
Aggregates can also be arrays, in which case the array elements are the aggregate's elements. If an aggregate is a struct its direct base classes are its elements (if any), followed by the struct's data members, in their declaration order. Here is an example:
struct Outer
{
struct Inner
{
int d_int;
double d_double;
};
std::string d_string;
Inner d_inner;
};
Outer out{ "hello", { 1, 12.5} };
Outer out's d_string is initialized with hello", its d_inner member has two data members: d_int is initialized to 1, d_double to 12.5.
(Designated) initializer lists can also be used (cf. section 3.3.5). Also, often structured binding declarations (cf. section 3.3.7.1) can be used to avoid explicitly defining an aggregate data type.
9.11: Conclusion
Four important extensions to classes were introduced in this chapter: the destructor, the copy constructor, the move constructor and the overloaded assignment operator. In addition the importance of swapping, especially in combination with the overloaded assignment operator, was stressed.
Classes having pointer data members, pointing to dynamically allocated memory controlled by the objects of those classes, are potential sources of memory leaks. The extensions introduced in this chapter implement the standard defense against such memory leaks.
Encapsulation (data hiding) allows us to ensure that the object's data integrity is maintained. The automatic activation of constructors and destructors greatly enhance our capabilities to ensure the data integrity of objects doing dynamic memory allocation.
A simple conclusion is therefore that classes whose objects allocate memory controlled by themselves must at least implement a destructor, an overloaded assignment operator and a copy constructor. Implementing a move constructor remains optional, but it allows us to use factory functions with classes not allowing copy construction and/or assignment.
In the end, assuming the availability of at least a copy or move constructor, the compiler might avoid them using copy elision. The compiler is free to use copy elision wherever possible; it is, however, never a requirement. The compiler may therefore always decide not to use copy elision. In all situations where otherwise a copy or move constructor would have been used the compiler may consider to use copy elision.
Chapter 10: Exceptions
C supports several ways for a program to react to situations breaking the normal unhampered flow of a program:
In C++ all these flow-breaking methods are still available. However, of the mentioned alternatives, setjmp and longjmp isn't frequently encountered in C++ (or even in C) programs, due to the fact that the program flow is completely disrupted.
C++ offers exceptions as the preferred alternative to, e.g., setjmp and longjmp. Exceptions allow C++ programs to perform a controlled non-local return, without the disadvantages of longjmp and setjmp.
Exceptions are the proper way to bail out of a situation which cannot be handled easily by a function itself, but which is not disastrous enough for a program to terminate completely. Also, exceptions provide a flexible layer of control between the short-range return and the crude exit.
In this chapter exceptions are covered. First an example is given of the different impact exceptions and the setjmp/longjmp combination have on programs. This example is followed by a discussion of the formal aspects of exceptions. In this part the guarantees our software should be able to offer when confronted with exceptions are presented. Exceptions and their guarantees have consequences for constructors and destructors. We'll encounter these consequences at the end of this chapter.
10.1: Exception syntax
Before contrasting the traditional C way of handling non-local gotos with exceptions let's introduce the syntactic elements that are involved when using exceptions.
try
{
// any code can be defined here
if (someConditionIsTrue)
throw "this is the std::string exception"s;
// any code can be defined here
}
catch (string const &msg)
{
// statements in which the caught string object are handled
}
Multiple catch clauses may appear underneath each other, one for each exception type that has to be caught. In general the catch clauses may appear in any order, but there are exceptions requiring a specific order. To avoid confusion it's best to put a catch clause for the most general exception last. At most one exception clause will be activated. C++ does not support a Java-style finally-clause activated after completing a catch clause.
10.2: An example using exceptions
In the following examples the same basic program is used. The program uses two classes, Outer and Inner.
First, an Outer object is defined in main, and its member Outer::fun is called. Then, in Outer::fun an Inner object is defined. Having defined the Inner object, its member Inner::fun is called.
That's about it. The function Outer::fun terminates calling inner's destructor. Then the program terminates, activating outer's destructor. Here is the basic program:
#include <iostream>
using namespace std;
class Inner
{
public:
Inner();
~Inner();
void fun();
};
Inner::Inner()
{
cout << "Inner constructor\n";
}
Inner::~Inner()
{
cout << "Inner destructor\n";
}
void Inner::fun()
{
cout << "Inner fun\n";
}
class Outer
{
public:
Outer();
~Outer();
void fun();
};
Outer::Outer()
{
cout << "Outer constructor\n";
}
Outer::~Outer()
{
cout << "Outer destructor\n";
}
void Outer::fun()
{
Inner in;
cout << "Outer fun\n";
in.fun();
}
int main()
{
Outer out;
out.fun();
}
/*
Generated output:
Outer constructor
Inner constructor
Outer fun
Inner fun
Inner destructor
Outer destructor
*/
After compiling and running, the program's output is entirely as expected: the destructors are called in their correct order (reversing the calling sequence of the constructors).
Now let's focus our attention on two variants in which we simulate a non-fatal disastrous event in the Inner::fun function. This event must supposedly be handled near main's end.
We'll consider two variants. In the first variant the event is handled by setjmp and longjmp; in the second variant the event is handled using C++'s exception mechanism.
10.2.1: Anachronisms: `setjmp' and `longjmp'
The basic program from the previous section is slightly modified to contain a variable jmp_buf jmpBuf used by setjmp and longjmp.
The function Inner::fun calls longjmp, simulating a disastrous event, to be handled near main's end. In main a target location for the long jump is defined through the function setjmp. Setjmp's zero return indicates the initialization of the jmp_buf variable, in which case Outer::fun is called. This situation represents the `normal flow'.
The program's return value is zero only if Outer::fun terminates normally. The program, however, is designed in such a way that this won't happen: Inner::fun calls longjmp. As a result the execution flow returns to the setjmp function. In this case it does not return a zero return value. Consequently, after calling Inner::fun from Outer::fun main's if-statement is entered and the program terminates with return value 1. Try to follow these steps when studying the following program source, which is a direct modification of the basic program given in section 10.2:
#include <iostream>
#include <setjmp.h>
#include <cstdlib>
using namespace std;
jmp_buf jmpBuf;
class Inner
{
public:
Inner();
~Inner();
void fun();
};
Inner::Inner()
{
cout << "Inner constructor\n";
}
void Inner::fun()
{
cout << "Inner fun\n";
longjmp(jmpBuf, 0);
}
Inner::~Inner()
{
cout << "Inner destructor\n";
}
class Outer
{
public:
Outer();
~Outer();
void fun();
};
Outer::Outer()
{
cout << "Outer constructor\n";
}
Outer::~Outer()
{
cout << "Outer destructor\n";
}
void Outer::fun()
{
Inner in;
cout << "Outer fun\n";
in.fun();
}
int main()
{
Outer out;
if (setjmp(jmpBuf) != 0)
return 1;
out.fun();
}
/*
Generated output:
Outer constructor
Inner constructor
Outer fun
Inner fun
Outer destructor
*/
This program's output clearly shows that inner's destructor is not called. This is a direct consequence of the non-local jump performed by longjmp. Processing proceeds immediately from the longjmp call inside Inner::fun to setjmp in main. There, its return value is unequal zero, and the program terminates with return value 1. Because of the non-local jump Inner::~Inner is never executed: upon return to main's setjmp the existing stack is simply broken down disregarding any destructors waiting to be called.
This example illustrates that the destructors of objects can easily be skipped when longjmp and setjmp are used and C++ programs should therefore avoid those functions like the plague.
10.2.2: Exceptions: the preferred alternative
Exceptions are C++'s answer to the problems caused by setjmp and longjmp. Here is an example using exceptions. The program is once again derived from the basic program of section 10.2:
#include <iostream>
using namespace std;
class Inner
{
public:
Inner();
~Inner();
void fun();
};
Inner::Inner()
{
cout << "Inner constructor\n";
}
Inner::~Inner()
{
cout << "Inner destructor\n";
}
void Inner::fun()
{
cout << "Inner fun\n";
throw 1;
cout << "This statement is not executed\n";
}
class Outer
{
public:
Outer();
~Outer();
void fun();
};
Outer::Outer()
{
cout << "Outer constructor\n";
}
Outer::~Outer()
{
cout << "Outer destructor\n";
}
void Outer::fun()
{
Inner in;
cout << "Outer fun\n";
in.fun();
}
int main()
{
Outer out;
try
{
out.fun();
}
catch (int x)
{}
}
/*
Generated output:
Outer constructor
Inner constructor
Outer fun
Inner fun
Inner destructor
Outer destructor
*/
Inner::fun now throws an int exception where a longjmp was previously used. Since in.fun is called by out.fun, the exception is generated within the try block surrounding the out.fun call. As an int value was thrown this value reappears in the catch clause beyond the try block.
Now Inner::fun terminates by throwing an exception instead of calling longjmp. The exception is caught in main, and the program terminates. Now we see that inner's destructor is properly called. It is interesting to note that Inner::fun's execution really terminates at the throw statement: The cout statement, placed just beyond the throw statement, isn't executed.
What did this example teach us?
10.3: Throwing exceptions
Exceptions are generated by throw statements. The throw keyword is followed by an expression, defining the thrown exception value. Example:
throw "Hello world"; // throws a char *
throw 18; // throws an int
throw string{ "hello" }; // throws a string
Local objects cease to exist when a function terminates. This is no different for exceptions.
Objects defined locally in functions are automatically destroyed once exceptions thrown by these functions leave these functions. This also happens to objects thrown as exceptions. However, just before leaving the function context the object is copied and it is this copy that eventually reaches the appropriate catch clause.
The following examples illustrates this process. Object::fun defines a local Object toThrow, that is thrown as an exception. The exception is caught in main. But by then the object originally thrown doesn't exist anymore, and main received a copy:
#include <iostream>
#include <string>
using namespace std;
class Object
{
string d_name;
public:
Object(string name)
:
d_name(name)
{
cout << "Constructor of " << d_name << "\n";
}
Object(Object const &other)
:
d_name(other.d_name + " (copy)")
{
cout << "Copy constructor for " << d_name << "\n";
}
~Object()
{
cout << "Destructor of " << d_name << "\n";
}
void fun()
{
Object toThrow("'local object'");
cout << "Calling fun of " << d_name << "\n";
throw toThrow;
}
void hello()
{
cout << "Hello by " << d_name << "\n";
}
};
int main()
{
Object out{ "'main object'" };
try
{
out.fun();
}
catch (Object o)
{
cout << "Caught exception\n";
o.hello();
}
}
Object's copy constructor is special in that it defines its name as the other object's name to which the string " (copy)" is appended. This allow us to monitor the construction and destruction of objects more closely. Object::fun generates an exception, and throws its locally defined object. Just before throwing the exception the program has produced the following output:
Constructor of 'main object'
Constructor of 'local object'
Calling fun of 'main object'
When the exception is generated the next line of output is produced:
Copy constructor for 'local object' (copy)
The local object is passed to throw where it is treated as a value argument, creating a copy of toThrow. This copy is thrown as the exception, and the local toThrow object ceases to exist. The thrown exception is now caught by the catch clause, defining an Object value parameter. Since this is a value parameter yet another copy is created. Thus, the program writes the following text:
Destructor of 'local object'
Copy constructor for 'local object' (copy) (copy)
The catch block now displays:
Caught exception
Following this o's hello member is called, showing us that we indeed received a copy of the copy of the original toThrow object:
Hello by 'local object' (copy) (copy)
Then the program terminates and its remaining objects are now destroyed, reversing their order of creation:
Destructor of 'local object' (copy) (copy)
Destructor of 'local object' (copy)
Destructor of 'main object'
The copy created by the catch clause clearly is superfluous. It can be avoided by defining object reference parameters in catch clauses: `catch (Object &o)'. The program now produces the following output:
Constructor of 'main object'
Constructor of 'local object'
Calling fun of 'main object'
Copy constructor for 'local object' (copy)
Destructor of 'local object'
Caught exception
Hello by 'local object' (copy)
Destructor of 'local object' (copy)
Destructor of 'main object'
Only a single copy of toThrow was created.
It's a bad idea to throw a pointer to a locally defined object. The pointer is thrown, but the object to which the pointer refers ceases to exist once the exception is thrown. The catcher receives a wild pointer. Bad news....
Let's summarize the above findings:
Exceptions are thrown in situations where a function can't complete its assigned task, but the program is still able to continue. Imagine a program offering an interactive calculator. The program expects numeric expressions, which are evaluated. Expressions may show syntactic errors or it may be mathematically impossible to evaluate them. Maybe the calculator allows us to define and use variables and the user might refer to non-existing variables: plenty of reasons for the expression evaluation to fail, and so many reasons for exceptions to be thrown. None of those should terminate the program. Instead, the program's user is informed about the nature of the problem and is invited to enter another expression. Example:
if (!parse(expressionBuffer)) // parsing failed
throw "Syntax error in expression";
if (!lookup(variableName)) // variable not found
throw "Variable not defined";
if (divisionByZero()) // unable to do division
throw "Division by zero is not defined";
Where these throw statements are located is irrelevant: they may be found deeply nested inside the program, or at a more superficial level. Furthermore, functions may be used to generate the exception to be thrown. An Exception object might support stream-like insertion operations allowing us to do, e.g.,
if (!lookup(variableName))
throw Exception() << "Undefined variable '" << variableName << "';
10.3.1: The empty `throw' statement
Sometimes it is required to inspect a thrown exception. An exception catcher may decide to ignore the exception, to process the exception, to rethrow it after inspection or to change it into another kind of exception. For example, in a server-client application the client may submit requests to the server by entering them into a queue. Normally every request is eventually answered by the server. The server may reply that the request was successfully processed, or that some sort of error has occurred. On the other hand, the server may have died, and the client should be able to discover this calamity, by not waiting indefinitely for the server to reply.
In this situation an intermediate exception handler is called for. A thrown exception is first inspected at the middle level. If possible it is processed there. If it is not possible to process the exception at the middle level, it is passed on, unaltered, to a more superficial level, where the really tough exceptions are handled.
By placing an empty throw statement in the exception handler's code the received exception is passed on to the next level that might be able to process that particular type of exception. The rethrown exception is never handled by one of its neighboring exception handlers; it is always transferred to an exception handler at a more superficial level.
In our server-client situation a function
initialExceptionHandler(string &exception)
could be designed to handle the string exception. The received message is inspected. If it's a simple message it's processed, otherwise the exception is passed on to an outer level. In initialExceptionHandler's implementation the empty throw statement is used:
void initialExceptionHandler(string &exception)
{
if (!plainMessage(exception))
throw;
handleTheMessage(exception);
}
Below (section 10.5), the empty throw statement is used to pass on the exception received by a catch-block. Therefore, a function like initialExceptionHandler can be used for a variety of thrown exceptions, as long as their types match initialExceptionHandler's parameter, which is a string.
The next example jumps slightly ahead, using some of the topics covered in chapter 14. The example may be skipped, though, without loss of continuity.
A basic exception handling class can be constructed from which specific exception types are derived. Suppose we have a class Exception, having a member function ExceptionType Exception::severity. This member function tells us (little wonder!) the severity of a thrown exception. It might be Info, Notice, Warning, Error or Fatal. The information contained in the exception depends on its severity and is processed by a function handle. In addition, all exceptions support a member function like textMsg, returning textual information about the exception in a string.
By defining a polymorphic function handle it can be made to behave differently, depending on the nature of a thrown exception, when called from a basic Exception pointer or reference.
In this case, a program may throw any of these five exception types. Assuming that the classes Message and Warning were derived from the class Exception, then the handle function matching the exception type will automatically be called by the following exception catcher:
//
catch(Exception &ex)
{
cout << e.textMsg() << '\n';
if
(
ex.severity() != ExceptionType::Warning
&&
ex.severity() != ExceptionType::Message
)
throw; // Pass on other types of Exceptions
ex.handle(); // Process a message or a warning
}
Now anywhere in the try block preceding the exception handler Exception objects or objects of one of its derived classes may be thrown. All those exceptions will be caught by the above handler. E.g.,
throw Info{};
throw Warning{};
throw Notice{};
throw Error{};
throw Fatal{};
10.4: The try block
The try-block surrounds throw statements. Remember that a program is always surrounded by a global try block, so throw statements may appear anywhere in your code. More often, though, throw statements are used in function bodies and such functions may be called from within try blocks.
A try block is defined by the keyword try followed by a compound statement. This block, in turn, must be followed by at least one catch handler:
try
{
// any statements here
}
catch(...) // at least one catch clause here
{}
Try-blocks are commonly nested, creating exception levels. For example, main's code is surrounded by a try-block, forming an outer level handling exceptions. Within main's try-block functions are called which may also contain try-blocks, forming the next exception level. As we have seen (section 10.3.1), exceptions thrown in inner level try-blocks may or may not be processed at that level. By placing an empty throw statement in an exception handler, the thrown exception is passed on to the next (outer) level.
10.5: Catching exceptions
A catch clause consists of the keyword catch followed by a parameter list defining one parameter specifying type and (parameter) name of the exception caught by that particular catch handler. This name may then be used as a variable in the compound statement following the catch clause. Example:
catch (string &message)
{
// code to handle the message
}
Primitive types and objects may be thrown as exceptions. It's a bad idea to throw a pointer or reference to a local object, but a pointer to a dynamically allocated object may be thrown if the exception handler deletes the allocated memory to prevent a memory leak. Nevertheless, throwing such a pointer is dangerous as the exception handler won't be able to distinguish dynamically allocated memory from non-dynamically allocated memory, as illustrated by the next example:
try
{
static int x;
int *xp = &x;
if (condition1)
throw xp;
xp = new int(0);
if (condition2)
throw xp;
}
catch (int *ptr)
{
// delete ptr or not?
}
Close attention should be paid to the nature of the parameter of the exception handler, to make sure that when pointers to dynamically allocated memory are thrown the memory is returned once the handler has processed the pointer. In general pointers should not be thrown as exceptions. If dynamically allocated memory must be passed to an exception handler then the pointer should be wrapped in a smart pointer, like unique_ptr or shared_ptr (cf. sections 18.3 and 18.4).
Multiple catch handlers may follow a try block, each handler defining its own exception type. The order of the exception handlers is important. When an exception is thrown, the first exception handler matching the type of the thrown exception is used and remaining exception handlers are ignored. Eventually at most one exception handler following a try-block is activated. Normally this is of no concern as each exception has its own unique type.
Example: if exception handlers are defined for char *s and void *s then NTBSs are caught by the former handler. Note that a char * can also be considered a void *, but the exception type matching procedure is smart enough to use the char * handler with the thrown NTBS. Handlers should be designed very type specific to catch the correspondingly typed exception. For example, int-exceptions are not caught by double-catchers, char-exceptions are not caught by int-catchers. Here is a little example illustrating that the order of the catchers is not important for types not having any hierarchal relationship to each other (i.e., int is not derived from double; string is not derived from an NTBS):
#include <iostream>
using namespace std;
int main()
{
while (true)
{
try
{
string s;
cout << "Enter a,c,i,s for ascii-z, char, int, string "
"exception\n";
getline(cin, s);
switch (s[0])
{
case 'a':
throw "ascii-z";
case 'c':
throw 'c';
case 'i':
throw 12;
case 's':
throw string{};
}
}
catch (string const &)
{
cout << "string caught\n";
}
catch (char const *)
{
cout << "ASCII-Z string caught\n";
}
catch (double)
{
cout << "isn't caught at all\n";
}
catch (int)
{
cout << "int caught\n";
}
catch (char)
{
cout << "char caught\n";
}
}
}
Rather than defining specific exception handlers a specific class can be designed whose objects contain information about the exception. Such an approach was mentioned earlier, in section 10.3.1. Using this approach, there's only one handler required, since we know we don't throw other types of exceptions:
try
{
// code throws only Exception objects
}
catch (Exception &ex)
{
ex.handle();
}
When the code of an exception handler has been processed, execution continues beyond the last exception handler directly following the matching try-block (assuming the handler doesn't itself use flow control statements (like return or throw) to break the default flow of execution). The following cases can be distinguished:
All statements in a try block following an executed throw-statement are ignored. However, objects that were successfully constructed within the try block before executing the throw statement are destroyed before any exception handler's code is executed.
10.5.1: The default catcher
At a certain level of the program only a limited set of handlers may actually be required. Exceptions whose types belong to that limited set are processed, all other exceptions are passed on to exception handlers of an outer level try block.
An intermediate type of exception handling may be implemented using the default exception handler, which must be (due to the hierarchal nature of exception catchers, discussed in section 10.5) placed beyond all other, more specific exception handlers.
This default exception handler cannot determine the actual type of the thrown exception and cannot determine the exception's value but it may execute some statements, and thus do some default processing. Moreover, the caught exception is not lost, and the default exception handler may use the empty throw statement (see section 10.3.1) to pass the exception on to an outer level, where it's actually processed. Here is an example showing this use of a default exception handler:
#include <iostream>
using namespace std;
int main()
{
try
{
try
{
throw 12.25; // no specific handler for doubles
}
catch (int value)
{
cout << "Inner level: caught int\n";
}
catch (...)
{
cout << "Inner level: generic handling of exceptions\n";
throw;
}
}
catch(double d)
{
cout << "Outer level may use the thrown double: " << d << '\n';
}
}
/*
Generated output:
Inner level: generic handling of exceptions
Outer level may use the thrown double: 12.25
*/
The program's output illustrates that an empty throw statement in a default exception handler throws the received exception to the next (outer) level of exception catchers, keeping type and value of the thrown exception.
Thus, basic or generic exception handling can be accomplished at an inner level, while specific handling, based on the type of the thrown expression, can be provided at an outer level. Additionally, particularly in multi-threaded programs (cf. chapter 20), thrown exceptions can be transferred between threads after converting std::exception objects to std::exception_ptr objects. This proceduce can even be used from inside the default catcher. Refer to section 20.12.1 for further coverage of the class std::exception_ptr.
10.6: Declaring (deprecated) exception throwers
Once a function has been defined it's commonly called from other functions. If called functions are not defined in the same source file as calling functions the called functions must be declared, for which header files are commonly used.
The called functions may throw exceptions. When such functions are declared their declarations may specify a (now deprecated, see also section 23.8) function throw list or exception specification list specifying the types of the exceptions that can be thrown by the called function. For example, a function that may throw `char *' and `int' exceptions can be declared as
void exceptionThrower() throw(char *, int);
Function throw lists immediately follow the function header (and their specifications also follow possible const specifiers). Throw lists specify zero or more, comma separated, types, using the following syntax:
throw ()
throw (type)
throw (type1, type2, type3 ...)
where the ellipsis indicates any number of additional, comma separated, type specifications.
To indicate that a function is guaranteed not to throw exceptions an empty function throw list can be used. E.g.,
void noExceptions() throw ();
In all cases, the function header used in the function definition must exactly match the function header used in the declaration, including a possibly empty function throw list.
Once a function throw list has been specified its function may only throw exceptions of the types mentioned in its throw list. A run-time error occurs if such a function throws exceptions of types not specified in its function throw list. Example: the function charPintThrower shown below clearly throws a char const * exception. Since, according to its function throw list, intThrower may throw an int exception, the function throw list of charPintThrower must also contain int.
#include <iostream>
using namespace std;
void charPintThrower() throw(char const *, int);
class Thrower
{
public:
void intThrower(int) const throw(int);
};
void Thrower::intThrower(int x) const throw(int)
{
if (x)
throw x;
}
void charPintThrower() throw(char const *, int)
{
int x;
cerr << "Enter an int: ";
cin >> x;
Thrower().intThrower(x);
throw "this text is thrown if 0 was entered";
}
void runTimeError() throw(int)
{
throw 12.5;
}
int main()
{
try
{
charPintThrower();
}
catch (char const *message)
{
cerr << "Text exception: " << message << '\n';
}
catch (int value)
{
cerr << "Int exception: " << value << '\n';
}
try
{
cerr << "Generating a run-time error\n";
runTimeError();
}
catch(...)
{
cerr << "not reached\n";
}
}
A function without a throw list may throw any kind of exception. Without a function throw list the program's designer is responsible for providing the correct handlers.
For various reasons declaring exception throwers is now deprecated. Declaring exception throwers does not imply that the compiler checks whether an improper exception is thrown. Rather, the function for which a function throw list has been specified is surrounded by additional code in which the actually thrown exception is inspected: if the exception is of a type that is listed in the function's throw list then that exception is rethrown; otherwise a run-time error is thrown. Instead of compile-time checks you get run-time overhead, resulting in additional code (and execution time) that is added to the function's code. One could write, e.g.,
void fun() throw (int)
{
// code of this function, throwing exceptions
}
but the function would be compiled to something like this (cf. section 10.11 for the use of try immediately following the function's header and section 10.8 for a description of bad_exception):
void fun()
try // this code resulting from throw(int)
{
// the function's code, throwing all kinds of exceptions
}
catch (int) // remaining code resulting from throw(int)
{
throw; // rethrow the exception, so it can be caught by the
// `intended' handler
}
catch (...) // catch any other exception
{
throw bad_exception{};
}
Run-time overhead results because the number of thrown and caught exceptions are doubled. If no function throw list is specified then a thrown int is simply caught by its intended handler; if a function throw list has been specified the thrown int is first caught by the `safeguarding' handler added to the function. In there it is rethrown whereafter it is caught by its intended handler.
10.6.1: noexcept
Although function throw lists are deprecated, its younger cousin noexcept is not. The noexcept keyword is used where previously empty function throw lists were used (cf. section 10.9 for examples where noexcept is used). Like empty function throw lists you incur some run-time overhead, but noexcept is more strict than empty function throw lists when violations are observed. When violating function throw list specifications a std::unexpected exception is thrown, when violating noexcept it results in std::terminate, ending the program.
In addition, noexcept can be given an argument that is evaluated compile-time: if the evaluation returns true then the noexcept requirement is used; if the evaluation returns false, then the noexcept requirement is ignored. Examples of this advanced use of noexcept are provided in section 23.8.
10.7: Iostreams and exceptions
The C++ I/O library was used well before exceptions were available in C++. Hence, normally the classes of the iostream library do not throw exceptions. However, it is possible to modify that behavior using the ios::exceptions member function. This function has two overloaded versions:
this member causes the stream to throw an exception when state state is observed.
In the I/O library, exceptions are objects of the class ios::failure, derived from ios::exception. A std::string const &message may be specified when defining a failure object. Its message may then be retrieved using its virtual char const *what() const member.
Exceptions should be used in exceptional circumstances. Therefore, we think it is questionable to have stream objects throw exceptions for fairly normal situations like EOF. Using exceptions to handle input errors might be defensible (e.g., in situations where input errors should not occur and imply a corrupted file) but often aborting the program with an appropriate error message would probably be the more appropriate action. As an example consider the following interactive program using exceptions to catch incorrect input:
#include <iostream>
#include <climits>
using namespace::std;
int main()
{
cin.exceptions(ios::failbit); // throw exception on fail
while (true)
{
try
{
cout << "enter a number: ";
int value;
cin >> value;
cout << "you entered " << value << '\n';
}
catch (ios::failure const &problem)
{
cout << problem.what() << '\n';
cin.clear();
cin.ignore(INT_MAX, '\n'); // ignore the faulty line
}
}
}
By default, exceptions raised from within ostream objects are caught by these objects, which set their ios::badbit as a result. See also the paragraph on this issue in section 14.8.
10.8: Standard exceptions
All data types may be thrown as exceptions. Several additional exception classes are now defined by the C++ standard. Before using those additional exception classes the <stdexcept> header file must be included.
All of these standard exceptions are class types by themselves, but also offer all facilities of the std::exception class and objects of the standard exception classes may also be considered objects of the std::exception class.
The std::exception class offers the member
char const *what() const;
describing in a short textual message the nature of the exception.
C++ defines the following standard exception classes:
All additional exception classes were derived from std::exception. The constructors of all these additional classes accept std::string const & arguments summarizing the reason for the exception (retrieved by the exception::what member). The additionally defined exception classes are:
10.8.1: Standard exceptions: to use or not to use?
Since values of any type may be thrown as exceptions, you may wonder when to throw values of standard exception types and (if ever) when to throw values of other types.
Current practice in the C++ community is to throw exceptions only in exceptional situations. In that respect C++'s philosophy about using exceptions differs markedly from the way exceptions are used in, e.g., Java, where exceptions are often encountered in situations C++ doesn't consider exceptional. Another common practice is to follow a `conceptual' style when designing software. A nice characteristic of exceptions is that exceptions can be thrown at a point where your source shows what's happening: throwing an std::out_of_range exception is nice for the software maintainer, as the reason for the exception is immediately recognized.
At the catch-clause the semantical context usually isn't very relevant anymore and by catching a std::exception and showing its what() content the program's user is informed about what happened.
But throwing values of other types can also be useful. What about a situation where you want to throw an exception and catch it at some shallow level? In between there may be various levels of software provided by external software libraries over which the software engineer has no control. At those levels exceptions (std::exceptions) could be generated too, and those exceptions might also be caught by the library's code. When throwing a standard exception type it may be hard to convince yourself that that exception isn't caught by the externally provided software. Assuming that no catch-alls are used (i.e., catch (...)) then throwing an exception from the std::exception family might not be a very good idea. In such cases throwing a value from a simple, maybe empty, enum works fine:
enum HorribleEvent
{};
... at some deep level:
throw HorribleEvent{};
... at some shallow level:
catch (HorribleEvent hs)
{
...
}
Other examples can easily be found: design a class holding a message and an error (exit) code: where necessary throw an object of that class, catch it in the catch clause of main's try block and you can be sure that all objects defined at intermediate levels are neatly destroyed, and at the end you show the error message and return the exit code embedded in your non-exception object.
So, the advice is to use std::exception types when available, and clearly do the required job. But if an exception is used to simply bail out of an unpleasant situation, or if there's a chance that externally provided code might catch std:exceptions then consider throwing objects or values of other types.
10.9: System error, error_category, and error_condition
The class std::system_error is derived from std::runtime_error, which in turn is derived from std::exception
Before using the class system_error or related classes the <system_error> header file must be included.
System_error exceptions can be thrown when errors occur having associated (system) error values. Such errors are typically associated with low-level (like operating system) functions, but other types of errors (e.g., bad user input, non-existing requests) can also be handled.
In addition to error codes (cf. section 4.3.2) and error categories (covered below) error conditions are distinguished. Error conditions specify platform independent types of errors like syntax errors or non-existing requests.
When constructing system_error objects error codes and error categories may be specified. First we'll look at the classes error_condition and error_category, then system_error itself is covered in more detail.
Figure 9 illustrates how the various components interact.
Figure 9: System_error: associated components
As shown in figure 9 the class error_category uses the class error_condition and the class error_condition uses the class error_category. As a consequence of this circular dependency between these two classes these classes should be approached as one single class: when covering error_category the class error_condition should be known and vice versa. This circular dependency among these classes is unfortunate and an example of bad class design.
As system_error is eventually derived from exception it offers the standard what member. It also contains an error_code.
In POSIX systems the errno variable is associated with many, often rather cryptic, symbols. The predefined enum class errc attempts to provide intuitively more appealing symbols. Since its symbols are defined in a strongly typed enumeration, they cannot directly be used when defining a matching error_code. Instead, a make_error_code function converts enum class errc values and values of newly defined error code enumerations (called ErrorCodeEnum below) to error_code objects.
The enum class errc defined in the std namespace defines symbols whose values are equal to the traditional error code values used by C but describe the errors in a less cryptic way. E.g.,
enum class errc
{
address_family_not_supported, // EAFNOSUPPORT
address_in_use, // EADDRINUSE
address_not_available, // EADDRNOTAVAIL
already_connected, // EISCONN
argument_list_too_long, // E2BIG
argument_out_of_domain, // EDOM
bad_address, // EFAULT
...
};
Values of ErrorCodeEnums can be passed to matching make_error_code functions. Defining your own ErrorCodeEnum enumeration is covered in section 23.7.
Now that the general outline has been presented, it's time to have a closer look at the various components shown in figure 9.
10.9.1: The class `std::error_category'
Objects of the class std::error_category identify sources of sets of error codes. New error categories for new error code enumerations can also be defined (cf. section 23.7).
Error categories are designed as singletons: only one object of each class can exist. Because of this error_categories are equal when the addresses of error_category objects are equal. Error category objects are returned by functions (see below) or by static instance() members of error category classes.
Error category classes define several members. Most are declared virtual (cf. chapter 14), meaning that those members may be redefined in error category classes we ourselves design:
The functions returning predefined error categories are:
10.9.2: The class `std::error_condition'
Error_condition objects contain information about `higher level' types of errors. They are supposed to be platform independent like syntax errors or non-existing requests.
Error condition objects are returned by the member default_error_condition of the classes error_code and error_category, and they are returned by the function std::error_condition make_error_condition(ErrorConditionEnum ec). The type name ErrorConditionEnum is a formal name for an enum class that enumerates the `higher level' error types. The error_condition objects returned by make_error_condition are initialized with ec and the error_category that uses the ErrorConditionEnum. Defining your own ErrorConditionEnum is covered in section 23.7.
Constructors:
Members:
Two error_condition objects can be compared for (in)equality, and can be ordered using operator<. Ordering is pointless if the two objects refer to different error categories. If the categories of two objects are different they are considered different.
10.9.3: The class system_error
System_error objects can be constructed from error_codes or from error values (ints) and matching error category objects, optionally followed by a standard textual description of the nature of the encountered error.
Here is the class's public interface:
class system_error: public runtime_error
{
public:
system_error(error_code ec);
system_error(error_code ec, string const &what_arg);
system_error(error_code ec, char const *what_arg);
system_error(int ev, error_category const &ecat);
system_error(int ev, error_category const &ecat,
char const *what_arg);
system_error(int ev, error_category const &ecat,
string const &what_arg);
error_code const &code() const noexcept;
char const *what() const noexcept;
}
The ev values often are the values of the errno variable as set upon failure by system level functions like chmod(2).
Note that the first three constructors shown in the interface receive an error_code object as their first arguments. As one of the error_code constructors also expects an int and and error_category argument, the second set of three constructors could also be used instead of the first set of three constructors. E.g.,
system_error(errno, system_category(), "context of the error");
// identical to:
system_error(error_code(errno, system_category()),
"context of the error");
The second set of three constructors are primarily used when an existing function already returns an error_code. E.g.,
system_error(make_error_code(errc::bad_address),
"context of the error");
// or maybe:
system_error(make_error_code(static_cast<errc>(errno)),
"context of the error");
In addition to the standard what member, the system_error class also offers a member code returning a const reference to the exception's error code.
The NTBS returned by system_error's what member may be formatted by a system_error object:
what_arg + ": " + code().message()
Note that, although system_error was derived from runtime_error, you'll lose the code member when catching a std::exception object. Of course, downcasting is possible, but that's a stopgap. Therefore, if a system_error is thrown, a matching catch(system_error const &) clause must be provided to retrieve the value returned by the code member. This, and the rather complex organization of the classes that are involved when using system_error result in a very complex, and hard to generalize exception handling. In essence, what you obtain at the cost of high complexity is a facility for categorizing int or enum error values. Additional coverage of the involved complexities is provided in chapter 23, in particular section 23.7 (for a flexible alternative, see the class FBB::Exception in the author's Bobcat library).
10.10: Exception guarantees
Software should be exception safe: the program should continue to work according to its specifications in the face of exceptions. It is not always easy to realize exception safety. In this section some guidelines and terminology is introduced when discussing exception safety.
Since exceptions may be generated from within all C++ functions, exceptions may be generated in many situations. Not all of these situations are immediately and intuitively recognized as situations where exceptions can be thrown. Consider the following function and ask yourself at which points exceptions may be thrown:
void fun()
{
X x;
cout << x;
X *xp = new X{ x };
cout << (x + *xp);
delete xp;
}
If it can be assumed that cout as used above does not throw an exception there are at least 13 opportunities for exceptions to be thrown:
It is stressed here (and further discussed in section 10.12) that although it is possible for exceptions to leave destructors this would violate the C++ standard and so it must be prevented in well-behaving C++ programs.
How can we expect to create working programs when exceptions might be thrown in so many situations?
Exceptions may be generated in a great many situations, but serious problems are prevented when we're able to provide at least one of the following exception guarantees:
10.10.1: The basic guarantee
The basic guarantee dictates that functions that fail to complete their assigned tasks must return all allocated resources, usually memory, before terminating. Since practically all functions and operators may throw exceptions and since a function may repeatedly allocate resources the blueprint of a function allocating resources shown below defines a try block to catch all exceptions that might be thrown. The catch handler's task is to return all allocated resources and then rethrow the exception.
void allocator(X **xDest, Y **yDest)
{
X *xp = 0; // non-throwing preamble
Y *yp = 0;
try // this part might throw
{
xp = new X[nX]; // alternatively: allocate one object
yp = new Y[nY];
}
catch(...)
{
delete xp;
throw;
}
delete[] *xDest; // non-throwing postamble
*xDest = xp;
delete[] *yDest;
*yDest = yp;
}
In the pre-try code the pointers to receive the addresses returned by the operator new calls are initialized to 0. Since the catch handler must be able to return allocated memory they must be available outside of the try block. If the allocation succeeds the memory pointed to by the destination pointers is returned and then the pointers are given new values.
Allocation and or initialization might fail. If allocation fails new throws a std::bad_alloc exception and the catch handler simply deletes 0-pointers which is OK.
If allocation succeeds but the construction of (some) of the objects fails by throwing an exception then the following is guaranteed to happen:
Consequently, there is no memory leak when new fails. Inside the above try block new X may fail: this does not affect the 0-pointers and so the catch handler merely deletes 0 pointers. When new Y fails xp points to allocated memory and so it must be returned. This happens inside the catch handler. The final pointer (here: yp) will only be unequal zero when new Y properly completes, so there's no need for the catch handler to return the memory pointed at by yp.
10.10.2: The strong guarantee
The strong guarantee dictates that an object's state should not change in the face of exceptions. This is realized by performing all operations that might throw on a separate copy of the data. If all this succeeds then the current object and its (now successfully modified) copy are swapped. An example of this approach can be observed in the canonical overloaded assignment operator:
Class &operator=(Class const &other)
{
Class tmp(other);
swap(tmp);
return *this;
}
The copy construction might throw an exception, but this keeps the current object's state intact. If the copy construction succeeds swap swaps the current object's content with tmp's content and returns a reference to the current object. For this to succeed it must be guaranteed that swap won't throw an exception. Returning a reference (or a value of a primitive data type) is also guaranteed not to throw exceptions. The canonical form of the overloaded assignment operator therefore meets the requirements of the strong guarantee.
Some rules of thumb were formulated that relate to the strong guarantee (cf. Sutter, H., Exceptional C++, Addison-Wesley, 2000). E.g.,
The canonical assignment operator is a good example of the first rule of thumb. Another example is found in classes storing objects. Consider a class PersonDb storing multiple Person objects. Such a class might offer a member void add(Person const &next). A plain implementation of this function (merely intended to show the application of the first rule of thumb, but otherwise completely disregarding efficiency considerations) might be:
Person *PersonDb::newAppend(Person const &next)
{
Person *tmp = 0;
try
{
tmp = new Person[d_size + 1];
for (size_t idx = 0; idx < d_size; ++idx)
tmp[idx] = d_data[idx];
tmp[d_size] = next;
return tmp;
}
catch (...)
{
delete[] tmp;
throw;
}
}
void PersonDb::add(Person const &next)
{
Person *tmp = newAppend(next);
delete[] d_data;
d_data = tmp;
++d_size;
}
The (private) newAppend member's task is to create a copy of the currently allocated Person objects, including the data of the next Person object. Its catch handler catches any exception that might be thrown during the allocation or copy process and returns all memory allocated so far, rethrowing the exception at the end. The function is exception neutral as it propagates all its exceptions to its caller. The function also doesn't modify the PersonDb object's data, so it meets the strong exception guarantee. Returning from newAppend the member add may now modify its data. Its existing data are returned and its d_data pointer is made to point to the newly created array of Person objects. Finally its d_size is incremented. As these three steps don't throw exceptions add too meets the strong guarantee.
The second rule of thumb (member functions modifying their object's data should not return original (contained) objects by value) may be illustrated using a member PersonDb::erase(size_t idx). Here is an implementation attempting to return the original d_data[idx] object:
Person PersonData::erase(size_t idx)
{
if (idx >= d_size)
throw "Array bounds exceeded"s;
Person ret(d_data[idx]);
Person *tmp = copyAllBut(idx);
delete[] d_data;
d_data = tmp;
--d_size;
return ret;
}
Although copy elision usually prevents the use of the copy constructor when returning ret, this is not guaranteed to happen. Furthermore, a copy constructor may throw an exception. If that happens the function has irrevocably mutated the PersonDb's data, thus losing the strong guarantee.
Rather than returning d_data[idx] by value it might be assigned to an external Person object before mutating PersonDb's data:
void PersonData::erase(Person *dest, size_t idx)
{
if (idx >= d_size)
throw "Array bounds exceeded"s;
*dest = d_data[idx];
Person *tmp = copyAllBut(idx);
delete[] d_data;
d_data = tmp;
--d_size;
}
This modification works, but changes the original assignment of creating a member returning the original object. However, both functions suffer from a task overload as they modify PersonDb's data and also return an original object. In situations like these the one-function-one-responsibility rule of thumb should be kept in mind: a function should have a single, well defined responsibility.
The preferred approach is to retrieve PersonDb's objects using a member like Person const &at(size_t idx) const and to erase an object using a member like void PersonData::erase(size_t idx).
10.10.3: The nothrow guarantee
Exception safety can only be realized if some functions and operations are guaranteed not to throw exceptions. This is called the nothrow guarantee. An example of a function that must offer the nothrow guarantee is the swap function. Consider once again the canonical overloaded assignment operator:
Class &operator=(Class const &other)
{
Class tmp(other);
swap(tmp);
return *this;
}
If swap were allowed to throw exceptions then it would most likely leave the current object in a partially swapped state. As a result the current object's state would most likely have been changed. As tmp has been destroyed by the time a catch handler receives the thrown exception it becomes very difficult (as in: impossible) to retrieve the object's original state. Losing the strong guarantee as a consequence.
The swap function must therefore offer the nothrow guarantee. It must have been designed as if using the following prototype (see also section 23.8):
void Class::swap(Class &other) noexcept;
Likewise, operator delete and operator delete[] offer the nothrow guarantee, and according to the C++ standard destructors may themselves not throw exceptions (if they do their behavior is formally undefined, see also section 10.12 below).
Since the C programming language does not define the exception concept functions from the standard C library offer the nothrow guarantee by implication. This allowed us to define the generic swap function in section 9.6 using memcpy.
Operations on primitive types offer the nothrow guarantee. Pointers may be reassigned, references may be returned etc. etc. without having to worry about exceptions that might be thrown.
10.11: Function try blocks
Exceptions may be generated from inside constructors. How can exceptions generated in such situations be caught by the constructor itself, rather than outside the constructor? The intuitive solution, nesting the object construction in a try block does not solve the problem. The exception by then has left the constructor and the object we intended to construct isn't visible anymore.
Using a nested try block is illustrated in the next example, where main defines an object of class PersonDb. Assuming that PersonDb's constructor throws an exception, there is no way we can access the resources that might have been allocated by PersonDb's constructor from the catch handler as the pdb object is out of scope:
int main(int argc, char **argv)
{
try
{
PersonDb pdb{ argc, argv }; // may throw exceptions
... // main()'s other code
}
catch(...) // and/or other handlers
{
... // pdb is inaccessible from here
}
}
Although all objects and variables defined inside a try block are inaccessible from its associated catch handlers, object data members were available before starting the try block and so they may be accessed from a catch handler. In the following example the catch handler in PersonDb's constructor is able to access its d_data member:
PersonDb::PersonDb(int argc, char **argv)
:
d_data(0),
d_size(0)
{
try
{
initialize(argc, argv);
}
catch(...)
{
// d_data, d_size: accessible
}
}
Unfortunately, this does not help us much. The initialize member is unable to reassign d_data and d_size if PersonDb const pdb was defined; the initialize member should at least offer the basic exception guarantee and return any resources it has acquired before terminating due to a thrown exception; and although d_data and d_size offer the nothrow guarantee as they are of primitive data types a class type data member might throw an exception, possibly resulting in violation of the basic guarantee.
In the next implementation of PersonDb assume that constructor receives a pointer to an already allocated block of Person objects. The PersonDb object takes ownership of the allocated memory and it is therefore responsible for the allocated memory's eventual destruction. Moreover, d_data and d_size are also used by a composed object PersonDbSupport, having a constructor expecting a Person const * and size_t argument. Our next implementation may then look something like this:
PersonDb::PersonDb(Person *pData, size_t size)
:
d_data(pData),
d_size(size),
d_support(d_data, d_size)
{
// no further actions
}
This setup allows us to define a PersonDb const &pdb. Unfortunately, PersonDb cannot offer the basic guarantee. If PersonDbSupport's constructor throws an exception it isn't caught although d_data already points to allocated memory.
The function try block offers a solution for this problem. A function try block consists of a try block and its associated handlers. The function try block starts immediately after the function header, and its block defines the function body. With constructors base class and data member initializers may be placed between the try keyword and the opening curly brace. Here is our final implementation of PersonDb, now offering the basic guarantee:
PersonDb::PersonDb(Person *pData, size_t size)
try
:
d_data(pData),
d_size(size),
d_support(d_data, d_size)
{}
catch (...)
{
delete[] d_data;
}
Let's have a look at a stripped-down example. A constructor defines a function try block. The exception thrown by the Throw object is initially caught by the object itself. Then it is rethrown. The surrounding Composer's constructor also defines a function try block, Throw's rethrown exception is properly caught by Composer's exception handler, even though the exception was generated from within its member initializer list:
#include <iostream>
class Throw
{
public:
Throw(int value)
try
{
throw value;
}
catch(...)
{
std::cout << "Throw's exception handled locally by Throw()\n";
throw;
}
};
class Composer
{
Throw d_t;
public:
Composer()
try // NOTE: try precedes initializer list
:
d_t(5)
{}
catch(...)
{
std::cout << "Composer() caught exception as well\n";
}
};
int main()
{
Composer c;
}
When running this example, we're in for a nasty surprise: the program runs and then breaks with an abort exception. Here is the output it produces, the last two lines being added by the system's final catch-all handler, catching all remaining uncaught exceptions:
Throw's exception handled locally by Throw()
Composer() caught exception as well
terminate called after throwing an instance of 'int'
Abort
The reason for this is documented in the C++ standard: at the end of a catch-handler belonging to a constructor or destructor function try block, the original exception is automatically rethrown.
The exception is not rethrown if the handler itself throws another exception, offering the constructor or destructor a way to replace a thrown exception by another one. The exception is only rethrown if it reaches the end of the catch handler of a constructor or destructor function try block. Exceptions caught by nested catch handlers are not automatically rethrown.
As only constructors and destructors rethrow exceptions caught by their function try block catch handlers the run-time error encountered in the above example may simply be repaired by providing main with its own function try block:
int main()
try
{
Composer c;
}
catch (...)
{}
Now the program runs as planned, producing the following output:
Throw's exception handled locally by Throw()
Composer() caught exception as well
A final note: if a function defining a function try block also declares an exception throw list then only the types of rethrown exceptions must match the types mentioned in the throw list.
10.12: Exceptions in constructors and destructors
Object destructors are only activated for completely constructed objects. Although this may sound like a truism, there is a subtlety here. If the construction of an object fails for some reason, the object's destructor is not called when the object goes out of scope. This could happen if an exception that is generated by the constructor is not caught by the constructor. If the exception is thrown when the object has already allocated some memory, then that memory is not returned: its destructor isn't called as the object's construction wasn't successfully completed.
The following example illustrates this situation in its prototypical form. The constructor of the class Incomplete first displays a message and then throws an exception. Its destructor also displays a message:
class Incomplete
{
public:
Incomplete()
{
cerr << "Allocated some memory\n";
throw 0;
}
~Incomplete()
{
cerr << "Destroying the allocated memory\n";
}
};
Next, main() creates an Incomplete object inside a try block. Any exception that may be generated is subsequently caught:
int main()
{
try
{
cerr << "Creating `Incomplete' object\n";
Incomplete{};
cerr << "Object constructed\n";
}
catch(...)
{
cerr << "Caught exception\n";
}
}
When this program is run, it produces the following output:
Creating `Incomplete' object
Allocated some memory
Caught exception
Thus, if Incomplete's constructor would actually have allocated some memory, the program would suffer from a memory leak. To prevent this from happening, the following counter measures are available:
class Incomplete2
{
Composed d_composed;
public:
Incomplete2()
try
:
d_composed(/* arguments */)
{
// body
}
catch (...)
{}
};
An exception thrown by either the member initializers or the body results in the execution never reaching the body's closing curly brace. Instead the catch clause is reached. Since the constructor's body isn't properly completed the object is not considered properly constructed and eventually the object's destructor won't be called.
The catch clause of a constructor's function try block behaves slightly different than a catch clause of an ordinary function try block. An exception reaching a constructor's function try block may be transformed into another exception (which is thrown from the catch clause) but if no exception is explicitly thrown from the catch clause the exception originally reaching the catch clause is always rethrown. Consequently, there's no way to confine an exception thrown from a base class constructor or from a member initializer to the constructor: such an exception always propagates to a more shallow block and in that case the object's construction is always considered incomplete.
Consequently, if incompletely constructed objects throw exceptions then the constructor's catch clause is responsible for preventing memory (generally: resource) leaks. There are several ways to realize this:
class Incomplete2
{
Composed d_composed;
char *d_cp; // plain pointers
int *d_ip;
public:
Incomplete2(size_t nChars, size_t nInts)
try
:
d_composed(/* arguments */), // might throw
d_cp(0),
d_ip(0)
{
preamble(); // might throw
d_cp = new char[nChars]; // might throw
d_ip = new int[nChars]; // might throw
postamble(); // might throw
}
catch (...)
{
delete[] d_cp; // clean up
delete[] d_ip;
}
};
On the other hand, since C++ supports constructor delegation an object may have been completely constructed according to the C++ run-time system, but yet its constructor may have thrown an exception. This happens if a delegated constructor successfully completes (after which the object is considered `completely constructed'), but the constructor itself throws an exception, as illustrated by the next example:
class Delegate
{
public:
Delegate()
:
Delegate(0)
{
throw 12; // throws but completely constructed
}
Delegate(int x) // completes OK
{}
};
int main()
try
{
Delegate del; // throws
} // del's destructor is called here
catch (...)
{}
In this example it is the responsibility of Delegate's designer to ensure that the throwing default constructor does not invalidate the actions performed by Delegate's destructor. E.g., if the delegated constructor allocates memory to be deleted by the destructor, then the default constructor should either leave the memory as-is, or it can delete the memory and set the corresponding pointer to zero thereafter. In any case, it is Delegate's responsibility to ensure that the object remains in a valid state, even though it throws an exception.
According to the C++ standard exceptions thrown by destructors may not leave their bodies. Providing a destructor with a function try block is therefore a violation of the standard: exceptions caught by a function try block's catch clause have already left the destructor's body. If --in violation of the standard-- the destructor is provided with a function try block and an exception is caught by the try block then that exception is rethrown, similar to what happens in catch clauses of constructor functions' try blocks.
The consequences of an exception leaving the destructor's body is not defined, and may result in unexpected behavior. Consider the following example:
Assume a carpenter builds a cupboard having a single drawer. The cupboard is finished, and a customer, buying the cupboard, finds that the cupboard can be used as expected. Satisfied with the cupboard, the customer asks the carpenter to build another cupboard, this time having two drawers. When the second cupboard is finished, the customer takes it home and is utterly amazed when the second cupboard completely collapses immediately after it is used for the first time.
Weird story? Then consider the following program:
int main()
{
try
{
cerr << "Creating Cupboard1\n";
Cupboard1{};
cerr << "Beyond Cupboard1 object\n";
}
catch (...)
{
cerr << "Cupboard1 behaves as expected\n";
}
try
{
cerr << "Creating Cupboard2\n";
Cupboard2{};
cerr << "Beyond Cupboard2 object\n";
}
catch (...)
{
cerr << "Cupboard2 behaves as expected\n";
}
}
When this program is run it produces the following output:
Creating Cupboard1
Drawer 1 used
Cupboard1 behaves as expected
Creating Cupboard2
Drawer 2 used
Drawer 1 used
terminate called after throwing an instance of 'int'
Abort
The final Abort indicates that the program has aborted instead of displaying a message like Cupboard2 behaves as expected.
Let's have a look at the three classes involved. The class Drawer has no particular characteristics, except that its destructor throws an exception:
class Drawer
{
size_t d_nr;
public:
Drawer(size_t nr)
:
d_nr(nr)
{}
~Drawer()
{
cerr << "Drawer " << d_nr << " used\n";
throw 0;
}
};
The class Cupboard1 has no special characteristics at all. It merely has a single composed Drawer object:
class Cupboard1
{
Drawer left;
public:
Cupboard1()
:
left(1)
{}
};
The class Cupboard2 is constructed comparably, but it has two composed Drawer objects:
class Cupboard2
{
Drawer left;
Drawer right;
public:
Cupboard2()
:
left(1),
right(2)
{}
};
When Cupboard1's destructor is called Drawer's destructor is eventually called to destroy its composed object. This destructor throws an exception, which is caught beyond the program's first try block. This behavior is completely as expected.
A subtlety here is that Cupboard1's destructor (and hence Drawer's destructor) is activated immediately subsequent to its construction. Its destructor is called immediately subsequent to its construction as Cupboard1() defines an anonymous object. As a result the Beyond Cupboard1 object text is never inserted into std::cerr.
Because of Drawer's destructor throwing an exception a problem occurs when Cupboard2's destructor is called. Of its two composed objects, the second Drawer's destructor is called first. This destructor throws an exception, which ought to be caught beyond the program's second try block. However, although the flow of control by then has left the context of Cupboard2's destructor, that object hasn't completely been destroyed yet as the destructor of its other (left) Drawer still has to be called.
Normally that would not be a big problem: once an exception is thrown from Cupboard2's destructor any remaining actions would simply be ignored, albeit that (as both drawers are properly constructed objects) left's destructor would still have to be called.
This happens here too and left's destructor also needs to throw an exception. But as we've already left the context of the second try block, the current flow control is now thoroughly mixed up, and the program has no other option but to abort. It does so by calling terminate(), which in turn calls abort(). Here we have our collapsing cupboard having two drawers, even though the cupboard having one drawer behaves perfectly.
The program aborts since there are multiple composed objects whose destructors throw exceptions leaving the destructors. In this situation one of the composed objects would throw an exception by the time the program's flow control has already left its proper context causing the program to abort.
The C++ standard therefore understandably stipulates that exceptions may never leave destructors. Here is the skeleton of a destructor whose code might throw exceptions. No function try block but all the destructor's actions are encapsulated in a try block nested under the destructor's body.
Class::~Class()
{
try
{
maybe_throw_exceptions();
}
catch (...)
{}
}
Chapter 11: More Operator Overloading
Having covered the overloaded assignment operator in chapter 9, and having shown several examples of other overloaded operators as well (i.e., the insertion and extraction operators in chapters 3 and 6), we now take a look at operator overloading in general.
11.1: Overloading `operator[]()'
As our next example of operator overloading, we introduce a class IntArray encapsulating an array of ints. Indexing the array elements is possible using the standard array index operator [], but additionally checks for array bounds overflow are performed. Furthermore, the index operator (operator[]) is interesting in that it can be used in expressions as both lvalue and as rvalue.
Here is an example showing the basic use of the class:
int main()
{
IntArray x{ 20 }; // 20 ints
for (int i = 0; i < 20; i++)
x[i] = i * 2; // assign the elements
for (int i = 0; i <= 20; i++) // produces boundary overflow
cout << "At index " << i << ": value is " << x[i] << '\n';
}
First, the constructor is used to create an object containing 20 ints. The elements stored in the object can be assigned or retrieved. The first for-loop assigns values to the elements using the index operator, the second for-loop retrieves the values but also results in a run-time error once the non-existing value x[20] is addressed. The IntArray class interface is:
#include <cstddef>
class IntArray
{
int *d_data;
size_t d_size;
public:
IntArray(size_t size = 1);
IntArray(IntArray const &other);
~IntArray();
IntArray &operator=(IntArray const &other);
// overloaded index operators:
int &operator[](size_t index); // first
int operator[](size_t index) const; // second
void swap(IntArray &other); // trivial
private:
void boundary(size_t index) const;
int &operatorIndex(size_t index) const;
};
This class has the following characteristics:
The first overloaded index operator allows us to reach and modify the elements of non-constant IntArray objects. This overloaded operator's prototype is a function returning a reference to an int. This allows us to use expressions like x[10] as rvalues or lvalues.
With non-const IntArray objects operator[] can therefore be used to retrieve and to assign values. The return value of the non-const operator[] member is not an int const &, but an int &. In this situation we don't use const, as we must be able to modify the element we want to access when the operator is used as lvalue.
This whole scheme fails if there's nothing to assign. Consider the situation where we have an IntArray const stable(5). Such an object is an immutable const object. The compiler detects this and refuses to compile this object definition if only the non-const operator[] is available. Hence the second overloaded index operator is added to the class's interface. Here the return value is an int, rather than an int &, and the member function itself is a const member function. This second form of the overloaded index operator is automatically used by the compiler with const objects. It is used for value retrieval instead of value assignment. That, of course, is precisely what we want when using const objects. In this situation members are overloaded only by their const attribute. This form of function overloading was introduced earlier in the C++ Annotations (sections 2.5.4 and 7.7).
Note the difference between the return types of the two overloaded index operators: int & and int. Here, using a value return type for the const-index operator is OK, because the return type is a simple built-in type: returning a copy of the requested value is likely more efficient than returning a const reference, which must be dereferenced whenever it is used. However, for more complex return types (generally: objects) value return types should be avoided and the const index operator should define a Type const & return type instead of a Type value return type.
Since IntArray stores values of a primitive type IntArray's operator[] const could also have defined a value return type. However, with objects one usually doesn't want the extra copying that's implied with value return types. In those cases const & return values are preferred for const member functions. So, in the IntArray class an int return value could have been used as well, resulting in the following prototype:
int IntArray::operator[](size_t index) const;
Now, the implementation of the members (omitting the trivial implementation of swap, cf. chapter 9) are:
#include "intarray.ih"
IntArray::IntArray(size_t size)
:
d_size(size)
{
if (d_size < 1)
throw "IntArray: size of array must be >= 1"s;
d_data = new int[d_size];
}
IntArray::IntArray(IntArray const &other)
:
d_size(other.d_size),
d_data(new int[d_size])
{
memcpy(d_data, other.d_data, d_size * sizeof(int));
}
IntArray::~IntArray()
{
delete[] d_data;
}
IntArray &IntArray::operator=(IntArray const &other)
{
IntArray tmp(other);
swap(tmp);
return *this;
}
int &IntArray::operatorIndex(size_t index) const
{
boundary(index);
return d_data[index];
}
int &IntArray::operator[](size_t index)
{
return operatorIndex(index);
}
int IntArray::operator[](size_t index) const
{
return operatorIndex(index);
}
void IntArray::boundary(size_t index) const
{
if (index < d_size)
return;
ostringstream out;
out << "IntArray: boundary overflow, index = " <<
index << ", should be < " << d_size << '\n';
throw out.str();
}
Note how the operator[] members were implemented: as non-const members may call const member functions and as the implementation of the const member function is identical to the non-const member function's implementation both operator[] members could be defined inline using an auxiliary function int &operatorIndex(size_t index) const. A const member function may return a non-const reference (or pointer) return value, referring to one of the data members of its object. Of course, this is a potentially dangerous backdoor that may break data hiding. However, the members in the public interface prevent this breach and so the two public operator[] members may themselves safely call the same int &operatorIndex() const member, that defines a private backdoor.
11.2: Overloading insertion and extraction operators
Classes may be adapted in such a way that their objects may be inserted into and extracted from, respectively, a std::ostream and std::istream.
The class std::ostream defines insertion operators for primitive types, such as int, char *, etc.. In this section we learn how to extend the existing functionality of classes (in particular std::istream and std::ostream) in such a way that they can be used also in combination with classes developed much later in history.
In particular we will show how the insertion operator can be overloaded allowing the insertion of any type of object, say Person (see chapter 9), into an ostream. Having defined such an overloaded operator we're able to use the following code:
Person kr("Kernighan and Ritchie", "unknown", "unknown");
cout << "Name, address and phone number of Person kr:\n" << kr << '\n';
The statement cout << kr uses operator<<. This member function has two operands: an ostream & and a Person &. The required action is defined in an overloaded free function operator<< expecting two arguments:
// declared in `person.h'
std::ostream &operator<<(std::ostream &out, Person const &person);
// defined in some source file
ostream &operator<<(ostream &out, Person const &person)
{
return
out <<
"Name: " << person.name() << ", "
"Address: " << person.address() << ", "
"Phone: " << person.phone();
}
The free function operator<< has the following noteworthy characteristics:
In order to overload the extraction operator for, e.g., the Person class, members are needed modifying the class's private data members. Such modifiers are normally offered by the class interface. For the Person class these members could be the following:
void setName(char const *name);
void setAddress(char const *address);
void setPhone(char const *phone);
These members may easily be implemented: the memory pointed to by the corresponding data member must be deleted, and the data member should point to a copy of the text pointed to by the parameter. E.g.,
void Person::setAddress(char const *address)
{
delete[] d_address;
d_address = strdupnew(address);
}
A more elaborate function should check the reasonableness of the new address (address also shouldn't be a 0-pointer). This however, is not further pursued here. Instead, let's have a look at the final operator>>. A simple implementation is:
istream &operator>>(istream &in, Person &person)
{
string name;
string address;
string phone;
if (in >> name >> address >> phone) // extract three strings
{
person.setName(name.c_str());
person.setAddress(address.c_str());
person.setPhone(phone.c_str());
}
return in;
}
Note the stepwise approach that is followed here. First, the required information is extracted using available extraction operators. Then, if that succeeds, modifiers are used to modify the data members of the object to be extracted. Finally, the stream object itself is returned as a reference.
11.3: Conversion operators
A class may be constructed around a built-in type. E.g., a class String, constructed around the char * type. Such a class may define all kinds of operations, like assignments. Take a look at the following class interface, designed after the string class:
class String
{
char *d_string;
public:
String();
String(char const *arg);
~String();
String(String const &other);
String &operator=(String const &rvalue);
String &operator=(char const *rvalue);
};
Objects of this class can be initialized from a char const *, and also from a String itself. There is an overloaded assignment operator, allowing the assignment from a String object and from a char const * (Note that the assignment from a char const * also allows the null-pointer. An assignment like stringObject = 0 is perfectly in order.).
Usually, in classes that are less directly linked to their data than this String class, there will be an accessor member function, like a member char const *String::c_str() const. However, the need to use this latter member doesn't appeal to our intuition when an array of String objects is defined by, e.g., a class StringArray. If this latter class provides the operator[] to access individual String members, it would most likely offer at least the following class interface:
class StringArray
{
String *d_store;
size_t d_n;
public:
StringArray(size_t size);
StringArray(StringArray const &other);
StringArray &operator=(StringArray const &rvalue);
~StringArray();
String &operator[](size_t index);
};
This interface allows us to assign String elements to each other:
StringArray sa{ 10 };
sa[4] = sa[3]; // String to String assignment
But it is also possible to assign a char const * to an element of sa:
sa[3] = "hello world";
Here, the following steps are taken:
Now we try to do it the other way around: how to access the char const * that's stored in sa[3]? The following attempt fails:
char const *cp = sa[3];
It fails since we would need an overloaded assignment operator for the 'class' char const *. Unfortunately, there isn't such a class, and therefore we can't build that overloaded assignment operator (see also section 11.14). Furthermore, casting won't work as the compiler doesn't know how to cast a String to a char const *. How to proceed?
One possibility is to define an accessor member function c_str():
char const *cp = sa[3].c_str()
This compiles fine but looks clumsy.... A far better approach would be to use a conversion operator.
A conversion operator is a kind of overloaded operator, but this time the overloading is used to cast the object to another type. In class interfaces, the general form of a conversion operator is:
operator <type>() const;
Conversion operators usually are const member functions: they are automatically called when their objects are used as rvalues in expressions having a type lvalue. Using a conversion operator a String object may be interpreted as a char const * rvalue, allowing us to perform the above assignment.
Conversion operators are somewhat dangerous. The conversion is automatically performed by the compiler and unless its use is perfectly transparent it may confuse those who read code in which conversion operators are used. E.g., novice C++ programmers are frequently confused by statements like `if (cin) ...'.
As a rule of thumb: classes should define at most one conversion operator. Multiple conversion operators may be defined but frequently result in ambiguous code. E.g., if a class defines operator bool() const and operator int() const then passing an object of this class to a function expecting a size_t argument results in an ambiguity as an int and a bool may both be used to initialize a size_t.
In the current example, the class String could define the following conversion operator for char const *:
String::operator char const *() const
{
return d_string;
}
Notes:
std::ostream &operator<<(std::ostream &out, std::string const &str)
{
return out.write(str.data(), str.length());
}
Conversion operators are also used when objects of classes defining conversion operators are inserted into streams. Realize that the right hand sides of insertion operators are function parameters that are initialized by the operator's right hand side arguments. The rules are simple:
In the following example an object of class Insertable is directly inserted; an object of the class Convertor uses the conversion operator; an object of the class Error cannot be inserted since it does not define an insertion operator and the type returned by its conversion operator cannot be inserted either (Text does define an operator int() const, but the fact that a Text itself cannot be inserted causes the error):
#include <iostream>
#include <string>
using namespace std;
struct Insertable
{
operator int() const
{
cout << "op int()\n";
return 0;
}
};
ostream &operator<<(ostream &out, Insertable const &ins)
{
return out << "insertion operator";
}
struct Convertor
{
operator Insertable() const
{
return Insertable();
}
};
struct Text
{
operator int() const
{
return 1;
}
};
struct Error
{
operator Text() const
{
return Text{};
}
};
int main()
{
Insertable insertable;
cout << insertable << '\n';
Convertor convertor;
cout << convertor << '\n';
Error error;
cout << error << '\n';
}
Some final remarks regarding conversion operators:
11.4: The keyword `explicit'
Conversions are not only performed by conversion operators, but also by constructors accepting one argument (i.e., constructors having one or multiple parameters, specifying default argument values for all parameters or for all but the first parameter).
Assume a data base class DataBase is defined in which Person objects can be stored. It defines a Person *d_data pointer, and so it offers a copy constructor and an overloaded assignment operator.
In addition to the copy constructor DataBase offers a default constructor and several additional constructors:
The above constructors all are perfectly reasonable. But they also allow the compiler to compile the following code without producing any warning at all:
DataBase db;
DataBase db2;
Person person;
db2 = db; // 1
db2 = person; // 2
db2 = 10; // 3
db2 = cin; // 4
Statement 1 is perfectly reasonable: db is used to redefine db2. Statement 2 might be understandable since we designed DataBase to contain Person objects. Nevertheless, we might question the logic that's used here as a Person is not some kind of DataBase. The logic becomes even more opaque when looking at statements 3 and 4. Statement 3 in effect waits for the data of 10 persons to appear at the standard input stream. Nothing like that is suggested by db2 = 10.
Implicit promotions are used with statements 2 through 4. Since constructors accepting, respectively a Person, an istream, and a size_t and an istream have been defined for DataBase and since the assignment operator expects a DataBase right-hand side (rhs) argument the compiler first converts the rhs arguments to anonymous DataBase objects which are then assigned to db2.
It is good practice to prevent implicit promotions by using the explicit modifier when declaring a constructor. Constructors using the explicit modifier can only be used to construct objects explicitly. Statements 2-4 would not have compiled if the constructors expecting one argument would have been declared using explicit. E.g.,
explicit DataBase(Person const &person);
explicit DataBase(size_t count, std:istream &in);
Having declared all constructors accepting one argument as explicit the above assignments would have required the explicit specification of the appropriate constructors, thus clarifying the programmer's intent:
DataBase db;
DataBase db2;
Person person;
db2 = db; // 1
db2 = DataBase{ person }; // 2
db2 = DataBase{ 10 }; // 3
db2 = DataBase{ cin }; // 4
As a rule of thumb prefix one argument constructors with the explicit keyword unless implicit promotions are perfectly natural (string's char const * accepting constructor is a case in point).
11.4.1: Explicit conversion operators
In addition to explicit constructors, C++ supports explicit conversion operators.
For example, a class might define operator bool() const returning true if an object of that class is in a usable state and false if not. Since the type bool is an arithmetic type this could result in unexpected or unintended behavior. Consider:
void process(bool value);
class StreamHandler
{
public:
operator bool() const; // true: object is fit for use
...
};
int fun(StreamHandler &sh)
{
int sx;
if (sh) // intended use of operator bool()
... use sh as usual; also use `sx'
process(sh); // typo: `sx' was intended
}
In this example process unintentionally receives the value returned by operator bool using the implicit conversion from bool to int.
When defining explicit conversion operators implicit conversions like the one shown in the example are prevented. Such conversion operators can only be used in situations where the converted type is explicitly required (as in the condition clauses of if or while statements), or is explicitly requested using a static_cast. To declare an explicit bool conversion operator in class StreamHandler's interface replace the above declaration by:
explicit operator bool() const;
Since the C++14 standard istreams define an explicit operator bool() const. As a consequence:
while (cin.get(ch)) // compiles OK
;
bool fun1()
{
return cin; // 'bool = istream' won't compile as
} // istream defines 'explicit operator bool'
bool fun1()
{
return static_cast<bool>(cin); // compiles OK
}
11.5: Overloading increment and decrement operators
Overloading the increment operator (operator++) and decrement operator ( operator--) introduces a small problem: there are two versions of each operator, as they may be used as postfix operator (e.g., x++) or as prefix operator (e.g., ++x).
Used as postfix operator, the value's object is returned as an rvalue, temporary const object and the post-incremented variable itself disappears from view. Used as prefix operator, the variable is incremented, and its value is returned as lvalue and it may be altered again by modifying the prefix operator's return value. Whereas these characteristics are not required when the operator is overloaded, it is strongly advised to implement these characteristics in any overloaded increment or decrement operator.
Suppose we define a wrapper class around the size_t value type. Such a class could offer the following (partially shown) interface:
class Unsigned
{
size_t d_value;
public:
Unsigned();
explicit Unsigned(size_t init);
Unsigned &operator++();
}
The class's last member declares the prefix overloaded increment operator. The returned lvalue is Unsigned &. The member is easily implemented:
Unsigned &Unsigned::operator++()
{
++d_value;
return *this;
}
To define the postfix operator, an overloaded version of the operator is defined, expecting a (dummy) int argument. This might be considered a kludge, or an acceptable application of function overloading. Whatever your opinion in this matter, the following can be concluded:
The postfix increment operator is declared as follows in the class Unsigned's interface:
Unsigned operator++(int);
It may be implemented as follows:
Unsigned Unsigned::operator++(int)
{
Unsigned tmp{ *this };
++d_value;
return tmp;
}
Note that the operator's parameter is not used. It is only part of the implementation to disambiguate the prefix- and postfix operators in implementations and declarations.
In the above example the statement incrementing the current object offers the nothrow guarantee as it only involves an operation on a primitive type. If the initial copy construction throws then the original object is not modified, if the return statement throws the object has safely been modified. But incrementing an object could itself throw exceptions. How to implement the increment operators in that case? Once again, swap is our friend. Here are the pre- and postfix operators offering the strong guarantee when the member increment performing the increment operation may throw:
Unsigned &Unsigned::operator++()
{
Unsigned tmp{ *this };
tmp.increment();
swap(tmp);
return *this;
}
Unsigned Unsigned::operator++(int)
{
Unsigned tmp{ *this };
tmp.increment();
swap(tmp);
return tmp;
}
Both operators first create copies of the current objects. These copies are incremented and then swapped with the current objects. If increment throws the current objects remain unaltered; the swap operations ensure that the correct objects are returned (the incremented object for the prefix operator, the original object for the postfix operator) and that the current objects become the incremented objects.
When calling the increment or decrement operator using its full member function name then any int argument passed to the function results in calling the postfix operator. Omitting the argument results in calling the prefix operator. Example:
Unsigned uns{ 13 };
uns.operator++(); // prefix-incrementing uns
uns.operator++(0); // postfix-incrementing uns
Both the prefix and postfix increment and decrement operators are deprecated when applied to bool type of variables. In situations where a postfix increment operator could be useful the std::exchange (cf. section 19.1.11) should be used.
11.6: Overloading binary operators
In various classes overloading binary operators (like operator+) can be a very natural extension of the class's functionality. For example, the std::string class has various overloaded operator+ members.
Most binary operators come in two flavors: the plain binary operator (like the + operator) and the compound binary assignment operator (like operator+=). Whereas the plain binary operators return values, the compound binary assignment operators usually return references to the objects for which the operators were called. For example, with std::string objects the following code (annotations below the example) may be used:
std::string s1;
std::string s2;
std::string s3;
s1 = s2 += s3; // 1
(s2 += s3) + " postfix"; // 2
s1 = "prefix " + s3; // 3
"prefix " + s3 + "postfix"; // 4
Now consider the following code, in which a class Binary supports an overloaded operator+:
class Binary
{
public:
Binary();
Binary(int value);
Binary operator+(Binary const &rhs);
};
int main()
{
Binary b1;
Binary b2{ 5 };
b1 = b2 + 3; // 1
b1 = 3 + b2; // 2
}
Compilation of this little program fails for statement // 2, with the compiler reporting an error like:
error: no match for 'operator+' in '3 + b2'
Why is statement // 1 compiled correctly whereas statement // 2 won't compile?
In order to understand this remember promotions. As we have seen in section 11.4, constructors expecting single arguments may implicitly be activated when an argument of an appropriate type is provided. We've already encountered this with std::string objects, where NTBSs may be used to initialize std::string objects.
Analogously, in statement // 1, operator+ is called, using b2 as its left-hand side operand. This operator expects another Binary object as its right-hand side operand. However, an int is provided. But as a constructor Binary(int) exists, the int value can be promoted to a Binary object. Next, this Binary object is passed as argument to the operator+ member.
Unfortunately, in statement // 2 promotions are not available: here the + operator is applied to an int-type lvalue. An int is a primitive type and primitive types have no knowledge of `constructors', `member functions' or `promotions'.
How, then, are promotions of left-hand operands implemented in statements like "prefix " + s3? Since promotions can be applied to function arguments, we must make sure that both operands of binary operators are arguments. This implies that plain binary operators supporting promotions for either their left-hand side operand or right-hand side operand should be declared as free operators, also called free functions.
Functions like the plain binary operators conceptually belong to the class for which they implement these operators. Consequently they should be declared in the class's header file. We cover their implementations shortly, but here is our first revision of the declaration of the class Binary, declaring an overloaded + operator as a free function:
class Binary
{
public:
Binary();
Binary(int value);
};
Binary operator+(Binary const &lhs, Binary const &rhs);
After defining binary operators as free functions, several promotions are available:
class A;Here, both overloaded + operators are possible candidates when compiling the statement a + a. The ambiguity must be solved by explicitly promoting one of the arguments, e.g., a + B{a}, which enables the compiler to resolve the ambiguity to the first overloaded + operator.
class B
{
public:
B(A const &a);
};
class A
{
public:
A();
A(B const &b);
};
A operator+(A const &a, B const &b);
B operator+(B const &b, A const &a);
int main()
{
A a;
a + a;
};
The next step consists of implementing the required overloaded binary compound assignment operators, having the form @=, where @ represents a binary operator. As these operators always have left-hand side operands which are object of their own classes, they are implemented as genuine member functions. Compound assignment operators usually return references to the objects for which the binary compound assignment operators were requested, as these objects might be modified in the same statement. E.g., (s2 += s3) + " postfix".
Here is our second revision of the class Binary, showing the declaration of the plain binary operator as well as the corresponding compound assignment operator:
class Binary
{
public:
Binary();
Binary(int value);
Binary &operator+=(Binary const &rhs);
};
Binary operator+(Binary const &lhs, Binary const &rhs);
How should the compound addition assignment operator be implemented? When implementing compound binary assignment operators the strong guarantee should always be kept in mind: if the operation might throw use a temporary object and swap. Here is our implementation of the compound assignment operator:
Binary &Binary::operator+=(Binary const &rhs)
{
Binary tmp{ *this };
tmp.add(rhs); // this might throw
swap(tmp);
return *this;
}
It's easy to implement the free binary operator: the lhs argument is copied into a Binary tmp to which the rhs operand is added. Then tmp is returned, using copy elision. The class Binary declares the free binary operator as a friend (cf. chapter 15), so it can call Binary's add member:
class Binary
{
friend Binary operator+(Binary const &lhs, Binary const &rhs);
public:
Binary();
Binary(int value);
Binary &operator+=(Binary const &other);
private:
void add(Binary const &other);
};
The binary operator's implementation becomes:
Binary operator+(Binary const &lhs, Binary const &rhs)
{
Binary tmp{ lhs };
tmp.add(rhs);
return tmp;
}
If the class Binary is move-aware then it's attractive to add move-aware binary operators. In this case we also need operators whose left-hand side operands are rvalue references. When a class is move aware various interesting implementations are suddenly possible, which we encounter below, and in the next (sub)section. First have a look at the signature of such a binary operator (which should also be declared as a friend in the class interface):
Binary operator+(Binary &&lhs, Binary const &rhs);
Since the lhs operand is an rvalue reference, we can modify it ad lib. Binary operators are commonly designed as factory functions, returning objects created by those operators. However, the (modified) object referred to by lhs should itself not be returned. As stated in the C++ standard,
A temporary object bound to a reference parameter in a function call persists until the completion of the full-expression containing the call.
and furthermore:
The lifetime of a temporary bound to the returned value in a function return statement is not extended; the temporary is destroyed at the end of the full-expression in the return statement.
In other words, a temporary object cannot itself be returned as the function's return value: a Binary && return type should therefore not be used. Therefore functions implementing binary operators are factory functions (note, however, that the returned object may be constructed using the class's move constructor whenever a temporary object has to be returned).
Alternatively, the binary operator can first create an object by move constructing it from the operator's lhs operand, performing the binary operation on that object and the operator's rhs operand, and then return the modified object (allowing the compiler to apply copy elision). It's a matter of taste which one is preferred.
Here are the two implementations. Because of copy elision the explicitly defined ret object is created in the location of the return value. Both implementations, although they appear to be different, show identical run-time behavior:
// first implementation: modify lhs
Binary operator+(Binary &&lhs, Binary const &rhs)
{
lhs.add(rhs);
return std::move(lhs);
}
// second implementation: move construct ret from lhs
Binary operator+(Binary &&lhs, Binary const &rhs)
{
Binary ret{ std::move(lhs) };
ret.add(rhs);
return ret;
}
Now, when executing expressions like (all Binary objects) b1 + b2 + b3 the following functions are called:
copy operator+ = b1 + b2
Copy constructor = tmp(b1)
adding = tmp.add(b2)
copy elision : tmp is returned from b1 + b2
move operator+ = tmp + b3
adding = tmp.add(b3)
Move construction = tmp2(move(tmp)) is returned
But we're not there yet: in the next section we encounter possibilities for several more interesting implementations, in the context of compound assignment operators.
11.6.1: Member function reference bindings (& and &&)
We've seen that binary operators (like operator+) can be implemented very efficiently, but require at least move constructors.
An expression like
Binary{} + varB + varC + varD
therefore returns a move constructed object representing Binary{} + varB, then another move constructed object receiving the first return value and varC, and finally yet another move constructed object receiving the second returned object and varD as its arguments.
Now consider the situation where we have a function defining a Binary && parameter, and a second Binary const & parameter. Inside that function these values need to be added, and their sum is then passed as argument to two other functions. We could do this:
void fun1(Binary &&lhs, Binary const &rhs)
{
lhs += rhs;
fun2(lhs);
fun3(lhs);
}
But realize that when using operator+= we first construct a copy of the current object, so a temporary object is available to perform the addition on, and then swap the temporary object with the current object to commit the results. But wait! Our lhs operand already is a temporary object. So why create another?
In this example another temporary object is indeed not required: lhs remains in existence until fun1 ends. But different from the binary operators the binary compound assignment operators don't have explicitly defined left-hand side operands. But we still can inform the compiler that a particular member (so, not merely compound assignment operators) should only be used when the objects calling those members is an anonymous temporary object, or a non-anonymous (modifiable or non-modifiable) object. For this we use reference bindings a.k.a. reference qualifiers.
Reference bindings consist of a reference token (&), optionally preceded by const, or an rvalue reference token (&&). Such reference qualifiers are immediately affixed to the function's head (this applies to the declaration and the implementation alike). Functions provided with rvalue reference bindings are selected by the compiler when used by anonymous temporary objects, whereas functions provided with lvalue reference bindings are selected by the compiler when used by other types of objects.
Reference qualifiers allow us to fine-tune our implementations of compund assignment operators like operator+=. If we know that the object calling the compound assignment operator is itself a temporary, then there's no need for a separate temporary object. The operator may directly perform its operation and could then return itself as an rvalue reference. Here is the implementation of operator+= tailored to being used by temporary objects:
Binary &&Binary::operator+=(Binary const &rhs) &&
{
add(rhs); // directly add rhs to *this,
return std::move(*this); // return the temporary object itself
}
This implementation is about as fast as it gets. But be careful: in the previous section we learned that a temporary is destroyed at the end of the full expression of a return stattement. In this case, however, the temporary already exists, and so (also see the previous section) it should persist until the expression containing the (operator++) function call is completed. As a consequence,
cout << (Binary{} += existingBinary) << '\n';
is OK, but
Binary &&rref = (Binary{} += existingBinary);
cout << rref << '\n';
is not, since rref becomes a dangling reference immediately after its initialization.
A full-proof alternative implementation of the rvalue-reference bound operator+= returns a move-constructed copy:
Binary Binary::operator+=(Binary const &rhs) &&
{
add(rhs); // directly add rhs to *this,
return std::move(*this); // return a move constructed copy
}
The price to pay for this full-proof implementation is an extra move construction. Now, using the previous example (using rref), operator+= returns a copy of the Binary{} temporary, which is still a temporary object which can safely be referred to by rref.
Which implementation to use may be a matter of choice: if users of Binary know what they're doing then the former implementation can be used, since these users will never use the above rref initialization. If you're not so sure about your users, use the latter implementation: formally your users will do something they shouldn't do, but there's no penalty for that.
For the compound assignment operator called by an lvalue reference (i.e., a named object) we use the implementation for operator+= from the previous section (note the reference qualifier):
Binary &Binary::operator+=(Binary const &other) &
{
Binary tmp(*this);
tmp.add(other); // this might throw
swap(tmp);
return *this;
}
With this implementation adding Binary objects to each other (e.g., b1 += b2 += b3) boils down to
operator+= (&) = b2 += b3
Copy constructor = tmp(b2)
adding = tmp.add(b3)
swap = b2 <-> tmp
return = b2
operator+= (&) = b1 += b2
Copy constructor = tmp(b1)
adding = tmp.add(b2)
swap = b1 <-> tmp
return = b1
When the leftmost object is a temporary then a copy construction and swap call are replaced by the construction of an anonymous object. E.g., with Binary{} += b2 += b3 we observe:
operator+= (&) = b2 += b3
Copy constructor = tmp(b2)
adding = tmp.add(b3)
swap = b2 <-> tmp
Anonymous object = Binary{}
operator+= (&&) = Binary{} += b2
adding = add(b2)
return = move(Binary{})
For Binary &Binary::operator+=(Binary const &other) & an alternative implementation exists, merely using a single return statement, but in fact requiring two extra function calls. It's a matter of taste whether you prefer writing less code or executing fewer function calls:
Binary &Binary::operator+=(Binary const &other) &
{
return *this = Binary{ *this } += rhs;
}
Notice that the implementations of operator+ and operator+= are independent of the actual definition of the class Binary. Adding standard binary operators to a class (i.e., operators operating on arguments of their own class types) can therefore easily be realized.
11.6.2: The three-way comparison operator `<=>'
The C++2a standard added the three-way comparison operator <=>, also known as the spaceship operator, to the language.
This operator is closely related to comparison classes, covered in section 18.7. At this point we focus on using the std::strong_ordering class: the examples of the spaceship operator presented in this section all return strong_ordering objects. These objects are
Standard operand conversions are handled by the compiler. Note that
Other standard conversions, like lvalue transformations and qualification conversions (cf. section 21.4), are automatically performed.
Now about the spaceship operator itself. Why would you want it? Of course, if it's defined then you can use it. As it's available for integral numeric types the following correctly compiles:
auto isp = 3 <=> 4;
whereafter isp's value can be compared to available outcome-values:
cout << ( isp == strong_ordering::less ? "less\n" : "not less\n" );
But that by itself doesn't make the spaceship operator all too interesting. What does make it interesting is that, in combination with operator==, it handles all comparison operators. So after providing a class with operator== and operator<=> its objects can be compared for equality, inequality, and they can be ordered by <, <=, >, and >=. As an example consider books. To book owners the titles and author names are the books' important characterstics. To sort them on book shelfs we must use operator<, to find a particular book we use operator==, to determine whether two books are different we use operator!= and if you want to order them in an country where Arabic is the main language you might want to sort them using operator> considering that the prevalent reading order in those countries is from right to left. Ignoring constructors, destructors and other members, then this is the interface of our class Book (note the inclusion of the <compare> header file, containing the declarations of the comparison classes):
#include <string>
#include <compare>
class Book
{
friend bool operator==(Book const &lhs, Book const &rhs);
friend std::strong_ordering operator<=>(Book const &lhs,
Book const &rhs);
std::string d_author;
std::string d_title;
// ...
};
Both friend-functions are easy to implement:
bool operator==(Book const &lhs, Book const &rhs)
{
return lhs.d_author == rhs.d_author and lhs.d_title == rhs.d_title;
}
strong_ordering operator<=>(Book const &lhs, Book const &rhs)
{
return lhs.d_author < rhs.d_author ? strong_ordering::less :
lhs.d_author > rhs.d_author ? strong_ordering::greater :
lhs.d_title < rhs.d_title ? strong_ordering::less :
lhs.d_title > rhs.d_title ? strong_ordering::greater :
strong_ordering::equal;
}
And that's it! Now all comparison operators (and of course the spaceship operator itself) are available. The following now compiles flawlessly:
void books(Book const &b1, Book const &b2)
{
cout << (b1 == b2) << (b1 != b2) << (b1 < b2) <<
(b1 <= b2) << (b1 > b2) << (b1 >= b2) << '\n';
}
calling books for two identical books inserts 100101 into cout.
The spaceship operator is available for integral numeric types and may have been defined for class types. E.g., it is defined for std::string. It is not automatically available for floating point types.
11.7: Overloading `operator new(size_t)'
When operator new is overloaded, it must define a void * return type, and its first parameter must be of type size_t. The default operator new defines only one parameter, but overloaded versions may define multiple parameters. The first one is not explicitly specified but is deduced from the size of objects of the class for which operator new is overloaded. In this section overloading operator new is discussed. Overloading new[] is discussed in section 11.9.
It is possible to define multiple versions of the operator new, as long as each version defines its own unique set of arguments. When overloaded operator new members must dynamically allocate memory they can do so using the global operator new, applying the scope resolution operator ::. In the next example the overloaded operator new of the class String initializes the substrate of dynamically allocated String objects to 0-bytes:
#include <cstring>
#include <iosfwd>
class String
{
std::string *d_data;
public:
void *operator new(size_t size)
{
return memset(::operator new(size), 0, size);
}
bool empty() const
{
return d_data == 0;
}
};
The above operator new is used in the following program, illustrating that even though String's default constructor does nothing the object's data member d_data is initialized to zero:
#include "string.h"
#include <iostream>
using namespace std;
int main()
{
String *sp = new String;
cout << boolalpha << sp->empty() << '\n'; // shows: true
}
At new String the following took place:
As String::operator new initialized the allocated memory to zero bytes the allocated String object's d_data member had already been initialized to a 0-pointer by the time it started to exist.
All member functions (including constructors and destructors) we've encountered so far define a (hidden) pointer to the object on which they should operate. This hidden pointer becomes the function's this pointer.
In the next example of pseudo C++ code, the pointer is explicitly shown to illustrate what's happening when operator new is used. In the first part a String object str is directly defined, in the second part of the example the (overloaded) operator new is used:
String::String(String *const this); // real prototype of the default
// constructor
String *sp = new String; // This statement is implemented
// as follows:
String *sp = static_cast<String *>( // allocation
String::operator new(sizeof(String))
);
String::String{ sp }; // initialization
In the above fragment the member functions were treated as object-less member functions of the class String. Such members are called static member functions (cf. chapter 8). Actually, operator new is such a static member function. Since it has no this pointer it cannot reach data members of the object for which it is expected to make memory available. It can only allocate and initialize the allocated memory, but cannot reach the object's data members by name as there is as yet no data object layout defined.
Following the allocation, the memory is passed (as the this pointer) to the constructor for further processing.
Operator new can have multiple parameters. The first parameter is initialized as an implicit argument and is always a size_t parameter. Additional overloaded operators may define additional parameters. An interesting additional operator new is the placement new operator. With the placement new operator a block of memory has already been set aside and one of the class's constructors is used to initialize that memory. Overloading placement new requires an operator new having two parameters: size_t and char *, pointing to the memory that was already available. The size_t parameter is implicitly initialized, but the remaining parameters must explicitly be initialized using arguments to operator new. Hence we reach the familiar syntactical form of the placement new operator in use:
char buffer[sizeof(String)]; // predefined memory
String *sp = new(buffer) String; // placement new call
The declaration of the placement new operator in our class String looks like this:
void *operator new(size_t size, char *memory);
It could be implemented like this (also initializing the String's memory to 0-bytes):
void *String::operator new(size_t size, char *memory)
{
return memset(memory, 0, size);
}
Any other overloaded version of operator new could also be defined. Here is an example showing the use and definition of an overloaded operator new storing the object's address immediately in an existing array of pointers to String objects (assuming the array is large enough):
// use:
String *next(String **pointers, size_t *idx)
{
return new(pointers, (*idx)++) String;
}
// implementation:
void *String::operator new(size_t size, String **pointers, size_t idx)
{
return pointers[idx] = ::operator new(size);
}
11.8: Overloading `operator delete(void *)'
The delete operator may also be overloaded. In fact it's good practice to overload operator delete whenever operator new is also overloaded.
Operator delete must define a void * parameter. A second overloaded version defining a second parameter of type size_t is related to overloading operator new[] and is discussed in section 11.9.
Overloaded operator delete members return void.
The `home-made' operator delete is called when deleting a dynamically allocated object after executing the destructor of the associated class. So, the statement
delete ptr;
with ptr being a pointer to an object of the class String for which the operator delete was overloaded, is a shorthand for the following statements:
ptr->~String(); // call the class's destructor
// and do things with the memory pointed to by ptr
String::operator delete(ptr);
The overloaded operator delete may do whatever it wants to do with the memory pointed to by ptr. It could, e.g., simply delete it. If that would be the preferred thing to do, then the default delete operator can be called using the :: scope resolution operator. For example:
void String::operator delete(void *ptr)
{
// any operation considered necessary, then, maybe:
::delete ptr;
}
To declare the above overloaded operator delete simply add the following line to the class's interface:
void operator delete(void *ptr);
Like operator new operator delete is a static member function (see also chapter 8).
11.9: Operators `new[]' and `delete[]'
In sections 9.1.1, 9.1.2 and 9.2.1 operator new[] and operator delete[] were introduced. Like operator new and operator delete the operators new[] and delete[] may be overloaded.
As it is possible to overload new[] and delete[] as well as operator new and operator delete, one should be careful in selecting the appropriate set of operators. The following rule of thumb should always be applied:
If new is used to allocate memory, delete should be used to deallocate memory. If new[] is used to allocate memory, delete[] should be used to deallocate memory.
By default these operators act as follows:
11.9.1: Overloading `new[]'
To overload operator new[] in a class (e.g., in the class String) add the following line to the class's interface:
void *operator new[](size_t size);
The member's size parameter is implicitly provided and is initialized by C++'s run-time system to the amount of memory that must be allocated. Like the simple one-object operator new it should return a void *. The number of objects that must be initialized can easily be computed from size / sizeof(String) (and of course replacing String by the appropriate class name when overloading operator new[] for another class). The overloaded new[] member may allocate raw memory using e.g., the default operator new[] or the default operator new:
void *operator new[](size_t size)
{
return ::operator new[](size);
// alternatively:
// return ::operator new(size);
}
Before returning the allocated memory the overloaded operator new[] has a chance to do something special. It could, e.g., initialize the memory to zero-bytes.
Once the overloaded operator new[] has been defined, it is automatically used in statements like:
String *op = new String[12];
Like operator new additional overloads of operator new[] may be defined. One opportunity for an operator new[] overload is overloading placement new specifically for arrays of objects. This operator is available by default but becomes unavailable once at least one overloaded operator new[] is defined. Implementing placement new is not difficult. Here is an example, initializing the available memory to 0-bytes before returning:
void *String::operator new[](size_t size, char *memory)
{
return memset(memory, 0, size);
}
To use this overloaded operator, the second parameter must again be provided, as in:
char buffer[12 * sizeof(String)];
String *sp = new(buffer) String[12];
11.9.2: Overloading `delete[]'
To overload operator delete[] in a class String add the following line to the class's interface:
void operator delete[](void *memory);
Its parameter is initialized to the address of a block of memory previously allocated by String::new[].
There are some subtleties to be aware of when implementing operator delete[]. Although the addresses returned by new and new[] point to the allocated object(s), there is an additional size_t value available immediately before the address returned by new and new[]. This size_t value is part of the allocated block and contains the actual size of the block. This of course does not hold true for the placement new operator.
When a class defines a destructor the size_t value preceding the address returned by new[] does not contain the size of the allocated block, but the number of objects specified when calling new[]. Normally that is of no interest, but when overloading operator delete[] it might become a useful piece of information. In those cases operator delete[] does not receive the address returned by new[] but rather the address of the initial size_t value. Whether this is at all useful is not clear. By the time delete[]'s code is executed all objects have already been destroyed, so operator delete[] is only to determine how many objects were destroyed but the objects themselves cannot be used anymore.
Here is an example showing this behavior of operator delete[] for a minimal Demo class:
struct Demo
{
size_t idx;
Demo()
{
cout << "default cons\n";
}
~Demo()
{
cout << "destructor\n";
}
void *operator new[](size_t size)
{
return ::operator new(size);
}
void operator delete[](void *vp)
{
cout << "delete[] for: " << vp << '\n';
::operator delete[](vp);
}
};
int main()
{
Demo *xp;
cout << ((int *)(xp = new Demo[3]))[-1] << '\n';
cout << xp << '\n';
cout << "==================\n";
delete[] xp;
}
// This program displays (your 0x?????? addresses might differ, but
// the difference between the two should be sizeof(size_t)):
// default cons
// default cons
// default cons
// 3
// 0x8bdd00c
// ==================
// destructor
// destructor
// destructor
// delete[] for: 0x8bdd008
Having overloaded operator delete[] for a class String, it will be used automatically in statements like:
delete[] new String[5];
Operator delete[] may also be overloaded using an additional size_t parameter:
void operator delete[](void *p, size_t size);
Here size is automatically initialized to the size (in bytes) of the block of memory to which void *p points. If this form is defined, then void operator[](void *) should not be defined, to avoid ambiguities. An example of this latter form of operator delete[] is:
void String::operator delete[](void *p, size_t size)
{
cout << "deleting " << size << " bytes\n";
::operator delete[](ptr);
}
Additional overloads of operator delete[] may be defined, but to use them they must explicitly be called as static member functions (cf. chapter 8). Example:
// declaration:
void String::operator delete[](void *p, ostream &out);
// usage:
String *xp = new String[3];
String::operator delete[](xp, cout);
11.9.3: The `operator delete(void *, size_t)' family
As we've seen classes may overload their operator delete and operator delete[] members.
Since the C++14 standard the global void operator delete(void *, size_t size) and void operator delete[](void *, size_t size) functions can also be overloaded.
When a global sized deallocation function is defined, it is automatically used instead of the default, non-sized deallocation function. The performance of programs may improve if a sized deallocation function is available (cf. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3663.html).
11.9.4: `new[]', `delete[]' and exceptions
When an exception is thrown while executing a new[] expression, what will happen? In this section we'll show that new[] is exception safe even when only some of the objects were properly constructed.
To begin, new[] might throw while trying to allocate the required memory. In this case a bad_alloc is thrown and we don't leak as nothing was allocated.
Having allocated the required memory the class's default constructor is going to be used for each of the objects in turn. At some point a constructor might throw. What happens next is defined by the C++ standard: the destructors of the already constructed objects are called and the memory allocated for the objects themselves is returned to the common pool. Assuming that the failing constructor offers the basic guarantee new[] is therefore exception safe even if a constructor may throw.
The following example illustrates this behavior. A request to allocate and initialize five objects is made, but after constructing two objects construction fails by throwing an exception. The output shows that the destructors of properly constructed objects are called and that the allocated substrate memory is properly returned:
#include <iostream>
using namespace std;
static size_t count = 0;
class X
{
int x;
public:
X()
{
if (count == 2)
throw 1;
cout << "Object " << ++count << '\n';
}
~X()
{
cout << "Destroyed " << this << "\n";
}
void *operator new[](size_t size)
{
cout << "Allocating objects: " << size << " bytes\n";
return ::operator new(size);
}
void operator delete[](void *mem)
{
cout << "Deleting memory at " << mem << ", containing: " <<
*static_cast<int *>(mem) << "\n";
::operator delete(mem);
}
};
int main()
try
{
X *xp = new X[5];
cout << "Memory at " << xp << '\n';
delete[] xp;
}
catch (...)
{
cout << "Caught exception.\n";
}
// Output from this program (your 0x??? addresses might differ)
// Allocating objects: 24 bytes
// Object 1
// Object 2
// Destroyed 0x8428010
// Destroyed 0x842800c
// Deleting memory at 0x8428008, containing: 5
// Caught exception.
11.10: Function Objects
Function Objects are created by overloading the function call operator operator(). By defining the function call operator an object masquerades as a function, hence the term function objects. Function objects are also known as functors.
Function objects are important when using generic algorithms. The use of function objects is preferred over alternatives like pointers to functions. The fact that they are important in the context of generic algorithms leaves us with a didactic dilemma. At this point in the C++ Annotations it would have been nice if generic algorithms would already have been covered, but for the discussion of the generic algorithms knowledge of function objects is required. This bootstrapping problem is solved in a well known way: by ignoring the dependency for the time being, for now concentrating on the function object concept.
Function objects are objects for which operator() has been defined. Function objects are not just used in combination with generic algorithms, but also as a (preferred) alternative to pointers to functions.
Function objects are frequently used to implement predicate functions. Predicate functions return boolean values. Predicate functions and predicate function objects are commonly referred to as `predicates'. Predicates are frequently used by generic algorithms such as the count_if generic algorithm, covered in chapter 19, returning the number of times its function object has returned true. In the standard template library two kinds of predicates are used: unary predicates receive one argument, binary predicates receive two arguments.
Assume we have a class Person and an array of Person objects. Further assume that the array is not sorted. A well known procedure for finding a particular Person object in the array is to use the function lsearch, which performs a linear search in an array. Example:
Person &target = targetPerson(); // determine the person to find
Person *pArray;
size_t n = fillPerson(&pArray);
cout << "The target person is";
if (!lsearch(&target, pArray, &n, sizeof(Person), compareFunction))
cout << " not";
cout << "found\n";
The function targetPerson determines the person we're looking for, and fillPerson is called to fill the array. Then lsearch is used to locate the target person.
The comparison function must be available, as its address is one of the arguments of lsearch. It must be a real function having an address. If it is defined inline then the compiler has no choice but to ignore that request as inline functions don't have addresses. CompareFunction could be implemented like this:
int compareFunction(void const *p1, void const *p2)
{
return *static_cast<Person const *>(p1) // lsearch wants 0
!= // for equal objects
*static_cast<Person const *>(p2);
}
This, of course, assumes that the operator!= has been overloaded in the class Person. But overloading operator!= is no big deal, so let's assume that that operator is actually available.
On average n / 2 times at least the following actions take place:
Using function objects results in a different picture. Assume we have constructed a function PersonSearch, having the following prototype (this, however, is not the preferred approach. Normally a generic algorithm is preferred over a home-made function. But for now we focus on PersonSearch to illustrate the use and implementation of a function object):
Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target);
This function can be used as follows:
Person &target = targetPerson();
Person *pArray;
size_t n = fillPerson(&pArray);
cout << "The target person is";
if (!PersonSearch(pArray, n, target))
cout << " not";
cout << "found\n";
So far, not much has been changed. We've replaced the call to lsearch with a call to another function: PersonSearch. Now look at PersonSearch itself:
Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target)
{
for (int idx = 0; idx < nmemb; ++idx)
if (target(base[idx]))
return base + idx;
return 0;
}
PersonSearch implements a plain linear search. However, in the for-loop we see target(base[idx]). Here target is used as a function object. Its implementation is simple:
bool Person::operator()(Person const &other) const
{
return *this == other;
}
Note the somewhat peculiar syntax: operator(). The first set of parentheses define the operator that is overloaded: the function call operator. The second set of parentheses define the parameters that are required for this overloaded operator. In the class header file this overloaded operator is declared as:
bool operator()(Person const &other) const;
Clearly Person::operator() is a simple function. It contains but one statement, and we could consider defining it inline. Assuming we do, then this is what happens when operator() is called:
Due to the fact that operator() is an inline function, it is not actually called. Instead operator== is called immediately. Moreover, the required stack operations are fairly modest.
Function objects may truly be defined inline. Functions that are called indirectly (i.e., using pointers to functions) can never be defined inline as their addresses must be known. Therefore, even if the function object needs to do very little work it is defined as an ordinary function if it is going to be called through pointers. The overhead of performing the indirect call may annihilate the advantage of the flexibility of calling functions indirectly. In these cases using inline function objects can result in an increase of a program's efficiency.
An added benefit of function objects is that they may access the private data of their objects. In a search algorithm where a compare function is used (as with lsearch) the target and array elements are passed to the compare function using pointers, involving extra stack handling. Using function objects, the target person doesn't vary within a single search task. Therefore, the target person could be passed to the function object's class constructor. This is in fact what happens in the expression target(base[idx]) receiving as its only argument the subsequent elements of the array to search.
11.10.1: Constructing manipulators
In chapter 6 we saw constructions like cout << hex << 13 << to display the value 13 in hexadecimal format. One may wonder by what magic the hex manipulator accomplishes this. In this section the construction of manipulators like hex is covered.
Actually the construction of a manipulator is rather simple. To start, a definition of the manipulator is needed. Let's assume we want to create a manipulator w10 which sets the field width of the next field to be written by the ostream object to 10. This manipulator is constructed as a function. The w10 function needs to know about the ostream object in which the width must be set. By providing the function with an ostream & parameter, it obtains this knowledge. Now that the function knows about the ostream object we're referring to, it can set the width in that object.
Next, it must be possible to use the manipulator in an insertion sequence. This implies that the return value of the manipulator must be a reference to an ostream object also.
From the above considerations we're now able to construct our w10 function:
#include <ostream>
#include <iomanip>
std::ostream &w10(std::ostream &str)
{
return str << std::setw(10);
}
The w10 function can of course be used in a `stand alone' mode, but it can also be used as a manipulator. E.g.,
#include <iostream>
#include <iomanip>
using namespace std;
extern ostream &w10(ostream &str);
int main()
{
w10(cout) << 3 << " ships sailed to America\n";
cout << "And " << w10 << 3 << " more ships sailed too.\n";
}
The w10 function can be used as a manipulator because the class ostream has an overloaded operator<< accepting a pointer to a function expecting an ostream & and returning an ostream &. Its definition is:
ostream& operator<<(ostream &(*func)(ostream &str))
{
return (*func)(*this);
}
In addition to the above overloaded operator<< another one is defined
ios_base &operator<<(ios_base &(*func)(ios_base &base))
{
(*func)(*this);
return *this;
}
This latter function is used when inserting, e.g., hex or internal.
The above procedure does not work for manipulators requiring arguments. It is of course possible to overload operator<< to accept an ostream reference and the address of a function expecting an ostream & and, e.g., an int, but while the address of such a function may be specified with the <<-operator, the arguments itself cannot be specified. So, one wonders how the following construction has been implemented:
cout << setprecision(3)
In this case the manipulator is defined as a macro. Macro's, however, are the realm of the preprocessor, and may easily suffer from unwelcome side-effects. In C++ programs they should be avoided whenever possible. The following section introduces a way to implement manipulators requiring arguments without resorting to macros, but using anonymous objects.
11.10.1.1: Manipulators requiring arguments
Manipulators taking arguments are implemented as macros: they are handled by the preprocessor, and are not available beyond the preprocessing stage.
Manipulators, maybe requiring arguments, can also be defined without using macros. One solution, suitable for modifying globally available objects (like cin, or cout) is based on using anonymous objects:
ostream &operator<<(ostream &ostr, Align const &align)
Here is an example of a little program using such a home-made manipulator expecting multiple arguments:
#include <iostream>
#include <iomanip>
class Align
{
unsigned d_width;
std::ios::fmtflags d_alignment;
public:
Align(unsigned width, std::ios::fmtflags alignment);
std::ostream &operator()(std::ostream &ostr) const;
};
Align::Align(unsigned width, std::ios::fmtflags alignment)
:
d_width(width),
d_alignment(alignment)
{}
std::ostream &Align::operator()(std::ostream &ostr) const
{
ostr.setf(d_alignment, std::ios::adjustfield);
return ostr << std::setw(d_width);
}
std::ostream &operator<<(std::ostream &ostr, Align &&align)
{
return align(ostr);
}
using namespace std;
int main()
{
cout
<< "`" << Align{ 5, ios::left } << "hi" << "'"
<< "`" << Align{ 10, ios::right } << "there" << "'\n";
}
/*
Generated output:
`hi '` there'
*/
When (local) objects must be manipulated, then the class that must provide manipulators may define function call operators receiving the required arguments. E.g., consider a class Matrix that should allow its users to specify the value and line separators when inserting the matrix into an ostream.
Two data members (e.g., char const *d_valueSep and char const *d_lineSep) are defined (and initialized to acceptable values). The insertion function inserts d_valueSep between values, and d_lineSep at the end of inserted rows. The member operator()(char const *valueSep, char const *lineSep) simply assigns values to the corresponding data members.
Given an object Matrix matrix, then at this point matrix(" ", "\n") can be called. The function call operator should probably not insert the matrix, as the responsibility of manipulators is to manipulate, not to insert. So, to insert a matrix a statement like
cout << matrix(" ", "\n") << matrix << '\n';
should probably be used. The manipulator (i.e., function call operator) assigns the proper values to d_valueSep and d_lineSep, which are then used during the actual insertion.
The return value of the function call operator remains to be specified. The return value should be insertable, but in fact should not insert anything at all. An empty NTBS could be returned, but that's a bit kludge-like. Instead the address of a manipulator function, not performing any action, can be returned. Here's the implementation of such an empty manipulator:
// static (alternatively a free function could be used)
std::ostream &Matrix::nop(std::ostream &out)
{
return out;
}
Thus, the implementation of the Matrix's manipulator becomes:
std::ostream &(
*Matrix::operator()(char const *valueSep, char const *lineSep) )
(std::ostream &)
{
d_valueSep = valueSep;
d_lineSep = lineSep;
return nop;
}
Instead (probably a matter of taste) of returning the address of an empty function the manipulator could first set the required insertion-specific values and could then return itself: the Matrix would be inserted according to the just assigned values to the insertion variables:
Matrix const &Matrix::operator()
(char const *valueSep, char const *lineSep)
{
d_valueSep = valueSep;
d_lineSep = lineSep;
return *this;
}
In this case the insertion statement is simplified to
cout << matrix(" ", "\n") << '\n';
11.11: Lambda expressions
C++ supports lambda expressions. As we'll see in chapter 19 generic algorithms often accept arguments that can either be function objects or plain functions. Examples are the sort (cf. section 19.1.58) and find_if (cf. section 19.1.17) generic algorithms. As a rule of thumb: when a called function must remember its state a function object is appropriate, otherwise a plain function can be used.
Frequently the function or function object is not readily available, and it must be defined in or near the location where it is used. This is commonly realized by defining a class or function in the anonymous namespace (say: class or function A), passing an A to the code needing A. If that code is itself a member function of the class B, then A's implementation might benefit from having access to the members of class B.
This scheme usually results in a significant amount of code (defining the class), or it results in complex code (to make available software elements that aren't automatically accessible to A's code). It may also result in code that is irrelevant at the current level of specification. Nested classes don't solve these problems either. Moreover, nested classes can't be used in templates.
lambda expressions solve these problems. A lambda expression defines an anonymous function object which may immediately be passed to functions expecting function object arguments, as explained in the next few sections.
According to the C++ standard, lambda expressions provide a concise way to create simple function objects. The emphasis here is on simple: a lambda expression's size should be comparable to the size of inline-functions: just one or maybe two statements. If you need more code, then encapsulate that code in a separate function which is then called from inside the lambda expression's compound statement, or consider designing a separate function object.
11.11.1: Lambda expressions: syntax
A lambda expression defines an anonymous function object, also called a closure object or simply a closure.
When a lambda expression is evaluated it results in a temporary function object (the closure object). This temporary function object is of a unique anonymous class type, called its closure type.
Lambda expressions are used inside blocks, classes or namespaces (i.e., pretty much anywhere you like). Their implied closure type is defined in the smallest block, class or namespace scope containing the lambda expression. The closure object's visibility starts at its point of definition and ends where its closure type ends (i.e., their visibility is identical to the visibility of plain variables).
The closure type defines a const public inline function call operator. Here is an example of a lambda expression:
[] // the `lambda-introducer'
(int x, int y) // the `lambda-declarator'
{ // a normal compound-statement
return x * y;
}
The function (formally: the function call operator of the closure type created by this lambda expression) expects two int arguments and returns their product. This function is an inline const member of its closure type. Its const attribute is removed if the lambda expression specifies mutable. E.g.,
[](int x, int y) mutable
...
The lambda-declarator may be omitted if no parameters are defined, but when specifying mutable (or constexpr, see below) a lambda-declarator must be specified (at least as an empty set of parentheses). The parameters in a lambda declarator cannot be given default arguments.
Declarator specifiers can be mutable, constexpr, or both. A constexpr lambda-expression is itself a constexpr, which may be compile-time evaluated if its arguments qualify as const-expressions. By implication, if a lambda-expression is defined inside a constexpr function then the lambda-expression itself is a constexpr, and the constexpr declarator specifier is not required. Thus, the following function definitions are identical:
int constexpr change10(int n)
{
return [n]
{
return n > 10 ? n - 10 : n + 10;
}();
}
int constexpr change10(int n)
{
return [n] () constexpr
{
return n > 10 ? n - 10 : n + 10;
}();
}
A closure object as defined by the previous lambda expression could for example be used in combination with the accumulate generic algorithm (cf. section 19.1.1) to compute the product of a series of int values stored in a vector:
cout << accumulate(vi.begin(), vi.end(), 1,
[] (int x, int y)
{
return x * y;
}
);
This lambda expression implicitly defines its return type as decltype(x * y). Implicit return types can be used in these cases:
If there are multiple return statements returning values of different types then the lambda expression's return type must explicitly be specified using a late-specified return type, (cf. section 3.3.7):
[](bool neg, double y) -> int
{
return neg ? -y : y;
}
Variables visible at the location of a lambda expression may be accessible from inside the lambda expression's compound statement. Which variables and how they are accessed depends on the content of the lambda-introducer.
When the lambda expression is defined inside a class member function the lambda-introducer may contain this or *this; where used in the following overview this class-context is assumed.
Global variables are always accessible, and can be modified if their definitions allow so (this in general holds true in the following overview: when stated that `variables can be modified' then that only applies to variables that themselves allow modifications).
Local variables of the lambda expression's surrounding function may also be specified inside the lambda-introducer. The specification local is used to refer to any comma-separated list of local variables of the surrounding function that are visible at the lambda expression's point of definition. There is no required ordering of the this, *this and local specifications.
Finally, where in the following overview mutable is mentioned it must be specified, where mutable_opt is specified it is optional.
Access globals, maybe data members and local variables:
The following specifications must use = as the first element of the lambda-introducer. It allows accessing local variables by value, unless...:
The following specifications must use & as the first element of the lambda-introducer. It allows accessing local variables by reference, unless...:
Even when not specified, lambda expressions implicitly capture their this pointers, and class members are always accessed relative to this. But when members are called asynchronously (cf. chapter 20) a problem may arise, because the asynchronously called lambda function may refer to members of an object whose lifetime ended shortly after asynchronously calling the lambda function. This potential problem is solved by using `*this' in the lambda-capture if it starts with =, e.g., [=, *this] (in addition, variables may still also be captured, as usual). When specifying `*this' the object to which this refers is explicitly captured: if the object's scope ends it is not immediately destroyed, but its lifetime is extended by the lambda-expression for the duration of that expression. In order to use the `*this' specification, the object must be available. Consider the following example:
struct S2
{
double ohseven = .007;
auto f()
{
return [this] // (1, see below)
{
return [*this] // (2)
{
return ohseven; // OK
};
}(); // (3)
}
auto g()
{
return []
{
return [*this]
{
// error: *this not captured by
// the outer lambda-expression
};
}();
}
};
Although lambda expressions are anonymous function objects, they can be assigned to variables. Often, the variable is defined using the keyword auto. E.g.,
auto sqr = [](int x)
{
return x * x;
};
The lifetime of such lambda expressions is equal to the lifetime of the variable receiving the lambda expression as its value.
Note also that defining a lambda expression is different from calling its function operator. The function S2::f() returns what the lamba expression (1)'s function call operator returns: its function call operator is called by using () (at (3)). What it in fact returns is another anonymous function object (defined at (2)). As that's just a function object, to retrieve its value it must still be called from f's return value using something like this:
S2 s2;
s2.f()();
Here, the second set of parentheses activates the returned function object's function call operator. Had the parentheses been omitted at (3) then S2::f() would have returned a mere anonymous function object (defined at (1)), in which case it would require three sets of parentheses to retrieve ohseven's value: s2.f()()().
11.11.2: Using lambda expressions
Now that the syntax of lambda expressions have been covered let's see how they can be used in various situations.
First we consider named lambda expressions. Named lambda expressions nicely fit in the niche of local functions: when a function needs to perform computations which are at a conceptually lower level than the function's task itself, then it's attractive to encapsulate these computations in a separate support function and call the support function where needed. Although support functions can be defined in anonymous namespaces, that quickly becomes awkward when the requiring function is a class member and the support function also must access the class's members.
In that case a named lambda expression can be used: it can be defined inside a requiring function, and it may be given full access to the surrounding class. The name to which the lambda expression is assigned becomes the name of a function which can be called from the surrounding function. Here is an example, converting a numeric IP address to a dotted decimal string, which can also be accessed directly from an Dotted object (all implementations in-class to conserve space):
class Dotted
{
std::string d_dotted;
public:
std::string const &dotted() const
{
return d_dotted;
}
std::string const &dotted(size_t ip)
{
auto octet =
[](size_t idx, size_t numeric)
{
return to_string(numeric >> idx * 8 & 0xff);
};
d_dotted =
octet(3, ip) + '.' + octet(2, ip) + '.' +
octet(1, ip) + '.' + octet(0, ip);
return d_dotted;
}
};
Next we consider the use of generic algorithms, like the for_each (cf. section 19.1.18):
void showSum(vector<int> const &vi)
{
int total = 0;
for_each(
vi.begin(), vi.end(),
[&](int x)
{
total += x;
}
);
std::cout << total << '\n';
}
Here the variable int total is passed to the lambda expression by reference and is directly accessed by the function. Its parameter list merely defines an int x, which is initialized in sequence by each of the values stored in vi. Once the generic algorithm has completed showSum's variable total has received a value that is equal to the sum of all the vector's values. It has outlived the lambda expression and its value is displayed.
But although generic algorithms are extremely useful, there may not always be one that fits the task at hand. Furthermore, an algorithm like for_each looks a bit unwieldy, now that the language offers range-based for-loops. So let's try this, instead of the above implementation:
void showSum(vector<int> const &vi)
{
int total = 0;
for (auto el: vi)
[&](int x)
{
total += x;
};
std::cout << total << '\n';
}
But when showSum is now called, its cout statement consistently reports 0. What's happening here?
When a generic algorithm is given a lambda function, its implementation instantiates a reference to a function. The referenced function is thereupon called from within the generic algorithm. But, in the above example the range-based for-loop's nested statement merely represents the definition of a lambda function. Nothing is actually called, and hence total remains equal to 0.
Thus, to make the above example work we not only must define the lambda expression, but we must also call the lambda function. We can do this by giving the lambda function a name, and then call the lambda function by its given name:
void showSum(vector<int> const &vi)
{
int total = 0;
for (auto el: vi)
{
auto lambda = [&](int x)
{
total += x;
};
lambda(el);
}
std::cout << total << '\n';
}
In fact, there is no need to give the lambda function a name: the auto lambda definition represents the lambda function, which could also directly be called. The syntax for doing this may look a bit weird, but there's nothing wrong with it, and it allows us to drop the compound statement, required in the last example, completely. Here goes:
void showSum(vector<int> const &vi)
{
int total = 0;
for (auto el: vi)
[&](int x)
{
total += x;
}(el); // immediately append the
// argument list to the lambda
// function's definition
std::cout << total << '\n';
}
Lambda expressions can also be used to prevent spurious returns from condition_variable's wait calls (cf. section 20.4.3).
The class condition_variable allows us to do so by offering wait members expecting a lock and a predicate. The predicate checks the data's state, and returns true if the data's state allows the data's processing. Here is an alternative implementation of the down member shown in section 20.4.3, checking for the data's actual availability:
void down()
{
unique_lock<mutex> lock(sem_mutex);
condition.wait(lock,
[&]()
{
return semaphore != 0
}
);
--semaphore;
}
The lambda expression ensures that wait only returns once semaphore has been incremented.
Lambda expression are primarily used to obtain functors that are used in a very localized section of a program. Since they are used inside an existing function we should realize that once we use lambda functions multiple aggregation levels are mixed. Normally a function implements a task which can be described at its own aggregation level using just a few sentences. E.g., ``the function std::sort sorts a data structure by comparing its elements in a way that is appropriate to the context where sort is called''. By using an existing comparison method the aggregation level is kept, and the statement is clear by itself. E.g.,
sort(data.begin(), data.end(), greater<DataType>());
If an existing comparison method is not available, a tailor-made function object must be created. This could be realized using a lambda expression. E.g.,
sort(data.begin(), data.end(),
[&](DataType const &lhs, DataType const &rhs)
{
return lhs.greater(rhs);
}
);
Looking at the latter example, we should realize that here two different aggregation levels are mixed: at the top level the intent is to sort the elements in data, but at the nested level (inside the lambda expression) something completely different happens. Inside the lambda expression we define how a the decision is made about which of the two objects is the greater. Code exhibiting such mixed aggregation levels is hard to read, and should be avoided.
On the other hand: lambda expressions also simplify code because the overhead of defining tailor-made functors is avoided. The advice, therefore, is to use lambda expressions sparingly. When they are used make sure that their sizes remain small. As a rule of thumb: lambda expressions should be treated like in-line functions, and should merely consist of one, or maybe occasionally two expressions.
A special group of lambda expressions is known as generic lambda expressions. As generic lambda expressions are in fact class templates, their coverage is postponed until chapter 22.
11.12: The case of [io]fstream::open()
Earlier, in section 6.4.2.1, it was noted that the [io]fstream::open members expect an ios::openmode value as their final argument. E.g., to open an fstream object for writing you could do as follows:
fstream out;
out.open("/tmp/out", ios::out);
Combinations are also possible. To open an fstream object for both reading and writing the following stanza is often seen:
fstream out;
out.open("/tmp/out", ios::in | ios::out);
When trying to combine enum values using a `home made' enum we may run into problems. Consider the following:
enum Permission
{
READ = 1 << 0,
WRITE = 1 << 1,
EXECUTE = 1 << 2
};
void setPermission(Permission permission);
int main()
{
setPermission(READ | WRITE);
}
When offering this little program to the compiler it replies with an error message like this:
invalid conversion from 'int' to 'Permission'
The question is of course: why is it OK to combine ios::openmode values passing these combined values to the stream's open member, but not OK to combine Permission values.
Combining enum values using arithmetic operators results in int-typed values. Conceptually this never was our intention. Conceptually it can be considered correct to combine enum values if the resulting value conceptually makes sense as a value that is still within the original enumeration domain. Note that after adding a value READWRITE = READ | WRITE to the above enum we're still not allowed to specify READ | WRITE as an argument to setPermission.
To answer the question about combining enumeration values and yet stay within the enumeration's domain we turn to operator overloading. Up to this point operator overloading has been applied to class types. Free functions like operator<< have been overloaded, and those overloads are conceptually within the domain of their class.
As C++ is a strongly typed language realize that defining an enum is really something beyond the mere association of int-values with symbolic names. An enumeration type is really a type of its own, and as with any type its operators can be overloaded. When writing READ | WRITE the compiler performs the default conversion from enum values to int values and applies the operator to ints. It does so when it has no alternative.
But it is also possible to overload the enum type's operators. Thus we may ensure that we'll remain within the enum's domain even though the resulting value wasn't defined by the enum. The advantage of type-safety and conceptual clarity is considered to outweigh the somewhat peculiar introduction of values hitherto not defined by the enum.
Here is an example of such an overloaded operator:
Permission operator|(Permission left, Permission right)
{
return static_cast<Permission>(static_cast<int>(left) | right);
}
Other operators can easily and analogously be constructed.
Operators like the above were defined for the ios::openmode enumeration type, allowing us to specify ios::in | ios::out as argument to open while specifying the corresponding parameter as ios::openmode as well. Clearly, operator overloading can be used in many situations, not necessarily only involving class-types.
11.13: User-defined literals
In addition to the well-known literals, like numerical constants (with or without suffixes), character constants and string (textual) literals, C++ also supports user-defined literals, also known as extensible literals.
A user-defined literal is defined by a function (see also section 23.3) that must be defined at namespace scope. Such a function is called a literal operator. A literal operator cannot be a class member function. The names of a literal operator must start with an underscore, and a literal operator is used (called) by suffixing its name (including the underscore) to the argument that must be passed to it . Assuming _NM2km (nautical mile to km) is the name of a literal operator, then it could be called as 100_NM2km, producing, e.g., the value 185.2.
Using Type to represent the return type of the literal operator its generic declaration looks like this:
Type operator "" _identifier(parameter-list);
The blank space trailing the empty string is required. The parameter lists of literal operators can be:
If literal operators are overloaded the compiler will pick the literal operator requiring the least `effort'. E.g., 120 is processed by a literal operator defining an unsigned long long int parameter and not by its overloaded version, defining a char const * parameter. But if overloaded literal operators exist defining char const * and long double parameters then the operator defining a char const * parameter is used when the argument 120 is provided, while the operator defining a long double parameter is used with the argument 120.3.
A literator operator can define any return type. Here is an example of a definition of the _NM2km literal operator:
double operator "" _NM2km(char const *nm)
{
return std::stod(nm) * 1.852;
}
double value = 120_NM2km; // example of use
Of course, the argument could also have been a long double constant. Here's an alternative implementation, explicitly expecting a long double:
double constexpr operator "" _NM2km(long double nm)
{
return nm * 1.852;
}
double value = 450.5_NM2km; // example of use
A numeric constant can also be processed completely at compile-time. Section 23.3 provides the details of this type of literal operator.
Arguments to literal operators are themselves always constants. A literal operator like _NM2km cannot be used to convert, e.g., the value of a variable. A literal operator, although it is defined as a function, cannot be called like a function. The following examples therefore result in compilation errors:
double speed;
speed_NM2km; // no identifier 'speed_NM2km'
_NM2km(speed); // no function _NM2km
_NM2km(120.3); // no function _NM2km
11.14: Overloadable operators
The following operators can be overloaded:
+ - * / % ^ & |
~ ! , = <=> < > <=
>= ++ -- << >> == != &&
|| += -= *= /= %= ^= &=
|= <<= >>= [] () -> ->* new
new[] delete delete[]
Several operators have textual alternatives:
| textual alternative | operator |
| and | && |
| and_eq | &= |
| bitand | & |
| bitor | | |
| compl | ~ |
| not | ! |
| not_eq | != |
| or | || |
| or_eq | |= |
| xor | ^ |
| xor_eq | ^= |
`Textual' alternatives of operators are also overloadable (e.g., operator and). However, note that textual alternatives are not additional operators. So, within the same context operator&& and operator and can not both be overloaded.
Several of these operators may only be overloaded as member functions within a class. This holds true for the '=', the '[]', the '()' and the '->' operators. Consequently, it isn't possible to redefine, e.g., the assignment operator globally in such a way that it accepts a char const * as an lvalue and a String & as an rvalue. Fortunately, that isn't necessary either, as we have seen in section 11.3.
Finally, the following operators cannot be overloaded:
. .* :: ?: sizeof typeid
Chapter 12: Abstract Containers
C++ offers several predefined datatypes, all part of the Standard Template Library, which can be used to implement solutions to frequently occurring problems. The datatypes discussed in this chapter are all containers: you can put stuff inside them, and you can retrieve the stored information from them.
The interesting part is that the kind of data that can be stored inside these containers has been left unspecified at the time the containers were constructed. That's why they are spoken of as abstract containers.
Abstract containers rely heavily on templates, covered in chapter 21 and beyond. To use abstract containers, only a minimal grasp of the template concept is required. In C++ a template is in fact a recipe for constructing a function or a complete class. The recipe tries to abstract the functionality of the class or function as much as possible from the data on which the class or function operates. As the data types on which the templates operate were not known when the template was implemented, the datatypes are either inferred from the context in which a function template is used, or they are mentioned explicitly when a class template is used (the term that's used here is instantiated). In situations where the types are explicitly mentioned, the angle bracket notation is used to indicate which data types are required. For example, below (in section 12.2) we'll encounter the pair container, which requires the explicit mentioning of two data types. Here is a pair object containing both an int and a string:
pair<int, string> myPair;
The object myPair is defined as an object holding both an int and a string.
The angle bracket notation is used intensively in the upcoming discussion of abstract containers. Actually, understanding this part of templates is the only real requirement for using abstract containers. Now that we've introduced this notation, we can postpone the more thorough discussion of templates to chapter 21, and concentrate on their use in this chapter.
Most abstract containers are sequential containers: they contain data that can be stored and retrieved in some sequential way. Examples are the array, implementing a fixed-sized array; a vector, implementing an extendable array; the list, implementing a data structure that allows for the easy insertion or deletion of data; the queue, also called a FIFO (first in, first out) structure, in which the first element that is entered is the first element to be retrieved again; and the stack, which is a first in, last out (FILO or LIFO) structure.
In addition to sequential containers several special containers are available. The pair is a basic container in which a pair of values (of types that are left open for further specification) can be stored, like two strings, two ints, a string and a double, etc.. Pairs are often used to return data elements that naturally come in pairs. For example, the map is an abstract container storing keys and their associated values. Elements of these maps are returned as pairs.
A variant of the pair is the complex container, implementing operations that are defined on complex numbers.
A tuple (cf. section 22.6) generalizes the pair container to a data structure accommodating any number of different data types.
All abstract containers described in this chapter as well as the string and stream datatypes (cf. chapters 5 and 6) are part of the Standard Template Library.
All but the unordered containers support the following basic set of operators:
container left;
container right;
left = {0, 2, 4};
right = {1, 3}; // left < right
right = {1, 3, 6, 1, 2}; // left < right
Note that before a user-defined type (usually a class-type) can be stored in a container, the user-defined type should at least support:
Sequential containers can also be initialized using initializer lists.
Most containers (exceptions are the stack (section 12.4.11), priority_queue (section 12.4.5), and queue (section 12.4.4) containers) support members to determine their maximum sizes (through their member function max_size).
Virtually all containers support copy construction. If the container supports copy construction and the container's data type supports move construction, then move construction is automatically used for the container's data elements when a container is initialized with an anonymous temporary container.
Closely linked to the standard template library are the generic algorithms. These algorithms may be used to perform frequently occurring tasks or more complex tasks than is possible with the containers themselves, like counting, filling, merging, filtering etc.. An overview of generic algorithms and their applications is given in chapter 19. Generic algorithms usually rely on the availability of iterators, representing begin and end-points for processing data stored inside containers. The abstract containers usually support constructors and members expecting iterators, and they often have members returning iterators (comparable to the string::begin and string::end members). In this chapter the iterator concept is not further investigated. Refer to chapter 18 for this.
The url https://www.sgi.com/tech/stl/ is worth visiting as it offers more extensive coverage of abstract containers and the standard template library than can be provided by the C++ Annotations.
Containers often collect data during their lifetimes. When a container goes out of scope, its destructor tries to destroy its data elements. This only succeeds if the data elements themselves are stored inside the container. If the data elements of containers are pointers to dynamically allocated memory then the memory pointed to by these pointers is not destroyed, resulting in a memory leak. A consequence of this scheme is that the data stored in a container should often be considered the `property' of the container: the container should be able to destroy its data elements when the container's destructor is called. So, normally containers should not contain pointers to data. Also, a container should not be required to contain const data, as const data prevent the use of many of the container's members, like the assignment operator.
12.1: Notations used in this chapter
In this chapter about containers, the following notational conventions are used:
Some containers, e.g., the map container, contain pairs of values, usually called `keys' and `values'. For such containers the following notational convention is used in addition:
12.2: The `pair' container
The pair container is a rather basic container. It is used to store two elements, called first and second, and that's about it. Before using pair containers the header file <utility> must be included.
The pair's data types are specified when the pair object is defined (or declared) using the template's angle bracket notation (cf. chapter 21). Examples:
pair<string, string> piper("PA28", "PH-ANI");
pair<string, string> cessna("C172", "PH-ANG");
here, the variables piper and cessna are defined as pair variables containing two strings. Both strings can be retrieved using the first and second fields of the pair type:
cout << piper.first << '\n' << // shows 'PA28'
cessna.second << '\n'; // shows 'PH-ANG'
The first and second members can also be used to reassign values:
cessna.first = "C152";
cessna.second = "PH-ANW";
If a pair object must be completely reassigned, an anonymous pair object can be used as the right-hand operand of the assignment. An anonymous variable defines a temporary variable (which receives no name) solely for the purpose of (re)assigning another variable of the same type. Its generic form is
type(initializer list)
Note that when a pair object is used the type specification is not completed by just mentioning the containername pair. It also requires the specification of the data types which are stored within the pair. For this the (template) angle bracket notation is used again. E.g., the reassignment of the cessna pair variable could have been accomplished as follows:
cessna = pair<string, string>("C152", "PH-ANW");
In cases like these, the type specification can become quite elaborate, which has caused a revival of interest in the possibilities offered by the typedef keyword. If many pair<type1, type2> clauses are used in a source, the typing effort may be reduced and readability might be improved by first defining a name for the clause, and then using the defined name later. E.g.,
typedef pair<string, string> pairStrStr;
cessna = pairStrStr("C152", "PH-ANW");
All abstract containers are class templates, and the types for which class templates are initialized are commonly specified between pointed brackets following the class template's name. However, the compiler may be able to deduce the container's types from the types of arguments that are specified when constructing the container. E.g., when defining
pair values{ 1, 1.5 };
the compiler deduces that values.first is an int and values.second is a double. Sometimes the class template's types cannot be deduced. In those cases the intended types must explicitly be specified:
pair<int, double> values;
Although the compiler will deduce types whenever it can, it might not deduce the types we had in mind. Had we defined
pair cessna{ "C172", "PH-BVL" };
then the compilation would succeed, but an expression like cout << cessna.first.length() would not compile, as "C172" is a NTBS, and hence cessna.first is a char *. In this case simply appending an s to the NTBSs fixes the problem, but such a simple fix might not always be available. Section 12.4.2 has contains more information about deducing template parameter types.
Apart from this (and the basic set of operations (assignment and comparisons)) the pair offers no further functionality. It is, however, a basic ingredient of the upcoming abstract containers map, multimap and hash_map.
C++ also offers a generalized pair container: the tuple, covered in section 22.6.
12.3: Allocators
Most containers use a special object for allocating the memory that is managed by them. This object is called an allocator, and it's type is (usually by default) specified when a container is constructed. A container's allocator can be obtained using the container's get_allocator member, which returns a copy of the allocator used by the container. Allocators offer the following members:
returns the address of object.
allocates raw memory for holding count values of the container's value_type.
using placement new, uses the arguments following object to install a value at object.
calls object's destructor (but doesn't deallocate object's own memory).
calls operator delete to delete object's memory, previously allocated by allocate.
returns the maximum number of elements that allocate can allocate.
Here is an example, using the allocator of a vector of strings (see section 12.4.2 below for a description of the vector container):
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int main()
{
vector<string> vs;
auto allocator = vs.get_allocator(); // get the allocator
string *sp = allocator.allocate(3); // alloc. space for 3 strings
allocator.construct(&sp[0], "hello world"); // initialize 1st string
allocator.construct(&sp[1], sp[0]); // use the copy constructor
allocator.construct(&sp[2], 12, '='); // string of 12 = chars
cout << sp[0] << '\n' << // show the strings
sp[1] << '\n' <<
sp[2] << '\n' <<
"could have allocated " << allocator.max_size() << " strings\n";
for (size_t idx = 0; idx != 3; ++idx)
allocator.destroy(sp + idx); // delete the string's
// contents
allocator.deallocate(sp, 3); // and delete sp itself again.
}
12.4: Available Containers
12.4.1: The `array' container
The array class implements a fixed-size array. Before using the array container the <array> header file must be included.
To define a std::array both the data type of its elements and its size must be specified: the data type is given after an opening angle bracket, immediately following the `array' container name. The array's size is provided after the data type specification. Finally, a closing angle bracket completes the array's type. Specifications like this are common practice with containers. The combination of array, type and size defines a type. As a result, array<string, 4> defines another type than array<string, 5>, and a function explicitly defining an array<Type, N> parameter will not accept an array<Type, M> argument if N and M are unequal.
The array's size may may be defined as 0 (although such an array probably has little use as it cannot store any element). The elements of an array are stored contiguously. If array<Type, N> arr has been defined, then &arr[n] + m == &arr[n + m], assuming than 0 <= n < N and 0 <= n + m < N.
The following constructors, operators, and member functions are available:
array<string, N> object;
array<double, 4> dArr = {1.2, 2.4};
Here dArr is defined as an array of 4 element, with dArr[0] and dArr[1] initialized to, respectively 1.2 and 2.4, and dArr[2] and dArr[3] initialized to 0. An attractive characteristic of arrays (and other containers) is that containers initialize their data elements to the data type's default value. The data type's default constructor is used for this initialization. With non-class data types the value 0 is used. So, for an array<double, 4> array we know that all but its explicitly initialized elements are initialized to zero.
Using an array rather than a standard C style array offers several advantages:
In general, when looking for a sequential data structure, the array or vector (introduced in the next section) should be your `weapon of choice'. Only if these containers demonstrably do not fit the problem at hand you should use another type of container.
12.4.2: The `vector' container
The vector class implements an expandable array. Before using the vector container the <vector> header file must be included.
The following constructors, operators, and member functions are available:
vector<string> object;
vector<string> object(5, "Hello"s); // initialize to 5 Hello's,
vector<string> container(10); // and to 10 empty strings
vector<string> names = {"george", "frank", "tony", "karel"};
Note the difference between vector<int> first(5) and vector<int> second{ 5 }. The vector first contains five elements, initialized to 0, while the vector second contains one element, initialized to 5. Referring back to section 12.2: with the latter definition the compiler is able to deduce the vector's template parameter type (int), so the latter definition could also have been written as vector second{ 5 }.
An ambiguity might be observed when looking at
vector object{ vector{ 1 } };
Did we define a vector<int> or a vector<vector<int>>? The standard considers this a vector<int>: it is initialized using the vector's move constructor from an abstract vector<int>.
extern vector<string> container;
vector<string> object(&container[5], &container[11]);
Note here that the last element pointed to by the second iterator (&container[11]) is not stored in object. This is a simple example of the use of iterators, in which the used range of values starts at the first value, and includes all elements up to but not including the element to which the second iterator refers. The standard notation for this is [begin, end).
vector<Type>(vectorObject).swap(vectorObject)
idiom can be used.
#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector<int> v1(7);
vector<int> v2(10);
v1.swap(v2);
cout << v1.size() << " " << v2.size() << '\n';
}
/*
Produced output:
10 7
*/
12.4.3: The `list' container
The list container implements a list data structure. Before using a list container the header file <list> must be included.
The organization of a list is shown in figure 10.
Figure 10: A list data-structure
Figure 10 shows that a list consists of separate list-elements, connected by pointers. The list can be traversed in two directions: starting at Front the list may be traversed from left to right, until the 0-pointer is reached at the end of the rightmost list-element. The list can also be traversed from right to left: starting at Back, the list is traversed from right to left, until eventually the 0-pointer emanating from the leftmost list-element is reached.
As a subtlety note that the representation given in figure 10 is not necessarily used in actual implementations of the list. For example, consider the following little program:
int main()
{
list<int> l;
cout << "size: " << l.size() << ", first element: " <<
l.front() << '\n';
}
When this program is run it might actually produce the output:
size: 0, first element: 0
Its front element can even be assigned a value. In this case the implementor has chosen to provide the list with a hidden element. The list actually is a circular list, where the hidden element serves as terminating element, replacing the 0-pointers in figure 10. As noted, this is a subtlety, which doesn't affect the conceptual notion of a list as a data structure ending in 0-pointers. Note also that it is well known that various implementations of list-structures are possible (cf. Aho, A.V., Hopcroft J.E. and Ullman, J.D., (1983) Data Structures and Algorithms (Addison-Wesley)).
Both lists and vectors are often appropriate data structures in situations where an unknown number of data elements must be stored. However, there are some rules of thumb to follow when selecting the appropriate data structure.
At present lists aren't as useful anymore as they used to be (when computers were much slower and more memory-constrained). Except maybe for some rare cases, a vector should be the preferred container; even when implementing algorithms traditionally using lists.
Other considerations related to the choice between lists and vectors should also be given some thought. Although it is true that the vector is able to grow dynamically, the dynamic growth requires data-copying. Clearly, copying a million large data structures takes a considerable amount of time, even on fast computers. On the other hand, inserting a large number of elements in a list doesn't require us to copy non-involved data. Inserting a new element in a list merely requires us to juggle some pointers. In figure 11 this is shown: a new element is inserted between the second and third element, creating a new list of four elements.
Figure 11: Adding a new element to a list
Removing an element from a list is also fairly easy. Starting again from the situation shown in figure 10, figure 12 shows what happens if element two is removed from our list. Again: only pointers need to be juggled. In this case it's even simpler than adding an element: only two pointers need to be rerouted.
Figure 12: Removing an element from a list
To summarize the comparison between lists and vectors: it's probably best to conclude that there is no clear-cut answer to the question what data structure to prefer. There are rules of thumb, which may be adhered to. But if worse comes to worst, a profiler may be required to find out what's best.
The list container offers the following constructors, operators, and member functions:
list<string> object;
As with the vector, it is an error to refer to an element of an empty list.
list<string> object(5, "Hello"s); // initialize to 5 Hello's
list<string> container(10); // and to 10 empty strings
extern vector<string> container;
list<string> object(&container[5], &container[11]);
assigns new content to the list:
#include <iostream>A subtlety is that merge doesn't alter the list if the list itself is used as argument: object.merge(object) won't change the list `object'.
#include <string>
#include <list>
using namespace std;
void showlist(list<string> &target)
{
for
(
list<string>::iterator from = target.begin();
from != target.end();
++from
)
cout << *from << " ";
cout << '\n';
}
int main()
{
list<string> first;
list<string> second;
first.push_back("alpha"s);
first.push_back("bravo"s);
first.push_back("golf"s);
first.push_back("quebec"s);
second.push_back("oscar"s);
second.push_back("mike"s);
second.push_back("november"s);
second.push_back("zulu"s);
first.merge(second);
showlist(first);
}
#include <iostream>
#include <string>
#include <list>
using namespace std;
int main()
{
list<string> object;
object.push_back("Hello"s);
object.push_back("World"s);
object.push_back("Hello"s);
object.push_back("World"s);
object.remove("Hello"s);
while (object.size())
{
cout << object.front() << '\n';
object.pop_front();
}
}
/*
Generated output:
World
World
*/
#include <iostream>Alternatively, argument may be followed by an iterator of argument, indicating the first element of argument that should be spliced, or by two iterators begin and end defining the iterator-range [begin, end) on argument that should be spliced into object.
#include <string>
#include <list>
using namespace std;
int main()
{
list<string> object;
object.push_front("Hello"s);
object.push_back("World"s);
list<string> argument(object);
object.splice(++object.begin(), argument);
cout << "Object contains " << object.size() << " elements, " <<
"Argument contains " << argument.size() <<
" elements,\n";
while (object.size())
{
cout << object.front() << '\n';
object.pop_front();
}
}
#include <iostream>
#include <string>
#include <list>
using namespace std;
// see the merge() example
void showlist(list<string> &target)
{
for
(
list<string>::iterator from = target.begin();
from != target.end();
++from
)
cout << *from << " ";
cout << '\n';
}
int main()
{
string
array[] =
{
"charlie",
"alpha",
"bravo",
"alpha"
};
list<string>
target
(
array, array + sizeof(array)
/ sizeof(string)
);
cout << "Initially we have:\n";
showlist(target);
target.sort();
cout << "After sort() we have:\n";
showlist(target);
target.unique();
cout << "After unique() we have:\n";
showlist(target);
}
/*
Generated output:
Initially we have:
charlie alpha bravo alpha
After sort() we have:
alpha alpha bravo charlie
After unique() we have:
alpha bravo charlie
*/
12.4.4: The `queue' container
The queue class implements a queue data structure. Before using a queue container the header file <queue> must be included.
A queue is depicted in figure 13.
Figure 13: A queue data-structure
In figure 13 it is shown that a queue has one point (the back) where items can be added to the queue, and one point (the front) where items can be removed (read) from the queue. A queue is therefore also called a FIFO data structure, for first in, first out. It is most often used in situations where events should be handled in the same order as they are generated.
The following constructors, operators, and member functions are available for the queue container:
queue<string> object;
As with the vector, it is an error to refer to an element of an empty queue.
Type queue::pop()
{
Type ret{ front() };
erase_front();
return ret;
}
The venom, as usual, is in the tail: since queue has no control over Type's behavior the final statement (return ret) might throw. By that time the queue's front element has already been removed from the queue and so it is lost. Thus, a Type returning pop member cannot offer the strong guarantee and consequently pop should not return the former front element. Because of all this, we must first use front and then pop to obtain and remove the queue's front element.
Note that the queue does not support iterators or an index operator. The only elements that can be accessed are its front and back element. A queue can be emptied by:
12.4.5: The `priority_queue' container
The priority_queue class implements a priority queue data structure. Before using a priority_queue container the <queue> header file must have been included.
A priority queue is identical to a queue, but allows the entry of data elements according to priority rules. A real-life priority queue is found, e.g., at airport check-in terminals. At a terminal the passengers normally stand in line to wait for their turn to check in, but late passengers are usually allowed to jump the queue: they receive a higher priority than other passengers.
The priority queue uses operator< of the data type stored in the priority queue to decide about the priority of the data elements. The smaller the value, the lower the priority. So, the priority queue could be used to sort values while they arrive. A simple example of such a priority queue application is the following program: it reads words from cin and writes a sorted list of words to cout:
#include <iostream>
#include <string>
#include <queue>
using namespace std;
int main()
{
priority_queue<string> q;
string word;
while (cin >> word)
q.push(word);
while (q.size())
{
cout << q.top() << '\n';
q.pop();
}
}
Unfortunately, the words are listed in reversed order: because of the underlying <-operator the words appearing later in the ASCII-sequence appear first in the priority queue. A solution to that problem is to define a wrapper class around the string datatype, reversing string's operator<. Here is the modified program:
#include <iostream>
#include <string>
#include <queue>
class Text
{
std::string d_s;
public:
Text(std::string const &str)
:
d_s(str)
{}
operator std::string const &() const
{
return d_s;
}
bool operator<(Text const &right) const
{
return d_s > right.d_s;
}
};
using namespace std;
int main()
{
priority_queue<Text> q;
string word;
while (cin >> word)
q.push(word);
while (q.size())
{
word = q.top();
cout << word << '\n';
q.pop();
}
}
Other possibilities to achieve the same exist. One would be to store the content of the priority queue in, e.g., a vector, from which the elements can be read in reversed order.
The following constructors, operators, and member functions are available for the priority_queue container:
priority_queue<string> object;
As with the vector, it is an error to refer to an element of an empty priority queue.
Note that the priority queue does not support iterators or an index operator. The only element that can be accessed is its top element. A priority queue can be emptied by:
12.4.6: The `deque' container
The deque (pronounce: `deck') class implements a doubly ended queue data structure (deque). Before using a deque container the header file <deque> must be included.
A deque is comparable to a queue, but it allows for reading and writing at both ends. Actually, the deque data type supports a lot more functionality than the queue, as illustrated by the following overview of available member functions. A deque is a combination of a vector and two queues, operating at both ends of the vector. In situations where random insertions and the addition and/or removal of elements at one or both sides of the vector occurs frequently using a deque should be considered.
The following constructors, operators, and member functions are available for deques:
deque<string> object;
As with the vector, it is an error to refer to an element of an empty deque.
deque<string> object(5, "Hello"s), // initialize to 5 Hello's
deque<string> container(10); // and to 10 empty strings
extern vector<string> container;
deque<string> object(&container[5], &container[11]);
assigns new content to the deque:
returns a reference to the deque's element at index position idx. If idx exceeds the deque's size a std::out_of_range exception is thrown.
returns a const_iterator pointing to the first element in the deque, returning cend if the deque is empty.
returns a const_iterator pointing just beyond the deque's last element.
returns a const_reverse_iterator pointing to the last element in the deque, returning crend if the deque is empty.
returns a const_reverse_iterator pointing just before the deque's first element.
a value_type object is constructed from the arguments specified after position, and the newly created element is inserted at position.
a value_type object is constructed from the member's arguments, and the newly created element is inserted beyond the deque's last element.
a value_type object is constructed from the member's arguments, and the newly created element is inserted before the deque's first element.
12.4.7: The `map' container
The map class offers a (sorted) associative array. Before using a map container the <map> header file must be included.
A map is filled with key, value pairs, which may be of any container-accepted type. Since types are associated with both the key and the value, we must specify two types in the angle bracket notation, comparable to the specification we've seen with the pair container (cf. section 12.2). The first type represents the key's type, the second type represents the value's type. For example, a map in which the key is a string and the value is a double can be defined as follows:
map<string, double> object;
The key is used to access its associated information. That information is called the value. For example, a phone book uses the names of people as the key, and uses the telephone number and maybe other information (e.g., the zip-code, the address, the profession) as value. Since a map sorts its keys, the key's operator< must be defined, and it must be sensible to use it. For example, it is generally a bad idea to use pointers for keys, as sorting pointers is something different than sorting the values pointed at by those pointers. In addition to the key, value types, a third type defines the comparison class, used to compare two keys. By default, the comparison class is std::less<KeyType (cf. section 18.1.2), using the key type's operator< to compare two key values. For key type KeyType and value type ValueType the map's type definition, therefore, looks like this:
map<KeyType, ValueType, std::less<KeyType>>
The two fundamental operations on maps are the storage of key, value combinations, and the retrieval of values, given their keys. The index operator using a key as the index, can be used for both. If the index operator is used as lvalue, the expression's rvalue is inserted into the map. If it is used as rvalue, the key's associated value is retrieved. Each key can be stored only once in a map. If the same key is entered again, the new value replaces the formerly stored value, which is lost.
A specific key, value combination can implicitly or explicitly be inserted into a map. If explicit insertion is required, the key, value combination must be constructed first. For this, every map defines a value_type which may be used to create values that can be stored in the map. For example, a value for a map<string, int> can be constructed as follows:
map<string, int>::value_type siValue{ "Hello", 1 };
The value_type is associated with the map<string, int>: the type of the key is string, the type of the value is int. Anonymous value_type objects are also often used. E.g.,
map<string, int>::value_type{ "Hello", 1 };
Instead of using the line map<string, int>::value_type(...) over and over again, a typedef is frequently used to reduce typing and to improve readability:
typedef map<string, int>::value_type StringIntValue
Using this typedef, values for the map<string, int> may now be constructed using:
StringIntValue{ "Hello", 1 };
Alternatively, pairs may be used to represent key, value combinations used by maps:
pair<string, int>{ "Hello", 1 };
12.4.7.1: The `map' constructors
The following constructors are available for the map container:
map<string, int> object;
Note that the values stored in maps may be containers themselves. For example, the following defines a map in which the value is a pair: a container nested under another container:
map<string, pair<string, string>> object;
Note the use of the two consecutive closing angle brackets, which does not result in ambiguities as their syntactical context differs from their use as binary operators in expressions.
pair<string, int> pa[] =
{
pair<string,int>("one", 1),
pair<string,int>("two", 2),
pair<string,int>("three", 3),
};
map<string, int> object(&pa[0], &pa[3]);
In this example, map<string, int>::value_type could have been written instead of pair<string, int> as well.
If begin represents the first iterator that is used to construct a map and if end represents the second iterator, [begin, end) will be used to initialize the map. Maybe contrary to intuition, the map constructor only enters new keys. If the last element of pa would have been "one", 3, only two elements would have entered the map: "one", 1 and "two", 2. The value "one", 3 would silently have been ignored.
The map receives its own copies of the data to which the iterators point as illustrated by the following example:
#include <iostream>
#include <map>
using namespace std;
class MyClass
{
public:
MyClass()
{
cout << "MyClass constructor\n";
}
MyClass(MyClass const &other)
{
cout << "MyClass copy constructor\n";
}
~MyClass()
{
cout << "MyClass destructor\n";
}
};
int main()
{
pair<string, MyClass> pairs[] =
{
pair<string, MyClass>{ "one", MyClass{} }
};
cout << "pairs constructed\n";
map<string, MyClass> mapsm{ &pairs[0], &pairs[1] };
cout << "mapsm constructed\n";
}
/*
Generated output:
MyClass constructor
MyClass copy constructor
MyClass destructor
pairs constructed
MyClass copy constructor
mapsm constructed
MyClass destructor
MyClass destructor
*/
When tracing the output of this program, we see that, first, the constructor of a MyClass object is called to initialize the anonymous element of the array pairs. This object is then copied into the first element of the array pairs by the copy constructor. Next, the original element is not required anymore and is destroyed. At that point the array pairs has been constructed. Thereupon, the map constructs a temporary pair object, which is used to construct the map element. Having constructed the map element, the temporary pair object is destroyed. Eventually, when the program terminates, the pair element stored in the map is destroyed too.
12.4.7.2: The `map' operators
The map supports, in addition to the standard operators for containers, the index operator.
The index operator may be used to retrieve or reassign individual elements of the map. The argument of the index operator is called a key.
If the provided key is not available in the map, a new data element is automatically added to the map using the default value or default constructor to initialize the value part of the new element. This default value is returned if the index operator is used as an rvalue.
When initializing a new or reassigning another element of the map, the type of the right-hand side of the assignment operator must be equal to (or promotable to) the type of the map's value part. E.g., to add or change the value of element "two" in a map, the following statement can be used:
mapsm["two"] = MyClass{};
12.4.7.3: The `map' public members
The following member functions are available for the map container:
#include <iostream>
#include <map>
using namespace std;
int main()
{
map<string, int> object;
object["one"] = 1;
map<string, int>::iterator it = object.find("one");
cout << "`one' " <<
(it == object.end() ? "not " : "") << "found\n";
it = object.find("three");
cout << "`three' " <<
(it == object.end() ? "not " : "") << "found\n";
}
/*
Generated output:
`one' found
`three' not found
*/
#include <iostream>Note the somewhat peculiar constructions like
#include <string>
#include <map>
using namespace std;
int main()
{
pair<string, int> pa[] =
{
pair<string,int>("one", 10),
pair<string,int>("two", 20),
pair<string,int>("three", 30),
};
map<string, int> object(&pa[0], &pa[3]);
// {four, 40} and `true' is returned
pair<map<string, int>::iterator, bool>
ret = object.insert
(
map<string, int>::value_type
("four", 40)
);
cout << boolalpha;
cout << ret.first->first << " " <<
ret.first->second << " " <<
ret.second << " " << object["four"] << '\n';
// {four, 40} and `false' is returned
ret = object.insert
(
map<string, int>::value_type
("four", 0)
);
cout << ret.first->first << " " <<
ret.first->second << " " <<
ret.second << " " << object["four"] << '\n';
}
/*
Generated output:
four 40 true 40
four 40 false 40
*/
cout << ret.first->first << " " << ret.first->second << ...
Note that `ret' is equal to the pair returned by the insert member function. Its `first' field is an iterator into the map<string, int>, so it can be considered a pointer to a map<string, int>::value_type. These value types themselves are pairs too, having `first' and `second' fields. Consequently, `ret.first->first' is the key of the map value (a string), and `ret.first->second' is the value (an int).
#include <iostream>
#include <map>
using namespace std;
int main()
{
pair<string, int> pa[] =
{
pair<string,int>("one", 10),
pair<string,int>("two", 20),
pair<string,int>("three", 30),
};
map<string, int> object(&pa[0], &pa[3]);
map<string, int>::iterator it;
if ((it = object.lower_bound("tw")) != object.end())
cout << "lower-bound `tw' is available, it is: " <<
it->first << '\n';
if (object.lower_bound("twoo") == object.end())
cout << "lower-bound `twoo' not available" << '\n';
cout << "lower-bound two: " <<
object.lower_bound("two")->first <<
" is available\n";
if ((it = object.upper_bound("tw")) != object.end())
cout << "upper-bound `tw' is available, it is: " <<
it->first << '\n';
if (object.upper_bound("twoo") == object.end())
cout << "upper-bound `twoo' not available" << '\n';
if (object.upper_bound("two") == object.end())
cout << "upper-bound `two' not available" << '\n';
pair
<
map<string, int>::iterator,
map<string, int>::iterator
>
p = object.equal_range("two");
cout << "equal range: `first' points to " <<
p.first->first << ", `second' is " <<
(
p.second == object.end() ?
"not available"
:
p.second->first
) <<
'\n';
}
/*
Generated output:
lower-bound `tw' is available, it is: two
lower-bound `twoo' not available
lower-bound two: two is available
upper-bound `tw' is available, it is: two
upper-bound `twoo' not available
upper-bound `two' not available
equal range: `first' points to two, `second' is not available
*/
12.4.7.4: The `map': a simple example
As mentioned at the beginning of section 12.4.7, the map represents a sorted associative array. In a map the keys are sorted. If an application must visit all elements in a map the begin and end iterators must be used.
The following example illustrates how to make a simple table listing all keys and values found in a map:
#include <iostream>
#include <iomanip>
#include <map>
using namespace std;
int main()
{
pair<string, int>
pa[] =
{
pair<string,int>("one", 10),
pair<string,int>("two", 20),
pair<string,int>("three", 30),
};
map<string, int>
object(&pa[0], &pa[3]);
for
(
map<string, int>::iterator it = object.begin();
it != object.end();
++it
)
cout << setw(5) << it->first.c_str() <<
setw(5) << it->second << '\n';
}
/*
Generated output:
one 10
three 30
two 20
*/
12.4.8: The `multimap' container
Like the map, the multimap class implements a (sorted) associative array. Before using a multimap container the header file <map> must be included.
The main difference between the map and the multimap is that the multimap supports multiple values associated with the same key, whereas the map contains single-valued keys. Note that the multimap also accepts multiple identical values associated with identical keys.
The map and the multimap have the same set of constructors and member functions, with the exception of the index operator which is not supported with the multimap. This is understandable: if multiple entries of the same key are allowed, which of the possible values should be returned for object[key]?
Refer to section 12.4.7 for an overview of the multimap member functions. Some member functions, however, deserve additional attention when used in the context of the multimap container. These members are discussed below.
Although the functions lower_bound and upper_bound act identically in the map and multimap containers, their operation in a multimap deserves some additional attention. The next example illustrates lower_bound, upper_bound and equal_range applied to a multimap:
#include <iostream>
#include <map>
using namespace std;
int main()
{
pair<string, int> pa[] =
{
pair<string,int>("alpha", 1),
pair<string,int>("bravo", 2),
pair<string,int>("charlie", 3),
pair<string,int>("bravo", 6), // unordered `bravo' values
pair<string,int>("delta", 5),
pair<string,int>("bravo", 4),
};
multimap<string, int> object(&pa[0], &pa[6]);
typedef multimap<string, int>::iterator msiIterator;
msiIterator it = object.lower_bound("brava");
cout << "Lower bound for `brava': " <<
it->first << ", " << it->second << '\n';
it = object.upper_bound("bravu");
cout << "Upper bound for `bravu': " <<
it->first << ", " << it->second << '\n';
pair<msiIterator, msiIterator>
itPair = object.equal_range("bravo");
cout << "Equal range for `bravo':\n";
for (it = itPair.first; it != itPair.second; ++it)
cout << it->first << ", " << it->second << '\n';
cout << "Upper bound: " << it->first << ", " << it->second << '\n';
cout << "Equal range for `brav':\n";
itPair = object.equal_range("brav");
for (it = itPair.first; it != itPair.second; ++it)
cout << it->first << ", " << it->second << '\n';
cout << "Upper bound: " << it->first << ", " << it->second << '\n';
}
/*
Generated output:
Lower bound for `brava': bravo, 2
Upper bound for `bravu': charlie, 3
Equal range for `bravo':
bravo, 2
bravo, 6
bravo, 4
Upper bound: charlie, 3
Equal range for `brav':
Upper bound: bravo, 2
*/
In particular note the following characteristics:
12.4.9: The `set' container
The set class implements a sorted collection of values. Before using set containers the <set> header file must be included.
A set contains unique values (of a container-acceptable type). Each value is stored only once.
A specific value can be explicitly created: Every set defines a value_type which may be used to create values that can be stored in the set. For example, a value for a set<string> can be constructed as follows:
set<string>::value_type setValue{ "Hello" };
Like the std::map container, the std::set also has an additional parameter declaring the class that is used for comparing values in the set. For value type ValueType the set's type definition, therefore, looks like this:
set<ValueType, std::less<ValueType>>
The value_type is associated with the set<string>. Anonymous value_type objects are also often used. E.g.,
set<string>::value_type{ "Hello" };
Instead of using the line set<string>::value_type(...) over and over again, a typedef is often used to reduce typing and to improve readability:
typedef set<string>::value_type StringSetValue
Using this typedef, values for the set<string> may be constructed as follows:
StringSetValue{ "Hello" };
Alternatively, values of the set's type may be used immediately. In that case the value of type Type is implicitly converted to a set<Type>::value_type.
The following constructors, operators, and member functions are available for the set container:
set<int> object;
int intarr[] = {1, 2, 3, 4, 5};
set<int> object{ &intarr[0], &intarr[5] };
Note that all values in the set must be different: it is not possible to store the same value repeatedly when the set is constructed. If the same value occurs repeatedly, only the first instance of the value is entered into the set; the remaining values are silently ignored.
Like the map, the set receives its own copy of the data it contains.
12.4.10: The `multiset' container
Like the set, the multiset class implements a sorted collection of values. Before using multiset containers the header file <set> must be included.
The main difference between the set and the multiset is that the multiset supports multiple entries of the same value, whereas the set contains unique values.
The set and the multiset have the same set of constructors and member functions. Refer to section 12.4.9 for an overview of the member functions that can be used with the multiset. Some member functions, however, behave slightly different than their counterparts of the set container. Those members are:
Although the functions lower_bound and upper_bound act identically in the set and multiset containers, their operation in a multiset deserves some additional attention. With a multiset container lower_bound and upper_bound produce the same result for non-existing keys: they both return the first element having a key exceeding the provided key.
Here is an example showing the use of various member functions of a multiset:
#include <iostream>
#include <set>
using namespace std;
int main()
{
string
sa[] =
{
"alpha",
"echo",
"hotel",
"mike",
"romeo"
};
multiset<string>
object(&sa[0], &sa[5]);
object.insert("echo");
object.insert("echo");
multiset<string>::iterator
it = object.find("echo");
for (; it != object.end(); ++it)
cout << *it << " ";
cout << '\n';
cout << "Multiset::equal_range(\"ech\")\n";
pair
<
multiset<string>::iterator,
multiset<string>::iterator
>
itpair = object.equal_range("ech");
if (itpair.first != object.end())
cout << "lower_bound() points at " << *itpair.first << '\n';
for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";
cout << '\n' <<
object.count("ech") << " occurrences of 'ech'" << '\n';
cout << "Multiset::equal_range(\"echo\")\n";
itpair = object.equal_range("echo");
for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";
cout << '\n' <<
object.count("echo") << " occurrences of 'echo'" << '\n';
cout << "Multiset::equal_range(\"echoo\")\n";
itpair = object.equal_range("echoo");
for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";
cout << '\n' <<
object.count("echoo") << " occurrences of 'echoo'" << '\n';
}
/*
Generated output:
echo echo echo hotel mike romeo
Multiset::equal_range("ech")
lower_bound() points at echo
0 occurrences of 'ech'
Multiset::equal_range("echo")
echo echo echo
3 occurrences of 'echo'
Multiset::equal_range("echoo")
0 occurrences of 'echoo'
*/
12.4.11: The `stack' container
The stack class implements a stack data structure. Before using stack containers the header file <stack> must be included.
A stack is also called a first in, last out (FILO or LIFO) data structure as the first item to enter the stack is the last item to leave. A stack is an extremely useful data structure in situations where data must temporarily remain available. For example, programs maintain a stack to store local variables of functions: the lifetime of these variables is determined by the time these functions are active, contrary to global (or static local) variables, which live for as long as the program itself lives. Another example is found in calculators using the Reverse Polish Notation (RPN), in which the operands of operators are kept in a stack, whereas operators pop their operands off the stack and push the results of their work back onto the stack.
As an example of the use of a stack, consider figure 14, in which the content of the stack is shown while the expression (3 + 4) * 2 is evaluated. In the RPN this expression becomes 3 4 + 2 *, and figure 14 shows the stack content after each token (i.e., the operands and the operators) is read from the input. Notice that each operand is indeed pushed on the stack, while each operator changes the content of the stack.
Figure 14: The content of a stack while evaluating 3 4 + 2 *
The expression is evaluated in five steps. The caret between the tokens in the expressions shown on the first line of figure 14 shows what token has just been read. The next line shows the actual stack-content, and the final line shows the steps for referential purposes. Note that at step 2, two numbers have been pushed on the stack. The first number (3) is now at the bottom of the stack. Next, in step 3, the + operator is read. The operator pops two operands (so that the stack is empty at that moment), calculates their sum, and pushes the resulting value (7) on the stack. Then, in step 4, the number 2 is read, which is dutifully pushed on the stack again. Finally, in step 5 the final operator * is read, which pops the values 2 and 7 from the stack, computes their product, and pushes the result back on the stack. This result (14) could then be popped to be displayed on some medium.
From figure 14 we see that a stack has one location (the top) where items can be pushed onto and popped off the stack. This top element is the stack's only immediately visible element. It may be accessed and modified directly.
Bearing this model of the stack in mind, let's see what we formally can do with the stack container. For the stack, the following constructors, operators, and member functions are available:
stack<string> object;
12.4.12: The `unordered_map' container (`hash table')
In C++ hash tables are available as objects of the class unordered_map.
Before using unordered_map or unordered_multimap containers the header file <unordered_map> must be included.
The unordered_map class implements an associative array in which the elements are stored according to some hashing scheme. As discussed, the map is a sorted data structure. The keys in maps are sorted using the operator< of the key's data type. Generally, this is not the fastest way to either store or retrieve data. The main benefit of sorting is that a listing of sorted keys appeals more to humans than an unsorted list. However, a by far faster way to store and retrieve data is to use hashing.
Hashing uses a function (called the hash function) to compute an (unsigned) number from the key, which number is thereupon used as an index in the table storing the keys and their values. This number is called the bucket number. Retrieval of a key is as simple as computing the hash value of the provided key, and looking in the table at the computed index location: if the key is present, it is stored in the table, at the computed bucket location and its value can be returned. If it's not present, the key is not currently stored in the container.
Collisions occur when a computed index position is already occupied by another element. For these situations the abstract containers have solutions available. A simple solution, used by unordered_maps, consists of using linear chaining, which uses linked list to store colliding table elements.
The term unordered_map is used rather than hash to avoid name collisions with hash tables developed before they were added to the language.
Because of the hashing method, the efficiency of a unordered_map in terms of speed should greatly exceed the efficiency of the map. Comparable conclusions may be drawn for the unordered_set, the unordered_multimap and the unordered_multiset.
12.4.12.1: The `unordered_map' constructors
When defining an unordered_map type five template arguments must be specified :
The generic definition of an unordered_map container looks like this:
std::unordered_map <KeyType, ValueType, hash type, predicate type,
allocator type>
When KeyType is std::string or a built-in type then default types are available for the hash type and the predicate type. In practice the allocator type is not specified, as the default allocator suffices. In these cases an unordered_map object can be defined by merely specifying the key- and value types, like this:
std::unordered_map<std::string, ValueType> hash(size_t size = implSize);
Here, implSize is the container's default initial size, which is specified by the implementor. The map's size is automatically enlarged by the unordered_map when necessary, in which case the container rehashes all its elements. In practice the default size argument provided by the implementor is completely satisfactory.
The KeyType frequently consists of text. So, a unordered_map using a std::string KeyType is frequently used. Be careful not to use a plain char const * key_type as two char const * values pointing to equal C-strings stored at different locations are considered to be different keys, as their pointer values rather than their textual content are compared. Here is an example showing how a char const * KeyType can be used. Note that in the example no arguments are specified when constructing months, since default values and constructors are available:
#include <unordered_map>
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
struct EqualCp
{
bool operator()(char const *l, char const *r) const
{
return strcmp(l, r) == 0;
}
};
struct HashCp
{
size_t operator()(char const *str) const
{
return std::hash<std::string>()(str);
}
};
int main()
{
unordered_map<char const *, int, HashCp, EqualCp> months;
// or explicitly:
unordered_map<char const *, int, HashCp, EqualCp>
monthsTwo(61, HashCp(), EqualCp());
months["april"] = 30;
months["november"] = 31;
string apr("april"); // different pointers, same string
cout << "april -> " << months["april"] << '\n' <<
"april -> " << months[apr.c_str()] << '\n';
}
If other KeyTypes must be used, then the unordered_map's constructor requires (constant references to) a hash function object, computing a hash value from a key value, and a predicate function object, returning true if two unordered_map::key_type objects are identical. A generic algorithm (see chapter 19) exists performing tests of equality (i.e., equal_to). These tests can be used if the key's data type supports the equality operator. Alternatively, an overloaded operator== or specialized function object could be constructed returning true if two keys are equal and false otherwise.
Constructors
The unordered_map supports the following constructors:
The following example shows a program using an unordered_map containing the names of the months of the year and the number of days these months (usually) have. Then, using the subscript operator the days in several months are displayed (the predicate used here is the generic algorithm equal_to<string>, which is provided by the compiler as the default fourth argument of the unordered_map constructor):
#include <unordered_map>
#include <iostream>
#include <string>
using namespace std;
int main()
{
unordered_map<string, int> months;
months["january"] = 31;
months["february"] = 28;
months["march"] = 31;
months["april"] = 30;
months["may"] = 31;
months["june"] = 30;
months["july"] = 31;
months["august"] = 31;
months["september"] = 30;
months["october"] = 31;
months["november"] = 30;
months["december"] = 31;
cout << "september -> " << months["september"] << '\n' <<
"april -> " << months["april"] << '\n' <<
"june -> " << months["june"] << '\n' <<
"november -> " << months["november"] << '\n';
}
/*
Generated output:
september -> 30
april -> 30
june -> 30
november -> 30
*/
12.4.12.2: The `unordered_map' public members
The unordered_map supports the index operator operating identically to the map's index operator: a (const) reference to the ValueType associated with the provided KeyType's value is returned. If not yet available, the key is added to the unordered_map, and a default ValueType value is returned. In addition, it supports operator==.
The unordered_map provides the following member functions (key_type, value_type etc. refer to the types defined by the unordered_map):
elements may be inserted starting at a certain position. No insertion is performed if the provided key is already in use. The return value depends on the version of insert() that is called. When a pair<iterator, bool> is returned, then the pair's first member is an iterator pointing to the element having a key that is equal to the key of the provided value_type, the pair's second member is true if value was actually inserted into the container, and false if not.
12.4.12.3: The `unordered_multimap' container
The unordered_multimap allows multiple objects using the same keys to be stored in an unordered map. The unordered_multimap container offers the same set of members and constructors as the unordered_map, but without the unique-key restriction imposed upon the unordered_map.
The unordered_multimap does not offer operator[] and does not offer at members.
Below all members are described whose behavior differs from the behavior of the corresponding unordered_map members:
not supported by the unordered_multimap container
elements may be inserted starting at a certain position. The return value depends on the version of insert() that is called. When an iterator is returned, then it points to the element that was inserted.
12.4.13: The `unordered_set' container
The set container, like the map container, orders its elements. If ordering is not an issue, but fast lookups are, then a hash-based set and/or multi-set may be preferred. C++ provides such hash-based sets and multi-sets: the unordered_set and unordered_multiset.
Before using these hash-based set containers the header file <unordered_set> must be included.
Elements stored in the unordered_set are immutable, but they can be inserted and removed from the container. Different from the unordered_map, the unordered_set does not use a ValueType. The set merely stores elements, and the stored element itself is its own key.
The unordered_set has the same constructors as the unordered_map, but the set's value_type is equal to its key_type.
When defining an unordered_set type four template arguments must be specified :
The generic definition of an unordered_set container looks like this:
std::unordered_set <KeyType, hash type, predicate type, allocator type>
When KeyType is std::string or a built-in type then default types are available for the hash type and the predicate type. In practice the allocator type is not specified, as the default allocator suffices. In these cases an unordered_set object can be defined by merely specifying the key- and value types, like this:
std::unordered_set<std::string> rawSet(size_t size = implSize);
Here, implSize is the container's default initial size, which is specified by the implementor. The set's size is automatically enlarged when necessary, in which case the container rehashes all its elements. In practice the default size argument provided by the implementor is completely satisfactory.
The unordered_set supports the following constructors:
The unordered_set does not offer an index operator, and it does not offer an at member. Other than those, it offers the same members as the unordered_map. Below the members whose behavior differs from the behavior of the unordered_map are discussed. For a description of the remaining members, please refer to section 12.4.12.2.
12.4.13.1: The `unordered_multiset' container
The unordered_multiset allows multiple objects using the same keys to be stored in an unordered set. The unordered_multiset container offers the same set of members and constructors as the unordered_set, but without the unique-key restriction imposed upon the unordered_set.
Below all members are described whose behavior differs from the behavior of the corresponding unordered_set members:
elements may be inserted starting at a certain position. The return value depends on the version of insert() that is called. When an iterator is returned, then it points to the element that was inserted.
12.4.14: Heterogeneous lookup
The associative containers offered by C++ allow us to find a value (or values) matching a given key. Traditionally, the type of the key used for the lookup must match the container's key type.
Since the C++14 standard arbitrary lookup key types can be used provided a comparison operator is available to compare that type with the container's key type. Thus, a char const * key (or any other type for which an operator< overload for std::string is available) can be used to lookup values in a map<std::string, ValueType>. This is called heterogeneous lookup.
Heterogeneous lookup is allowed when the comparator given to the associative container does allow this. The standard library classes std::less and std::greater were augmented to allow heterogeneous lookup.
12.5: The `complex' container
The complex container defines the standard operations that can be performed on complex numbers. Before using complex containers the header file <complex> must be included.
The complex number's real and imaginary types are specified as the container's data type. Examples:
complex<double>
complex<int>
complex<float>
Note that the real and imaginary parts of complex numbers have the same datatypes.
When initializing (or assigning) a complex object, the imaginary part may be omitted from the initialization or assignment resulting in its value being 0 (zero). By default, both parts are zero.
Below it is silently assumed that the used complex type is complex<double>. Given this assumption, complex numbers may be initialized as follows:
Anonymous complex values may also be used. In the next example two anonymous complex values are pushed on a stack of complex numbers, to be popped again thereafter:
#include <iostream>
#include <complex>
#include <stack>
using namespace std;
int main()
{
stack<complex<double>>
cstack;
cstack.push(complex<double>(3.14, 2.71));
cstack.push(complex<double>(-3.14, -2.71));
while (cstack.size())
{
cout << cstack.top().real() << ", " <<
cstack.top().imag() << "i" << '\n';
cstack.pop();
}
}
/*
Generated output:
-3.14, -2.71i
3.14, 2.71i
*/
The following member functions and operators are defined for complex numbers (below, value may be either a primitive scalar type or a complex object):
abs(complex<double>(3, -5));
pow(target, complex<int>(2, 3));
Chapter 13: Inheritance
When programming in C, programming problems are commonly approached using a top-down structured approach: functions and actions of the program are defined in terms of sub-functions, which again are defined in sub-sub-functions, etc.. This yields a hierarchy of code: main at the top, followed by a level of functions which are called from main, etc..
In C++ the relationship between code and data is also frequently defined in terms of dependencies among classes. This looks like composition (see section 7.3), where objects of a class contain objects of another class as their data. But the relation described here is of a different kind: a class can be defined in terms of an older, pre-existing, class. This produces a new class having all the functionality of the older class, and additionally defining its own specific functionality. Instead of composition, where a given class contains another class, we here refer to derivation, where a given class is or is-implemented-in-terms-of another class.
Another term for derivation is inheritance: the new class inherits the functionality of an existing class, while the existing class does not appear as a data member in the interface of the new class. When discussing inheritance the existing class is called the base class, while the new class is called the derived class.
Derivation of classes is often used when the methodology of C++ program development is fully exploited. In this chapter we first address the syntactic possibilities offered by C++ for deriving classes. Following this we address some of the specific possibilities offered by class derivation (inheritance).
As we have seen in the introductory chapter (see section 2.4), in the object-oriented approach to problem solving classes are identified during the problem analysis. Under this approach objects of the defined classes represent entities that can be observed in the problem at hand. The classes are placed in a hierarchy, with the top-level class containing limited functionality. Each new derivation (and hence descent in the class hierarchy) adds new functionality compared to yet existing classes.
In this chapter we shall use a simple vehicle classification system to build a hierarchy of classes. The first class is Vehicle, which implements as its functionality the possibility to set or retrieve the mass of a vehicle. The next level in the object hierarchy are land-, water- and air vehicles.
The initial object hierarchy is illustrated in Figure 15.
Figure 15: Initial object hierarchy of vehicles.
This chapter mainly focuses on the technicalities of class derivation. The distinction between inheritance used to create derived classes whose objects should be considered objects of the base class and inheritance used to implement derived classes in-terms-of their base classes is postponed until the next chapter (14).
Inheritance (and polymorphism, cf. chapter 14) can be used with classes and structs. It is not defined for unions.
13.1: Related types
The relationship between the proposed classes representing different kinds of vehicles is further investigated here. The figure shows the object hierarchy: a Car is a special case of a Land vehicle, which in turn is a special case of a Vehicle.
The class Vehicle represents the `greatest common divisor' in the classification system. Vehicle is given limited functionality: it can store and retrieve a vehicle's mass:
class Vehicle
{
size_t d_mass;
public:
Vehicle();
Vehicle(size_t mass);
size_t mass() const;
void setMass(size_t mass);
};
Using this class, the vehicle's mass can be defined as soon as the corresponding object has been created. At a later stage the mass can be changed or retrieved.
To represent vehicles traveling over land, a new class Land can be defined offering Vehicle's functionality and adding its own specific functionality. Assume we are interested in the speed of land vehicles and in their mass. The relationship between Vehicles and Lands could of course be represented by composition but that would be awkward: composition suggests that a Land vehicle is-implemented-in-terms-of, i.e., contains, a Vehicle, while the natural relationship clearly is that the Land vehicle is a kind of Vehicle.
A relationship in terms of composition would also somewhat complicate our Land class's design. Consider the following example showing a class Land using composition (only the setMass functionality is shown):
class Land
{
Vehicle d_v; // composed Vehicle
public:
void setMass(size_t mass);
};
void Land::setMass(size_t mass)
{
d_v.setMass(mass);
}
Using composition, the Land::setMass function only passes its argument on to Vehicle::setMass. Thus, as far as mass handling is concerned, Land::setMass introduces no extra functionality, just extra code. Clearly this code duplication is superfluous: a Land object is a Vehicle; to state that a Land object contains a Vehicle is at least somewhat peculiar.
The intended relationship is represented better by inheritance. A rule of thumb for choosing between inheritance and composition distinguishes between is-a and has-a relationships. A truck is a vehicle, so Truck should probably derive from Vehicle. On the other hand, a truck has an engine; if you need to model engines in your system, you should probably express this by composing an Engine class inside the Truck class.
Following the above rule of thumb, Land is derived from the base class Vehicle:
class Land: public Vehicle
{
size_t d_speed;
public:
Land();
Land(size_t mass, size_t speed);
void setSpeed(size_t speed);
size_t speed() const;
};
To derive a class (e.g., Land) from another class (e.g., Vehicle) postfix the class name Land in its interface by : public Vehicle:
class Land: public Vehicle
The class Land now contains all the functionality of its base class Vehicle as well as its own features. Here those features are a constructor expecting two arguments and member functions to access the d_speed data member. Here is an example showing the possibilities of the derived class Land:
Land veh{ 1200, 145 };
int main()
{
cout << "Vehicle weighs " << veh.mass() << ";\n"
"its speed is " << veh.speed() << '\n';
}
This example illustrates two features of derivation.
Encapsulation is a core principle of good class design. Encapsulation reduces the dependencies among classes improving the maintainability and testability of classes and allowing us to modify classes without the need to modify depending code. By strictly complying with the principle of data hiding a class's internal data organization may change without requiring depending code to be changed as well. E.g., a class Lines originally storing C-strings could at some point have its data organization changed. It could abandon its char ** storage in favor of a vector<string> based storage. When Lines uses perfect data hiding depending source code may use the new Lines class without requiring any modification at all.
As a rule of thumb, derived classes must be fully recompiled (but don't have to be modified) when the data organization (i.e., the data members) of their base classes change. Adding new member functions to the base class doesn't alter the data organization so no recompilation is needed when new member functions are added.
There is one subtle exception to this rule of thumb: if a new member function is added to a base class and that function happens to be declared as the first virtual member function of the base class (cf. chapter 14 for a discussion of the virtual member function concept) then that also changes the data organization of the base class.
Now that Land has been derived from Vehicle we're ready for our next class derivation. We'll define a class Car to represent automobiles. Agreeing that a Car object is a Land vehicle, and that a Car has a brand name it's easy to design the class Car:
class Car: public Land
{
std::string d_brandName;
public:
Car();
Car(size_t mass, size_t speed, std::string const &name);
std::string const &brandName() const;
};
In the above class definition, Car was derived from Land, which in turn is derived from Vehicle. This is called nested derivation: Land is called Car's direct base class, while Vehicle is called Car's indirect base class.
13.1.1: Inheritance depth: desirable?
Now that Car has been derived from Land and Land has been derived from Vehicle we might easily be seduced into thinking that these class hierarchies are the way to go when designing classes. But maybe we should temper our enthusiasm.
Repeatedly deriving classes from classes quickly results in big, complex class hierarchies that are hard to understand, hard to use and hard to maintain. Hard to understand and use as users of our derived class now also have to learn all its (indirect) base class features as well. Hard to maintain because all those classes are very closely coupled. While it may be true that when data hiding is meticulously adhered to derived classes do not have to be modified when their base classes alter their data organization, it also quickly becomes practically infeasible to change those base classes once more and more (derived) classes depend on their current organization.
What initially looks like a big gain, inheriting the base class's interface, thus becomes a liability. The base class's interface is hardly ever completely required and in the end a class may benefit from explicitly defining its own member functions rather than obtaining them through inheritance.
Often classes can be defined in-terms-of existing classes: some of their features are used, but others need to be shielded off. Consider the stack container: it is commonly implemented in-terms-of a deque, returning deque::back's value as stack::top's value.
When using inheritance to implement an is-a relationship make sure to get the `direction of use' right: inheritance aiming at implementing an is-a relationship should focus on the base class: the base class facilities aren't there to be used by the derived class, but the derived class facilities should redefine (reimplement) the base class facilities using polymorphism (which is the topic of the next chapter), allowing code to use the derived class facilities polymorphically through the base class. We've seen this approach when studying streams: the base class (e.g., ostream) is used time and again. The facilities defined by classes derived from ostream (like ofstream and ostringstream) are then used by code only relying on the facilities offered by the ostream class, never using the derived classes directly.
When designing classes always aim at the lowest possible coupling. Big class hierarchies usually indicate poor understanding of robust class design. When a class's interface is only partially used and if the derived class is implemented in terms of another class consider using composition rather than inheritance and define the appropriate interface members in terms of the members offered by the composed objects.
13.2: Access rights: public, private, protected
Early in the C++ Annotations (cf. section 3.2.1) we encountered two important design principles when developing classes: data hiding and encapsulation. Data hiding restricts control over an object's data to the members of its class, encapsulation is used to restrict access to the functionality of objects. Both principles are invaluable tools for maintaining data integrity.
The keyword private starts sections in class interfaces in which members are declared which can only be accessed by members of the class itself. This is our main tool for realizing data hiding. According to established good practices of class design the public sections are populated with member functions offering a clean interface to the class's functionality. These members allow users to communicate with objects; leaving it to the objects how requests sent to objects are handled. In a well-designed class its objects are in full control of their data.
Inheritance doesn't change these principles, nor does it change the way the `private' and `protected' keywords operate. A derived class does not have access to a base class's private section.
Sometimes this is a bit too restrictive. Consider a class implementing a random number generating streambuf (cf. chapter 6). Such a streambuf can be used to construct an istream irand, after which extractions from irand produces series of random numbers, like in the next example in which 10 random numbers are generated using stream I/O:
RandBuf buffer;
istream irand(&buffer);
for (size_t idx = 0; idx != 10; ++idx)
{
size_t next;
irand >> next;
cout << "next random number: " << next << '\n';
}
The question is, how many random numbers should irand be able to generate? Fortunately, there's no need to answer this question, as RandBuf can be made responsible for generating the next random number. RandBuf, therefore, operates as follows:
(this process is repeated for subsequent random numbers).
Once RandBuf has stored the text representation of the next random number in some buffer, it must tell its base class (streambuf) where to find the random number's characters. For this streambuf offers a member setg, expecting the location and size of the buffer holding the random number's characters.
The member setg clearly cannot be declared in streambuf's private section, as RandBuf must use it to prepare for the extraction of the next random number. But it should also not be in streambuf's public section, as that could easily result in unexpected behavior by irand. Consider the following hypothetical example:
RandBuf randBuf;
istream irand(&randBuf);
char buffer[] = "12";
randBuf.setg(buffer, ...); // setg public: buffer now contains 12
size_t next;
irand >> next; // not a *random* value, but 12.
Clearly there is a close connection between streambuf and its derived class RandBuf. By allowing RandBuf to specify the buffer from which streambuf reads characters RandBuf remains in control, denying other parts of the program to break its well-defined behavior.
This close connection between base- and derived-classes is realized by a third keyword related to the accessibility of class members: protected. Here is how the member setg could have been be declared in a class streambuf:
class streambuf
{
// private data here (as usual)
protected:
void setg(... parameters ...); // available to derived classes
public:
// public members here
};
Protected members are members that can be accessed by derived classes, but are not part of a class's public interface.
Avoid the temptation to declare data members in a class's protected section: it's a sure sign of bad class design as it needlessly results in tight coupling of base and derived classes. The principle of data hiding should not be abandoned now that the keyword protected has been introduced. If a derived class (but not other parts of the software) should be given access to its base class's data, use member functions: accessors and modifiers declared in the base class's protected section. This enforces the intended restricted access without resulting in tightly coupled classes.
13.2.1: Public, protected and private derivation
With inheritance public derivation is frequently used. When public derivation is used the access rights of the base class's interface remains unaltered in the derived class. But the type of inheritance may also be defined as private or protected.
Protected derivation is used when the keyword protected is put in front of the derived class's base class:
class Derived: protected Base
When protected derivation is used all the base class's public and protected members become protected members in the derived class. The derived class may access all the base class's public and protected members. Classes that are in turn derived from the derived class view the base class's members as protected. Any other code (outside of the inheritance tree) is unable to access the base class's members.
Private derivation is used when the keyword private is put in front of the derived class's base class:
class Derived: private Base
When private derivation is used all the base class's members turn into private members in the derived class. The derived class members may access all base class public and protected members but base class members cannot be used elsewhere.
Public derivation should be used to define an is-a relationship between a derived class and a base class: the derived class object is-a base class object allowing the derived class object to be used polymorphically as a base class object in code expecting a base class object. Private inheritance is used in situations where a derived class object is defined in-terms-of the base class where composition cannot be used. There's little documented use for protected inheritance, but one could maybe encounter protected inheritance when defining a base class that is itself a derived class making its base class members available to classes derived from it.
Combinations of inheritance types do occur. For example, when designing a stream-class it is usually derived from std::istream or std::ostream. However, before a stream can be constructed, a std::streambuf must be available. Taking advantage of the fact that the inheritance order is defined in the class interface, we use multiple inheritance (see section 13.6) to derive the class from both std::streambuf and (then) from std::ostream. To the class's users it is a std::ostream and not a std::streambuf. So private derivation is used for the latter, and public derivation for the former class:
class Derived: private std::streambuf, public std::ostream
13.2.2: Promoting access rights
When private or protected derivation is used, users of derived class objects are denied access to the base class members. Private derivation denies access to all base class members to users of the derived class, protected derivation does the same, but allows classes that are in turn derived from the derived class to access the base class's public and protected members.
In some situations this scheme is too restrictive. Consider a class RandStream derived privately from a class RandBuf which is itself derived from std::streambuf and also publicly from istream:
class RandBuf: public std::streambuf
{
// implements a buffer for random numbers
};
class RandStream: private RandBuf, public std::istream
{
// implements a stream to extract random values from
};
Such a class could be used to extract, e.g., random numbers using the standard istream interface.
Although the RandStream class is constructed with the functionality of istream objects in mind, some of the members of the class std::streambuf may be considered useful by themselves. E.g., the function streambuf::in_avail returns a lower bound to the number of characters that can be read immediately. The standard way to make this function available is to define a shadow member calling the base class's member:
class RandStream: private RandBuf, public std::istream
{
// implements a stream to extract random values from
public:
std::streamsize in_avail();
};
inline std::streamsize RandStream::in_avail()
{
return std::streambuf::in_avail();
}
This looks like a lot of work for just making available a member from the protected or private base classes. If the intent is to make available the in_avail member access promotion can be used. Access promotion allows us to specify which members of private (or protected) base classes become available in the protected (or public) interface of the derived class. Here is the above example, now using access promotion:
class RandStream: private RandBuf, public std::istream
{
// implements a stream to extract random values from
public:
using std::streambuf::in_avail;
};
It should be noted that access promotion makes available all overloaded versions of the declared base class member. So, if streambuf would offer not only in_avail but also, e.g., in_avail(size_t *) both members would become part of the public interface.
13.3: The constructor of a derived class
A derived class inherits functionality from its base class (or base classes, as C++ supports multiple inheritance, cf. section 13.6). When a derived class object is constructed it is built on top of its base class object. As a consequence the base class must have been constructed before the actual derived class elements can be initialized. This results in some requirements that must be observed when defining derived class constructors.
A constructor exists to initialize the object's data members. A derived class constructor is also responsible for the proper initialization of its base class. Looking at the definition of the class Land introduced earlier (section 13.1), its constructor could simply be defined as follows:
Land::Land(size_t mass, size_t speed)
{
setMass(mass);
setSpeed(speed);
}
However, this implementation has several disadvantages.
A derived class's base class may be initialized using a dedicated base class constructor by calling the base class constructor in the derived class constructor's initializer clause. Calling a base class constructor in a constructor's initializer clause is called a base class initializer. The base class initializer must be called before initializing any of the derived class's data members and when using the base class initializer none of the derived class data members may be used. When constructing a derived class object the base class is constructed first and only after that construction has successfully completed the derived class data members are available for initialization. Land's constructor may therefore be improved:
Land::Land(size_t mass, size_t speed)
:
Vehicle(mass),
d_speed(speed)
{}
Derived class constructors always by default call their base class's default constructor. This is of course not correct for a derived class's copy constructor. Assuming that the class Land must be provided with a copy constructor its Land const &other parameter also represents the other object's base class:
Land::Land(Land const &other) // assume a copy constructor is needed
:
Vehicle(other), // copy-construct the base class part.
d_speed(other.d_speed) // copy-construct Land's data members
{}
13.3.1: Move construction
As with classes using composition derived classes may benefit from defining a move constructor. A derived class may offer a move constructor for two reasons:
The design of move constructors moving data members was covered in section 9.7. A move constructor for a derived class whose base class is move-aware must anonymize the rvalue reference before passing it to the base class move constructor. The std::move function should be used when implementing the move constructor to move the information in base classes or composed objects to their new destination object.
The first example shows the move constructor for the class Car, assuming it has a movable char *d_brandName data member and assuming that Land is a move-aware class. The second example shows the move constructor for the class Land, assuming that it does not itself have movable data members, but that its Vehicle base class is move-aware:
Car::Car(Car &&tmp)
:
Land(std::move(tmp)), // anonymize `tmp'
d_brandName(tmp.d_brandName) // move the char *'s value
{
tmp.d_brandName = 0;
}
Land(Land &&tmp)
:
Vehicle(std::move(tmp)), // move-aware Vehicle
d_speed(tmp.d_speed) // plain copying of plain data
{}
13.3.2: Move assignment
Derived classes may also benefit from move assignment operations. If the derived class and its base class support swapping then the implementation is simple, following the standard shown earlier in section 9.7.3. For the class Car this could boil down to:
Car &Car::operator=(Car &&tmp)
{
swap(tmp);
return *this;
}
If swapping is not supported then std::move can be used to call the base class's move assignment operator:
Car &Car::operator=(Car &&tmp)
{
static_cast<Land &>(*this) = std::move(tmp);
// move Car's own data members next
return *this;
}
13.3.3: Inheriting constructors
Derived classes can be constructed without explicitly defining derived class constructors. In those cases the available base class constructors are called.
This feature is either used or not. It is not possible to omit some of the derived class constructors, using the corresponding base class constructors instead. To use this feature for classes that are derived from multiple base classes (cf. section 13.6) all the base class constructors must have different signatures. Considering the complexities that are involved here it's probably best to avoid using base class constructors for classes using multiple inheritance.
The construction of derived class objects can be delegated to base class constructor(s) using the following syntax:
class BaseClass
{
public:
// BaseClass constructor(s)
};
class DerivedClass: public BaseClass
{
public:
using BaseClass::BaseClass; // No DerivedClass constructors
// are defined
};
13.3.4: Aggregate Initializations
Aggregates (e.g., structs) can be initialized using the familiar curly-brace notation. Curly brace notations can also be used when initializing base-structs of derived-structs. Each base-level struct receives its own set of curly braces while initializing the derived-level struct. Here is an example:
struct Base
{
int value;
};
struct Derived: public Base
{
string text;
};
// Initializiation of a Derived object:
Derived der{{value}, "hello world"};
// -------
// initialization of Derived's base struct.
13.4: The destructor of a derived class
Destructors of classes are automatically called when an object is destroyed. This also holds true for objects of classes derived from other classes. Assume we have the following situation:
class Base
{
public:
~Base();
};
class Derived: public Base
{
public:
~Derived();
};
int main()
{
Derived derived;
}
At the end of main, the derived object ceases to exists. Hence, its destructor (~Derived) is called. However, since derived is also a Base object, the ~Base destructor is called as well. The base class destructor is never explicitly called from the derived class destructor.
Constructors and destructors are called in a stack-like fashion: when derived is constructed, the appropriate base class constructor is called first, then the appropriate derived class constructor is called. When the object derived is destroyed, its destructor is called first, automatically followed by the activation of the Base class destructor. A derived class destructor is always called before its base class destructor is called.
When the construction of a derived class object did not successfully complete (i.e., the constructor threw an exception) then its destructor is not called. However, the destructors of properly constructed base classes will be called if a derived class constructor throws an exception. This, of course, is it should be: a properly constructed object should also be destroyed, eventually. Example:
#include <iostream>
struct Base
{
~Base()
{
std::cout << "Base destructor\n";
}
};
struct Derived: public Base
{
Derived()
{
throw 1; // at this time Base has been constructed
}
};
int main()
{
try
{
Derived d;
}
catch(...)
{}
}
/*
This program displays `Base destructor'
*/
13.5: Redefining member functions
Derived classes may redefine base class members. Let's assume that a vehicle classification system must also cover trucks, consisting of two parts: the front part, the tractor, pulls the rear part, the trailer. Both the tractor and the trailer have their own mass, and the mass function should return the combined mass.
The definition of a Truck starts with a class definition. Our initial Truck class is derived from Car but it is then expanded to hold one more size_t field representing the additional mass information. Here we choose to represent the mass of the tractor in the Car class and to store the mass of a full truck (tractor + trailer) in its own d_mass data member:
class Truck: public Car
{
size_t d_mass;
public:
Truck();
Truck(size_t tractor_mass, size_t speed, char const *name,
size_t trailer_mass);
void setMass(size_t tractor_mass, size_t trailer_mass);
size_t mass() const;
};
Truck::Truck(size_t tractor_mass, size_t speed, char const *name,
size_t trailer_mass)
:
Car(tractor_mass, speed, name),
d_mass(tractor_mass + trailer_mass)
{}
Note that the class Truck now contains two functions already present in the base class Car: setMass and mass.
void Truck::setMass(size_t tractor_mass, size_t trailer_mass)
{
d_mass = tractor_mass + trailer_mass;
Car::setMass(tractor_mass); // note: Car:: is required
}
truck.Car::setMass(x);
// in the interface:
void setMass(size_t tractor_mass);
// below the interface:
inline void Truck::setMass(size_t tractor_mass)
{
(d_mass -= Car::mass()) += tractor_mass;
Car::setMass(tractor_mass);
}
Now the single argument setMass member function can be used by Truck objects without using the scope resolution operator. As the function is defined inline, no overhead of an additional function call is involved.
class Truck: public Car
{
public:
using Car::setMass;
void setMass(size_t tractor_mass, size_t trailer_mass);
};
A using declaration imports (all overloaded versions of) the mentioned member function directly into the derived class's interface. If a base class member has a signature that is identical to a derived class member then compilation fails (a using Car::mass declaration cannot be added to Truck's interface). Now code may use truck.setMass(5000) as well as truck.setMass(5000, 2000).
Using declarations obey access rights. To prevent non-class members from using setMass(5000) without a scope resolution operator but allowing derived class members to do so the using Car::setMass declaration should be put in the class Truck's private section.
size_t Truck::mass() const
{
return d_mass;
}
Example:
int main()
{
Land vehicle{ 1200, 145 };
Truck lorry{ 3000, 120, "Juggernaut", 2500 };
lorry.Vehicle::setMass(4000);
cout << '\n' << "Tractor weighs " <<
lorry.Vehicle::mass() << '\n' <<
"Truck + trailer weighs " << lorry.mass() << '\n' <<
"Speed is " << lorry.speed() << '\n' <<
"Name is " << lorry.name() << '\n';
}
The class Truck was derived from Car. However, one might question this class design. Since a truck is conceived of as a combination of a tractor and a trailer it is probably better defined using a mixed design, using inheritance for the tractor part (inheriting from Car, and composition for the trailer part).
This redesign changes our point of view from a Truck being a Car (and some strangely added data members) to a Truck still being an Car (the tractor) and containing a Vehicle (the trailer).
Truck's interface is now very specific, not requiring users to study Car's and Vehicle's interfaces and it opens up possibilities for defining `road trains': tractors towing multiple trailers. Here is an example of such an alternate class setup:
class Truck: public Car // the tractor
{
Vehicle d_trailer; // use vector<Vehicle> for road trains
public:
Truck();
Truck(size_t tractor_mass, size_t speed, char const *name,
size_t trailer_mass);
void setMass(size_t tractor_mass, size_t trailer_mass);
void setTractorMass(size_t tractor_mass);
void setTrailerMass(size_t trailer_mass);
size_t tractorMass() const;
size_t trailerMass() const;
// consider:
Vehicle const &trailer() const;
};
13.6: Multiple inheritance
Except for the class Randbuf classes thus far have always been derived from a single base class. In addition to single inheritance C++ also supports multiple inheritance. In multiple inheritance a class is derived from several base classes and hence inherits functionality from multiple parent classes at the same time.
When using multiple inheritance it should be defensible to consider the newly derived class an instantiation of both base classes. Otherwise, composition is more appropriate. In general, linear derivation (using only one base class) is used much more frequently than multiple derivation. Good class design dictates that a class should have a single, well described responsibility and that principle often conflicts with multiple inheritance where we can state that objects of class Derived are both Base1 and Base2 objects.
But then, consider the prototype of an object for which multiple inheritance was used to its extreme: the Swiss army knife! This object is a knife, it is a pair of scissors, it is a can-opener, it is a corkscrew, it is ....
The `Swiss army knife' is an extreme example of multiple inheritance. In C++ there are various good arguments for using multiple inheritance as well, without violating the `one class, one responsibility' principle. We postpone those arguments until the next chapter. The current section concentrates on the technical details of constructing classes using multiple inheritance.
How to construct a `Swiss army knife' in C++? First we need (at least) two base classes. For example, let's assume we are designing a toolkit allowing us to construct an instrument panel of an aircraft's cockpit. We design all kinds of instruments, like an artificial horizon and an altimeter. One of the components that is often seen in aircraft is a nav-com set: a combination of a navigational beacon receiver (the `nav' part) and a radio communication unit (the `com'-part). To define the nav-com set, we start by designing the NavSet class (assume the existence of the classes Intercom, VHF_Dial and Message):
class NavSet
{
public:
NavSet(Intercom &intercom, VHF_Dial &dial);
size_t activeFrequency() const;
size_t standByFrequency() const;
void setStandByFrequency(size_t freq);
size_t toggleActiveStandby();
void setVolume(size_t level);
void identEmphasis(bool on_off);
};
Next we design the class ComSet:
class ComSet
{
public:
ComSet(Intercom &intercom);
size_t frequency() const;
size_t passiveFrequency() const;
void setPassiveFrequency(size_t freq);
size_t toggleFrequencies();
void setAudioLevel(size_t level);
void powerOn(bool on_off);
void testState(bool on_off);
void transmit(Message &message);
};
Using objects of this class we can receive messages, transmitted though the Intercom, but we can also transmit messages using a Message object that's passed to the ComSet object using its transmit member function.
Now we're ready to construct our NavCom set:
class NavComSet: public ComSet, public NavSet
{
public:
NavComSet(Intercom &intercom, VHF_Dial &dial);
};
Done. Now we have defined a NavComSet which is both a NavSet and a ComSet: the facilities of both base classes are now available in the derived class using multiple inheritance.
Please note the following:
NavComSet::NavComSet(Intercom &intercom, VHF_Dial &dial)
:
ComSet(intercom),
NavSet(intercom, dial)
{}
The constructor requires no extra code: Its purpose is to activate the constructors of its base classes. The order in which the base class initializers are called is not dictated by their calling order in the constructor's code, but by the ordering of the base classes in the class interface.
Of course, while defining the base classes, we made life easy on ourselves by strictly using different member function names. So, there is a function setVolume in the NavSet class and a function setAudioLevel in the ComSet class. A bit cheating, since we could expect that both units in fact have a composed object Amplifier, handling the volume setting. A revised class might offer an Amplifier &lifier() const member function, and leave it to the application to set up its own interface to the amplifier. Alternatively, a revised class could define members for setting the volume of either the NavSet or the ComSet parts.
In situations where two base classes offer identically named members special provisions need to be made to prevent ambiguity:
NavComSet navcom(intercom, dial);
navcom.NavSet::setVolume(5); // sets the NavSet volume level
navcom.ComSet::setVolume(5); // sets the ComSet volume level
class NavComSet: public ComSet, public NavSet
{
public:
NavComSet(Intercom &intercom, VHF_Dial &dial);
void comVolume(size_t volume);
void navVolume(size_t volume);
};
inline void NavComSet::comVolume(size_t volume)
{
ComSet::setVolume(volume);
}
inline void NavComSet::navVolume(size_t volume)
{
NavSet::setVolume(volume);
}
class MyNavComSet: public NavComSet
{
public:
MyNavComSet(Intercom &intercom, VHF_Dial &dial);
void comVolume(size_t volume);
void navVolume(size_t volume);
};
inline MyNavComSet::MyNavComSet(Intercom &intercom, VHF_Dial &dial)
:
NavComSet(intercom, dial);
{}
inline void MyNavComSet::comVolume(size_t volume)
{
ComSet::setVolume(volume);
}
inline void MyNavComSet::navVolume(size_t volume)
{
NavSet::setVolume(volume);
}
13.7: Conversions between base classes and derived classes
When public inheritance is used to define classes, an object of a derived class is at the same time an object of the base class. This has important consequences for object assignment and for the situation where pointers or references to such objects are used. Both situations are now discussed.
13.7.1: Conversions with object assignments
Continuing our discussion of the NavCom class, introduced in section 13.6, we now define two objects, a base class and a derived class object:
ComSet com(intercom);
NavComSet navcom(intercom2, dial2);
The object navcom is constructed using an Intercom and a VHF_Dial object. However, a NavComSet is at the same time a ComSet, allowing the assignment from navcom (a derived class object) to com (a base class object):
com = navcom;
The effect of this assignment is that the object com now communicates with intercom2. As a ComSet does not have a VHF_Dial, the navcom's dial is ignored by the assignment. When assigning a base class object from a derived class object only the base class data members are assigned, other data members are dropped, a phenomenon called slicing. In situations like these slicing probably does not have serious consequences, but when passing derived class objects to functions defining base class parameters or when returning derived class objects from functions returning base class objects slicing also occurs and might have unwelcome side-effects.
The assignment from a base class object to a derived class object is problematic. In a statement like
navcom = com;
it isn't clear how to reassign the NavComSet's VHF_Dial data member as they are missing in the ComSet object com. Such an assignment is therefore refused by the compiler. Although derived class objects are also base class objects, the reverse does not hold true: a base class object is not also a derived class object.
The following general rule applies: in assignments in which base class objects and derived class objects are involved, assignments in which data are dropped are legal (called slicing). Assignments in which data remain unspecified are not allowed. Of course, it is possible to overload an assignment operator to allow the assignment of a derived class object from a base class object. To compile the statement
navcom = com;
the class NavComSet must have defined an overloaded assignment operator accepting a ComSet object for its argument. In that case it's up to the programmer to decide what the assignment operator will do with the missing data.
13.7.2: Conversions with pointer assignments
We return to our Vehicle classes, and define the following objects and pointer variable:
Land land(1200, 130);
Car car(500, 75, "Daf");
Truck truck(2600, 120, "Mercedes", 6000);
Vehicle *vp;
Now we can assign the addresses of the three objects of the derived classes to the Vehicle pointer:
vp = &land;
vp = &car;
vp = &truck;
Each of these assignments is acceptable. However, an implicit conversion of the derived class to the base class Vehicle is used, since vp is defined as a pointer to a Vehicle. Hence, when using vp only the member functions manipulating mass can be called as this is the Vehicle's only functionality. As far as the compiler can tell this is the object vp points to.
The same holds true for references to Vehicles. If, e.g., a function is defined having a Vehicle reference parameter, the function may be passed an object of a class derived from Vehicle. Inside the function, the specific Vehicle members remain accessible. This analogy between pointers and references holds true in general. Remember that a reference is nothing but a pointer in disguise: it mimics a plain variable, but actually it is a pointer.
This restricted functionality has an important consequence for the class Truck. Following vp = &truck, vp points to a Truck object. So, vp->mass() returns 2600 instead of 8600 (the combined mass of the cabin and of the trailer: 2600 + 6000), which would have been returned by truck.mass().
When a function is called using a pointer to an object, then the type of the pointer (and not the type of the object) determines which member functions are available and can be executed. In other words, C++ implicitly converts the type of an object reached through a pointer to the pointer's type.
If the actual type of the object pointed to by a pointer is known, an explicit type cast can be used to access the full set of member functions that are available for the object:
Truck truck;
Vehicle *vp;
vp = &truck; // vp now points to a truck object
Truck *trp;
trp = static_cast<Truck *>(vp);
cout << "Make: " << trp->name() << '\n';
Here, the second to last statement specifically casts a Vehicle * variable to a Truck *. As usual (when using casts), this code is not without risk. It only works if vp really points to a Truck. Otherwise the program may produce unexpected results.
13.8: Using non-default constructors with new[]
An often heard complaint is that operator new[] calls the default constructor of a class to initialize the allocated objects. For example, to allocate an array of 10 strings we can do
new string[10];
but it is not possible to use another constructor. Assuming that we'd want to initialize the strings with the text hello world, we can't write something like:
new string{ "hello world" }[10];
The initialization of a dynamically allocated object usually consists of a two-step process: first the array is allocated (implicitly calling the default constructor); second the array's elements are initialized, as in the following little example:
string *sp = new string[10];
fill(sp, sp + 10, string{ "hello world" });
These approaches all suffer from `double initializations', comparable to not using member initializers in constructors.
One way to avoid double initialization is to use inheritance. Inheritance can profitably be used to call non-default constructors in combination with operator new[]. The approach capitalizes on the following:
The above also suggests a possible approach:
Here is a simple example, producing 10 lines containing the text hello world:
#include <iostream>
#include <string>
#include <algorithm>
#include <iterator>
using namespace std;
struct Xstr: public string
{
Xstr()
:
string("hello world")
{}
};
int main()
{
string *sp = new Xstr[10];
copy(sp, sp + 10, ostream_iterator<string>{ cout, "\n" });
}
Of course, the above example is fairly unsophisticated, but it's easy to polish the example: the class Xstr can be defined in an anonymous namespace, accessible only to a function getString() which may be given a size_t nObjects parameter, allowing users to specify the number of hello world-initialized strings they would like to allocate.
Instead of hard-coding the base class arguments it's also possible to use variables or functions providing the appropriate values for the base class constructor's arguments. In the next example a local class Xstr is defined inside a function nStrings(size_t nObjects, char const *fname), expecting the number of string objects to allocate and the name of a file whose subsequent lines are used to initialize the objects. The local class is invisible outside of the function nStrings, so no special namespace safeguards are required.
As discussed in section 7.9, members of local classes cannot access local variables from their surrounding function. However, they can access global and static data defined by the surrounding function.
Using a local class neatly allows us to hide the implementation details within the function nStrings, which simply opens the file, allocates the objects, and closes the file again. Since the local class is derived from string, it can use any string constructor for its base class initializer. In this particular case it doesn't even do that, as copy elision ensures that Xstr's base class string in fact is the string returned by nextLine. That latter function's string subsequently receives the lines of the just opened stream. As nextLine is a static member function, it's available to Xstr default constructor's member initializers even though at that time the Xstr object isn't available yet.
#include <fstream>
#include <iostream>
#include <string>
#include <algorithm>
#include <iterator>
using namespace std;
string *nStrings(size_t size, char const *fname)
{
static thread_local ifstream in;
struct Xstr: public string
{
Xstr()
:
string(nextLine())
{}
static string nextLine()
{
string line;
getline(in, line);
return line; // copy elision turns this
} // into Xstr's base class string
};
in.open(fname);
string *sp = new Xstr[size];
in.close();
return sp;
}
int main()
{
string *sp = nStrings(10, "nstrings.cc");
copy(sp, sp + 10, ostream_iterator<string>{ cout, "\n" });
}
When this program is run, it displays the first 10 lines of the file nstrings.cc.
Note that the example defines a static thread_local ifstream object. Thread_local variables are formally introduced in chapter 20. The thread_local specification assures that the function can safely be used, even in multithreaded programs.
A completely different way to avoid the double initialization (not using inheritance) is to use placement new (cf. section 9.1.5): simply allocate the required amount of memory followed by the proper in-place allocation of the objects, using the appropriate constructors. In the next example a pair of static construct/destroy members are used to perform the required initialization. In the example construct expects an istream that provides the initialization strings for objects of a class String simply containing a std::string object. Construct first allocates enough memory for the n String objects plus room for an initial size_t value. This initial size_t value is then initialized with n. Next, in a for statement, lines are read from the provided stream and the lines are passed to the constructors, using placement new calls. Finally the address of the first String object is returned. Then, the destruction of the objects is handled by the member destroy. It retrieves the number of objects to destroy from the size_t it finds just before the location of the address of the first object to destroy. The objects are then destroyed by explicitly calling their destructors. Finally the raw memory, originally allocated by construct is returned.
#include <fstream>
#include <iostream>
#include <string>
using namespace std;
class String
{
union Ptrs
{
void *vp;
String *sp;
size_t *np;
};
std::string d_str;
public:
String(std::string const &txt)
:
d_str(txt)
{}
~String()
{
cout << "destructor: " << d_str << '\n';
}
static String *construct(istream &in, size_t n)
{
Ptrs p = {operator new(n * sizeof(String) + sizeof(size_t))};
*p.np++ = n;
string line;
for (size_t idx = 0; idx != n; ++idx)
{
getline(in, line);
new(p.sp + idx) String{ line };
}
return p.sp;
}
static void destroy(String *sp)
{
Ptrs p = {sp};
--p.np;
for (size_t n = *p.np; n--; )
sp++->~String();
operator delete(p.vp);
}
};
int main()
{
String *sp = String::construct(cin, 5);
String::destroy(sp);
}
/*
After providing 5 lines containing, respectively
alpha, bravo, charley, delta, echo
the program displays:
destructor: alpha
destructor: bravo
destructor: charley
destructor: delta
destructor: echo
*/
Chapter 14: Polymorphism
Using inheritance classes may be derived from other classes, called base classes. In the previous chapter we saw that base class pointers may be used to point to derived class objects. We also saw that when a base class pointer points to an object of a derived class the pointer's type, rather than the object's type, determines which member functions are visible. So when a Vehicle *vp, points to a Car object Car's speed or brandName members can't be used.
In the previous chapter two fundamental ways classes may be related to each other were discussed: a class may be implemented-in-terms-of another class and it can be stated that a derived class is-a base class. The former relationship is usually implemented using composition, the latter is usually implemented using a special form of inheritance, called polymorphism, the topic of this chapter.
An is-a relationship between classes allows us to apply the Liskov Substitution Principle (LSP) according to which a derived class object may be passed to and used by code expecting a pointer or reference to a base class object. In the C++ Annotations so far the LSP has been applied many times. Every time an ostringstream, ofstream or fstream was passed to functions expecting an ostream we've been applying this principle. In this chapter we'll discover how to design our own classes accordingly.
LSP is implemented using a technique called polymorphism: although a base class pointer is used it performs actions defined in the (derived) class of the object it actually points to. So, a Vehicle *vp might behave like a Car * when pointing to a Car (In one of the StarTrek movies, Capt. Kirk was in trouble, as usual. He met an extremely beautiful lady who, however, later on changed into a hideous troll. Kirk was quite surprised, but the lady told him: ``Didn't you know I am a polymorph?'').
Polymorphism is implemented using a feature called late binding. It's called that way because the decision which function to call (a base class function or a function of a derived class) cannot be made at compile-time, but is postponed until the program is actually executed: only then it is determined which member function will actually be called.
In C++ late binding is not the default way functions are called. By default static binding (or early binding) is used. With static binding the functions that are called are determined by the compiler, merely using the class types of objects, object pointers or object references.
Late binding is an inherently different (and slightly slower) process as it is decided at run-time, rather than at compile-time what function is going to be called. As C++ supports both late- and early-binding C++ programmers are offered an option as to what kind of binding to use. Choices can be optimized to the situations at hand. Many other languages offering object oriented facilities (e.g., Java) only or by default offer late binding. C++ programmers should be keenly aware of this. Expecting early binding and getting late binding may easily produce nasty bugs.
Let's look at a simple example to start appreciating the differences between late and early binding. The example merely illustrates. Explanations of why things are as shown are shortly provided.
Consider the following little program:
#include <iostream>
using namespace std;
class Base
{
protected:
void hello()
{
cout << "base hello\n";
}
public:
void process()
{
hello();
}
};
class Derived: public Base
{
protected:
void hello()
{
cout << "derived hello\n";
}
};
int main()
{
Derived derived;
derived.process();
}
The important characteristic of the above program is the Base::process function, calling hello. As process is the only member that is defined in the public interface it is the only member that can be called by code not belonging to the two classes. The class Derived, derived from Base clearly inherits Base's interface and so process is also available in Derived. So the Derived object in main is able to call process, but not hello.
So far, so good. Nothing new, all this was covered in the previous chapter. One may wonder why Derived was defined at all. It was presumably defined to create an implementation of hello that's appropriate for Derived but differing from Base::hello's implementation. Derived's author's reasoning was as follows: Base's implementation of hello is not appropriate; a Derived class object can remedy that by providing an appropriate implementation. Furthermore our author reasoned:
``since the type of an object determines the interface that is used, process must call Derived::hello as hello is called via process from a Derived class object''.
Unfortunately our author's reasoning is flawed, due to static binding. When Base::process was compiled static binding caused the compiler to bind the hello call to Base::hello().
The author intended to create a Derived class that is-a Base class. That only partially succeeded: Base's interface was inherited, but after that Derived has relinquished all control over what happens. Once we're in process we're only able to see Base's member implementations. Polymorphism offers a way out, allowing us to redefine (in a derived class) members of a base class allowing these redefined members to be used from the base class's interface.
This is the essence of LSP: public inheritance should not be used to reuse the base class members (in derived classes) but to be reused (by the base class, polymorphically using derived class members reimplementing base class members).
Take a second to appreciate the implications of the above little program. The hello and process members aren't too impressive, but the implications of the example are. The process member could implement directory travel, hello could define the action to perform when encountering a file. Base::hello might simply show the name of a file, but Derived::hello might delete the file; might only list its name if its younger than a certain age; might list its name if it contains a certain text; etc., etc.. Up to now Derived would have to implement process's actions itself; Up to now code expecting a Base class reference or pointer could only perform Base's actions. Polymorphism allows us to reimplement members of base classes and to use those reimplemented members in code expecting base class references or pointers. Using polymorphism existing code may be reused by derived classes reimplementing the appropriate members of their base classes. It's about time to uncover how this magic can be realized.
Polymorphism, which is not the default in C++, solves the problem and allows the author of the classes to reach its goal. For the curious reader: prefix void hello() in the Base class with the keyword virtual and recompile. Running the modified program produces the intended and expected derived hello. Why this happens is explained next.
14.1: Virtual functions
By default the behavior of a member function called via a pointer or reference is determined by the implementation of that function in the pointer's or reference's class. E.g., a Vehicle * activates Vehicle's member functions, even when pointing to an object of a derived class. This is known as as early or static binding: the function to call is determined at compile-time. In C++ late or dynamic binding is realized using virtual member functions.
A member function becomes a virtual member function when its declaration starts with the keyword virtual. It is stressed once again that in C++, different from several other object oriented languages, this is not the default situation. By default static binding is used.
Once a function is declared virtual in a base class, it remains virtual in all derived classes. The keyword virtual should not be mentioned for members in derived classes which are declared virtual in base classes. In derived classes those members should be provided with the override indicator, allowing the compiler to verify that you're indeed referring to an existing virtual member function.
In the vehicle classification system (see section 13.1), let's concentrate on the members mass and setMass. These members define the user interface of the class Vehicle. What we would like to accomplish is that this user interface can be used for Vehicle and for any class inheriting from Vehicle, since objects of those classes are themselves also Vehicles.
If we can define the user interface of our base class (e.g., Vehicle) such that it remains usable irrespective of the classes we derive from Vehicle our software achieves an enormous reusability: we design or software around Vehicle's user interface, and our software will also properly function for derived classes. Using plain inheritance doesn't accomplish this. If we define
std::ostream &operator<<(std::ostream &out, Vehicle const &vehicle)
{
return out << "Vehicle's mass is " << vehicle.mass() << " kg.";
}
and Vehicle's member mass returns 0, but Car's member mass returns 1000, then twice a mass of 0 is reported when the following program is executed:
int main()
{
Vehicle vehicle;
Car vw(1000);
cout << vehicle << '\n' << vw << endl;
}
We've defined an overloaded insertion operator, but since it only knows about Vehicle's user interface, `cout << vw' will use vw's Vehicle's user interface as well, thus displaying a mass of 0.
Reusability is enhanced if we add a redefinable interface to the base class's interface. A redefinable interface allows derived classes to fill in their own implementation, without affecting the user interface. At the same time the user interface will behave according to the derived class's wishes, and not just to the base class's default implementation.
Members of the reusable interface should be declared in the class's private sections: conceptually they merely belong to their own classes (cf. section 14.7). In the base class these members should be declared virtual. These members can be redefined (overridden) by derived classes, and should there be provided with override indicators.
We keep our user interface (mass), and add the redefinable member vmass to Vehicle's interface:
class Vehicle
{
public:
size_t mass() const;
size_t si_mass() const; // see below
private:
virtual size_t vmass() const;
};
Separating the user interface from the redefinable interface is a sensible thing to do. It allows us to fine-tune the user interface (only one point of maintenance), while at the same time allowing us to standardize the expected behavior of the members of the redefinable interface. E.g., in many countries the International system of units is used, using the kilogram as the unit for mass. Some countries use other units (like the lbs: 1 kg being approx. 2.2046 lbs). By separating the user interface from the redefinable interface we can use one standard for the redefinable interface, and keep the flexibility of transforming the information ad-lib in the user interface.
Just to maintain a clean separation of user- and redefinable interface we might consider adding another accessor to Vehicle, providing the si_mass, simply implemented like this:
size_t Vehicle::si_mass() const
{
return vmass();
}
If Vehicle supports a member d_massFactor then its mass member can be implemented like this:
size_t Vehicle::mass()
{
return d_massFactor * si_mass();
}
Vehicle itself could define vmass so that it returns a token value. E.g.,
size_t Vehicle::vmass()
{
return 0;
}
Now let's have a look at the class Car. It is derived from Vehicle, and it inherits Vehicle's user interface. It also has a data member size_t d_mass, and it implements its own reusable interface:
class Car: public Vehicle
{
...
private:
size_t vmass() override;
}
If Car constructors require us to specify the car's mass (stored in d_mass), then Car simply implements its vmass member like this:
size_t Car::vmass() const
{
return d_mass;
}
The class Truck, inheriting from Car needs two mass values: the tractor's mass and the trailer's mass. The tractor's mass is passed to its Car base class, the trailor's mass is passed to its Vehicle d_trailor data member. Truck, too, overrides vmass, this time returning the sum of its tractor and trailor masses:
size_t Truck::vmass() const
{
return Car::si_mass() + d_trailer.si_mass();
}
Once a class member has been declared virtual it becomes a virtual member in all derived classes, whether or not these members are provided with the override indicator. But override should be used, as it allows to compiler to catch typos when writing down the derived class interface.
A member function may be declared virtual anywhere in a class hierarchy, but this probably defeats the underlying polymorphic class design, as the original base class is no longer capable of completely covering the redefinable interfaces of derived classes. If, e.g, mass is declared virtual in Car, but not in Vehicle, then the specific characteristics of virtual member functions would only be available for Car objects and for objects of classes derived from Car. For a Vehicle pointer or reference static binding would remain to be used.
The effect of late binding (polymorphism) is illustrated below:
void showInfo(Vehicle &vehicle)
{
cout << "Info: " << vehicle << '\n';
}
int main()
{
Car car(1200); // car with mass 1200
Truck truck(6000, 115, // truck with cabin mass 6000,
"Scania", 15000); // speed 115, make Scania,
// trailer mass 15000
showInfo(car); // see (1) below
showInfo(truck); // see (2) below
Vehicle *vp = &truck;
cout << vp->speed() << '\n';// see (3) below
}
Now that mass is defined virtual, late binding is used:
The example illustrates that when a pointer to a class is used only the members of that class can be called. A member's virtual characteristic only influences the type of binding (early vs. late), not the set of member functions that is visible to the pointer.
Through virtual members derived classes may redefine the behavior performed by functions called from base class members or from pointers or references to base class objects. This redefinition of base class members by derived classes is called overriding members.
14.2: Virtual destructors
When an object ceases to exist the object's destructor is called. Now consider the following code fragment (cf. section 13.1):
Vehicle *vp = new Land{ 1000, 120 };
delete vp; // object destroyed
Here delete is applied to a base class pointer. As the base class defines the available interface delete vp calls ~Vehicle and ~Land remains out of sight. Assuming that Land allocates memory a memory leak results. Freeing memory is not the only action destructors can perform. In general they may perform any action that's necessary when an object ceases to exist. But here none of the actions defined by ~Land are performed. Bad news....
In C++ this problem is solved by virtual destructors. A destructor can be declared virtual. When a base class destructor is declared virtual then the destructor of the actual class pointed to by a base class pointer bp is going to be called when delete bp is executed. Thus, late binding is realized for destructors even though the destructors of derived classes have unique names. Example:
class Vehicle
{
public:
virtual ~Vehicle(); // all derived class destructors are
// now virtual as well.
};
By declaring a virtual destructor, the above delete operation (delete vp) correctly calls Land's destructor, rather than Vehicle's destructor.
Once a destructor is called it performs as usual, whether or not it is a virtual destructor. So, ~Land first executes its own statements and then calls ~Vehicle. Thus, the above delete vp statement uses late binding to call ~Vehicle and from this point on the object destruction proceeds as usual.
Destructors should always be defined virtual in classes designed as a base class from which other classes are going to be derived. Often those destructors themselves have no tasks to perform. In these cases the virtual destructor is given an empty body. For example, the definition of Vehicle::~Vehicle() may be as simple as:
Vehicle::~Vehicle()
{}
Resist the temptation to define virtual destructors (even empty destructors) inline as this complicates class maintenance. Section 14.11 discusses the reason behind this rule of thumb.
14.3: Pure virtual functions
The base class Vehicle is provided with its own concrete implementations of its virtual members (mass and setMass). However, virtual member functions do not necessarily have to be implemented in base classes.
When the implementations of virtual members are omitted from base classes the class imposes requirements upon derived classes. The derived classes are required to provide the `missing implementations'.
This approach, in some languages (like C#, Delphi and Java) known as an interface, defines a protocol. Derived classes must obey the protocol by implementing the as yet not implemented members. If a class contains at least one member whose implementation is missing no objects of that class can be defined.
Such incompletely defined classes are always base classes. They enforce a protocol by merely declaring names, return values and arguments of some of their members. These classes are call abstract classes or abstract base classes. Derived classes become non-abstract classes by implementing the as yet not implemented members.
Abstract base classes are the foundation of many design patterns (cf. Gamma et al. (1995)) , allowing the programmer to create highly reusable software. Some of these design patterns are covered by the C++ Annotations (e.g, the Template Method in section 24.2), but for a thorough discussion of design patterns the reader is referred to Gamma et al.'s book.
Members that are merely declared in base classes are called pure virtual functions. A virtual member becomes a pure virtual member by postfixing = 0 to its declaration (i.e., by replacing the semicolon ending its declaration by `= 0;'). Example:
#include <iosfwd>
class Base
{
public:
virtual ~Base();
virtual std::ostream &insertInto(std::ostream &out) const = 0;
};
inline std::ostream &operator<<(std::ostream &out, Base const &base)
{
return base.insertInto(out);
}
All classes derived from Base must implement the insertInto member function, or their objects cannot be constructed. This is neat: all objects of class types derived from Base can now always be inserted into ostream objects.
Could the virtual destructor of a base class ever be a pure virtual function? The answer to this question is no. First of all, there is no need to enforce the availability of destructors in derived classes as destructors are provided by default (unless a destructor is declared with the = delete attribute). Second, if it is a pure virtual member its implementation does not exist. However, derived class destructors eventually call their base class destructors. How could they call base class destructors if their implementations are lacking? More about this in the next section.
Often, but not necessarily, pure virtual member functions are const member functions. This allows the construction of constant derived class objects. In other situations this might not be necessary (or realistic), and non-constant member functions might be required. The general rule for const member functions also applies to pure virtual functions: if the member function alters the object's data members, it cannot be a const member function.
Abstract base classes frequently don't have data members. However, once a base class declares a pure virtual member it must be declared identically in derived classes. If the implementation of a pure virtual function in a derived class alters the derived class object's data, then that function cannot be declared as a const member. Therefore, the author of an abstract base class should carefully consider whether a pure virtual member function should be a const member function or not.
14.3.1: Implementing pure virtual functions
Pure virtual member functions may be implemented. To implement a pure virtual member function, provide it with its normal = 0; specification, but implement it as well. Since the = 0; ends in a semicolon, the pure virtual member is always at most a declaration in its class, but an implementation may either be provided outside from its interface (maybe using inline).
Pure virtual member functions may be called from derived class objects or from its class or derived class members by specifying the base class and scope resolution operator together with the member to be called. Example:
#include <iostream>
class Base
{
public:
virtual ~Base();
virtual void pureimp() = 0;
};
Base::~Base()
{}
void Base::pureimp()
{
std::cout << "Base::pureimp() called\n";
}
class Derived: public Base
{
public:
virtual void pureimp();
};
inline void Derived::pureimp()
{
Base::pureimp();
std::cout << "Derived::pureimp() called\n";
}
int main()
{
Derived derived;
derived.pureimp();
derived.Base::pureimp();
Derived *dp = &derived;
dp->pureimp();
dp->Base::pureimp();
}
// Output:
// Base::pureimp() called
// Derived::pureimp() called
// Base::pureimp() called
// Base::pureimp() called
// Derived::pureimp() called
// Base::pureimp() called
Implementing a pure virtual member has limited use. One could argue that the pure virtual member function's implementation may be used to perform tasks that can already be performed at the base class level. However, there is no guarantee that the base class virtual member function is actually going to be called. Therefore base class specific tasks could as well be offered by a separate member, without blurring the distinction between a member doing some work and a pure virtual member enforcing a protocol.
14.4: Explicit virtual overrides
Consider the following situations:
Two special identifiers, final and override are used to realize the above. These identifiers are special in the sense that they only require their special meanings in specific contexts. Outside of this context they are just plain identifiers, allowing the programmer to define a variable like bool final.
The identifier final can be applied to class declarations to indicate that the class cannot be used as a base class. E.g.:
class Base1 final // cannot be a base class
{};
class Derived1: public Base1 // ERR: Base1 is final
{};
class Base2 // OK as base class
{};
class Derived2 final: public Base2 // OK, but Derived2 can't be
{}; // used as a base class
class Derived: public Derived2 // ERR: Derived2 is final
{};
The identifier final can also be added to virtual member declarations. This indicates that those virtual members cannot be overridden by derived classes. The restricted polymorphic character of a class, mentioned above, can thus be realized as follows:
class Base
{
virtual int v_process(); // define polymorphic behavior
virtual int v_call();
virtual int v_display();
};
class Derived: public Base // Derived restricts polymorphism
{ // to v_call and v_display
virtual int v_process() final;
};
class Derived2: public Derived
{
// int v_process(); No go: Derived:v_process is final
virtual int v_display(); // OK to override
};
To allow the compiler to detect typos, differences in parameter types, or differences in member function modifiers (e.g., const vs. non-const) the identifier override can (should) be appended to derived class members overriding base class members. E.g.,
class Base
{
virtual int v_process();
virtual int v_call() const;
virtual int v_display(std::ostream &out);
};
class Derived: public Base
{
virtual int v_proces() override; // ERR: v_proces != v_process
virtual int v_call() override; // ERR: not const
// ERR: parameter types differ
virtual int v_display(std::istream &out) override;
};
14.5: Virtual functions and multiple inheritance
In chapter 6 we encountered the class fstream, one class offering features of ifstream and ofstream. In chapter 13 we learned that a class may be derived from multiple base classes. Such a derived class inherits the properties of all its base classes. Polymorphism can also be used in combination with multiple inheritance.
Consider what would happen if more than one `path' leads from the derived class up to its (base) classes. This is illustrated in the next (fictitious) example where a class Derived is doubly derived from Base:
class Base
{
int d_field;
public:
void setfield(int val);
int field() const;
};
inline void Base::setfield(int val)
{
d_field = val;
}
inline int Base::field() const
{
return d_field;
}
class Derived: public Base, public Base
{};
Due to the double derivation, Base's functionality now occurs twice in Derived. This results in ambiguity: when the function setfield() is called for a Derived class object, which function will that be as there are two of them? The scope resolution operator won't come to the rescue and so the C++ compiler cannot compile the above example and (correctly) identifies an error.
The above code clearly duplicates its base class in the derivation, which can of course easily be avoided by not doubly deriving from Base (or by using composition (!)). But duplication of a base class can also occur through nested inheritance, where an object is derived from, e.g., a Car and from an Air (cf. section 13.1). Such a class would be needed to represent, e.g., a flying car (such as the one in James Bond vs. the Man with the Golden Gun...). An AirCar would ultimately contain two Vehicles, and hence two mass fields, two setMass() functions and two mass() functions. Is this what we want?
14.5.1: Ambiguity in multiple inheritance
Let's investigate closer why an AirCar introduces ambiguity, when derived from Car and Air.
The duplication of Vehicle data is further illustrated in Figure 16.
Figure 16: Duplication of a base class in multiple derivation.
The internal organization of an AirCar is shown in Figure 17
Figure 17: Internal organization of an AirCar object.
The C++ compiler detects the ambiguity in an AirCar object, and will therefore not compile statements like:
AirCar jBond;
cout << jBond.mass() << '\n';
Which member function mass to call cannot be determined by the compiler but the programmer has two possibilities to resolve the ambiguity for the compiler:
// let's hope that the mass is kept in the Car
// part of the object..
cout << jBond.Car::mass() << '\n';
The scope resolution operator and the class name are put right before the name of the member function.
int AirCar::mass() const
{
return Car::mass();
}
The second possibility is preferred as it does not require the compiler to flag an error; nor does it require the programmer using the class AirCar to take special precautions.
However, there exists a more elegant solution, discussed in the next section.
14.5.2: Virtual base classes
As illustrated in Figure 17, an AirCar represents two Vehicles. This not only results in an ambiguity about which function to use to access the mass data, but it also defines two mass fields in an AirCar. This is slightly redundant, since we can assume that an AirCar has but one mass.
It is, however, possible to define an AirCar as a class consisting of but one Vehicle and yet using multiple derivation. This is realized by defining the base classes that are multiply mentioned in a derived class's inheritance tree as a virtual base class.
For the class AirCar this implies a small change when deriving an AirCar from Land and Air classes:
class Land: virtual public Vehicle
{
// etc
};
class Car: public Land
{
// etc
};
class Air: virtual public Vehicle
{
// etc
};
class AirCar: public Car, public Air
{
};
Virtual derivation ensures that a Vehicle is only added once to a derived class. This means that the route along which a Vehicle is added to an AirCar is no longer depending on its direct base classes; we can only state that an AirCar is a Vehicle. The internal organization of an AirCar after virtual derivation is shown in Figure 18.
Figure 18: Internal organization of an AirCar object when the base classes are virtual.
When a class Third inherits from a base class Second which in turn inherits from a base class First then the First class constructor called by the Second class constructor is also used when this Second constructor is used when constructing a Third object. Example:
class First
{
public:
First(int x);
};
class Second: public First
{
public:
Second(int x)
:
First(x)
{}
};
class Third: public Second
{
public:
Third(int x)
:
Second(x) // calls First(x)
{}
};
The above no longer holds true when Second uses virtual derivation. When Second uses virtual derivation its base class constructor is ignored when Second's constructor is called from Third. Instead Second by default calls First's default constructor. This is illustrated by the next example:
class First
{
public:
First()
{
cout << "First()\n";
}
First(int x);
};
class Second: public virtual First // note: virtual
{
public:
Second(int x)
:
First(x)
{}
};
class Third: public Second
{
public:
Third(int x)
:
Second(x)
{}
};
int main()
{
Third third{ 3 }; // displays `First()'
}
When constructing Third First's default constructor is used by default. Third's constructor, however, may overrule this default behavior by explicitly specifying the constructor to use. Since the First object must be available before Second can be constructed it must be specified first. To call First(int) when constructing Third(int) the latter constructor can be defined as follows:
class Third: public Second
{
public:
Third(int x)
:
First(x), // now First(int) is called.
Second(x)
{}
};
This behavior may seem puzzling when simple linear inheritance is used but it makes sense when multiple inheritance is used with base classes using virtual inheritance. Consider AirCar: when Air and Car both virtually inherit from Vehicle will Air and Car both initialize the common Vehicle object? If so, which one is going to be called first? What if Air and Car use different Vehicle constructors? All these questions can be avoided by passing the responsibility for the initialization of a common base class to the class eventually using the common base class object. In the above example Third. Hence Third is provided an opportunity to specify the constructor to use when initializing First.
Multiple inheritance may also be used to inherit from classes that do not all use virtual inheritance. Assume we have two classes, Derived1 and Derived2, both (possibly virtually) derived from Base.
We now address the question which constructors will be called when calling a constructor of the class Final: public Derived1, public Derived2.
To distinguish the involved constructors Base1 indicates the Base class constructor called as base class initializer for Derived1 (and analogously: Base2 called from Derived2). A plain Base indicates Base's default constructor.
Derived1 and Derived2 indicate the base class initializers used when constructing a Final object.
Now we're ready to distinguish the various cases when constructing an object of the class Final: public Derived1, public Derived2:
Derived1: public Base
Derived2: public Base
This is normal, non virtual multiple derivation. The following constructors are called in the order shown:
Base1,
Derived1,
Base2,
Derived2
Derived1: public Base
Derived2: virtual public Base
Only Derived2 uses virtual derivation. Derived2's base class constructor is ignored. Instead, Base is called and it is called prior to any other constructor:
Base,
Base1,
Derived1,
Derived2
As only one class uses virtual derivation, two Base class objects remain available in the eventual Final class.
Derived1: virtual public Base
Derived2: public Base
Only Derived1 uses virtual derivation. Derived1's base class constructor is ignored. Instead, Base is called and it is called prior to any other constructor. Different from the first (non-virtual) case Base is now called, rather than Base1:
Base,
Derived1,
Base2,
Derived2
Derived1: virtual public Base
Derived2: virtual public Base
Both base classes use virtual derivation and so only one Base class object will be present in the Final class object. The following constructors are called in the order shown:
Base,
Derived1,
Derived2
Virtual derivation is, in contrast to virtual functions, a pure compile-time issue. Virtual inheritance merely defines how the compiler defines a class's data organization and construction process.
14.5.3: When virtual derivation is not appropriate
Virtual inheritance can be used to merge multiply occurring base classes. However, situations may be encountered where multiple occurrences of base classes is appropriate. Consider the definition of a Truck (cf. section 13.5):
class Truck: public Car
{
int d_trailer_mass;
public:
Truck();
Truck(int engine_mass, int sp, char const *nm,
int trailer_mass);
void setMass(int engine_mass, int trailer_mass);
int mass() const;
};
Truck::Truck(int engine_mass, int sp, char const *nm,
int trailer_mass)
:
Car(engine_mass, sp, nm)
{
d_trailer_mass = trailer_mass;
}
int Truck::mass() const
{
return // sum of:
Car::mass() + // engine part plus
trailer_mass; // the trailer
}
This definition shows how a Truck object is constructed to contain two mass fields: one via its derivation from Car and one via its own int d_trailer_mass data member. Such a definition is of course valid, but it could also be rewritten. We could derive a Truck from a Car and from a Vehicle, thereby explicitly requesting the double presence of a Vehicle; one for the mass of the engine and cabin, and one for the mass of the trailer. A slight complication is that a class organization like
class Truck: public Car, public Vehicle
is not accepted by the C++ compiler. As a Vehicle is already part of a Car, it is therefore not needed once again. This organization may, however be forced using a small trick. By creating an additional class inheriting from Vehicle and deriving Truck from that additional class rather than directly from Vehicle the problem is solved. Simply derive a class TrailerVeh from Vehicle, and then Truck from Car and TrailerVeh:
class TrailerVeh: public Vehicle
{
public:
TrailerVeh(int mass)
:
Vehicle(mass)
{}
};
class Truck: public Car, public TrailerVeh
{
public:
Truck();
Truck(int engine_mass, int sp, char const *nm, int trailer_mass);
void setMass(int engine_mass, int trailer_mass);
int mass() const;
};
inline Truck::Truck(int engine_mass, int sp, char const *nm,
int trailer_mass)
:
Car(engine_mass, sp, nm),
TrailerVeh(trailer_mass)
{}
inline int Truck::mass() const
{
return // sum of:
Car::mass() + // engine part plus
TrailerVeh::mass(); // the trailer
}
14.6: Run-time type identification
C++ offers two ways to retrieve types of objects and expressions at run-time. The possibilities of C++'s run-time type identification are limited compared to languages like Java. Usually static type checking and static type identification is used in C++. Static type checking is possibly safer and certainly more efficient than run-time type identification and should therefore be preferred over run-time type identification. But situations exist where run-time type identification is appropriate. C++ offers run-time type identification through the dynamic cast and typeid operators.
These operators can be used with objects of classes having at least one virtual member function.
14.6.1: The dynamic_cast operator
The dynamic_cast<> operator is used to convert a base class pointer or reference to, respectively, a derived class pointer or reference. This is also called down-casting as direction of the cast is down the inheritance tree.
A dynamic cast's actions are determined run-time; it can only be used if the base class declares at least one virtual member function. For the dynamic cast to succeed, the destination class's Vtable must be equal to the Vtable to which the dynamic cast's argument refers to, lest the cast fails and returns 0 (if a dynamic cast of a pointer was requested) or throws a std::bad_cast exception (if a dynamic cast of a reference was requested).
In the following example a pointer to the class Derived is obtained from the Base class pointer bp:
class Base
{
public:
virtual ~Base();
};
class Derived: public Base
{
public:
char const *toString();
};
inline char const *Derived::toString()
{
return "Derived object";
}
int main()
{
Base *bp;
Derived *dp,
Derived d;
bp = &d;
dp = dynamic_cast<Derived *>(bp);
if (dp)
cout << dp->toString() << '\n';
else
cout << "dynamic cast conversion failed\n";
}
In the condition of the above if statement the success of the dynamic cast is verified. This verification is performed at run-time, as the actual class of the objects to which the pointer points is only known by then.
If a base class pointer is provided, the dynamic cast operator returns 0 on failure and a pointer to the requested derived class on success.
Assume a vector<Base *> is used. The pointers of such a vector may point to objects of various classes, all derived from Base. A dynamic cast returns a pointer to the specified class if the base class pointer indeed points to an object of the specified class and returns 0 otherwise.
We could determine the actual class of an object a pointer points to by performing a series of checks to find the derived class to which a base class pointer points. Example:
class Base
{
public:
virtual ~Base();
};
class Derived1: public Base;
class Derived2: public Base;
int main()
{
vector<Base *> vb(initializeBase());
Base *bp = vb.front();
if (dynamic_cast<Derived1 *>(bp))
cout << "bp points to a Derived1 class object\n";
else if (dynamic_cast<Derived2 *>(bp))
cout << "bp points to a Derived2 class object\n";
}
Alternatively, a reference to a base class object may be available. In this case the dynamic_cast operator throws an exception if the down casting fails. Example:
#include <iostream>
#include <typeinfo>
class Base
{
public:
virtual ~Base();
virtual char const *toString();
};
inline char const *Base::toString()
{
return "Base::toString() called";
}
class Derived1: public Base
{};
class Derived2: public Base
{};
Base::~Base()
{}
void process(Base &b)
{
try
{
std::cout << dynamic_cast<Derived1 &>(b).toString() << '\n';
}
catch (std::bad_cast)
{}
try
{
std::cout << dynamic_cast<Derived2 &>(b).toString() << '\n';
}
catch (std::bad_cast)
{
std::cout << "Bad cast to Derived2\n";
}
}
int main()
{
Derived1 d;
process(d);
}
/*
Generated output:
Base::toString() called
Bad cast to Derived2
*/
In this example the value std::bad_cast is used. A std::bad_cast exception is thrown if the dynamic cast of a reference to a derived class object fails.
Note the form of the catch clause: bad_cast is the name of a type. Section 17.4.1 describes how such a type can be defined.
The dynamic cast operator is a useful tool when an existing base class cannot or should not be modified (e.g., when the sources are not available), and a derived class may be modified instead. Code receiving a base class pointer or reference may then perform a dynamic cast to the derived class to access the derived class's functionality.
You may wonder in what way the behavior of the dynamic_cast differs from that of the static_cast.
When the static_cast is used, we tell the compiler that it must convert a pointer or reference to its expression type to a pointer or reference of its destination type. This holds true whether the base class declares virtual members or not. Consequently, all the static_cast's actions can be determined by the compiler, and the following compiles fine:
class Base
{
// maybe or not virtual members
};
class Derived1: public Base
{};
class Derived2: public Base
{};
int main()
{
Derived1 derived1;
Base *bp = &derived1;
Derived1 &d1ref = static_cast<Derived1 &>(*bp);
Derived2 &d2ref = static_cast<Derived2 &>(*bp);
}
Pay attention to the second static_cast: here the Base class object is cast to a Derived2 class reference. The compiler has no problems with this, as Base and Derived2 are related by inheritance.
Semantically, however, it makes no sense as bp in fact points to a Derived1 class object. This is detected by a dynamic_cast. A dynamic_cast, like the static_cast, converts related pointer or reference types, but the dynamic_cast provides a run-time safeguard. The dynamic cast fails when the requested type doesn't match the actual type of the object we're pointing at. In addition, the dynamic_cast's use is much more restricted than the static_cast's use, as the dynamic_cast can only be used for downcasting to derived classes having virtual members.
In the end a dynamic cast is a cast, and casts should be avoided whenever possible. When the need for dynamic casting arises ask yourself whether the base class has correctly been designed. In situations where code expects a base class reference or pointer the base class interface should be all that is required and using a dynamic cast should not be necessary. Maybe the base class's virtual interface can be modified so as to prevent the use of dynamic casts. Start frowning when encountering code using dynamic casts. When using dynamic casts in your own code always properly document why the dynamic cast was appropriately used and was not avoided.
14.6.2: The `typeid' operator
As with the dynamic_cast operator, typeid is usually applied to references to base class objects that refer to derived class objects. Typeid should only be used with base classes offering virtual members.
Before using typeid the <typeinfo> header file must be included.
The typeid operator returns an object of type type_info. Different compilers may offer different implementations of the class type_info, but at the very least typeid must offer the following interface:
class type_info
{
public:
virtual ~type_info();
int operator==(type_info const &other) const;
int operator!=(type_info const &other) const;
bool before(type_info const &rhs) const;
char const *name() const;
private:
type_info(type_info const &other);
type_info &operator=(type_info const &other);
};
Note that this class has a private copy constructor and a private overloaded assignment operator. This prevents code from constructing type_info objects and prevents code from assigning type_info objects to each other. Instead, type_info objects are constructed and returned by the typeid operator.
If the typeid operator is passed a base class reference it is able to return the actual name of the type the reference refers to. Example:
class Base;
class Derived: public Base;
Derived d;
Base &br = d;
cout << typeid(br).name() << '\n';
In this example the typeid operator is given a base class reference. It prints the text ``Derived'', being the class name of the class br actually refers to. If Base does not contain virtual functions, the text ``Base'' is printed.
The typeid operator can be used to determine the name of the actual type of expressions, not just of class type objects. For example:
cout << typeid(12).name() << '\n'; // prints: int
cout << typeid(12.23).name() << '\n'; // prints: double
Note, however, that the above example is suggestive at most. It may print int and double, but this is not necessarily the case. If portability is required, make sure no tests against these static, built-in text-strings are required. Check out what your compiler produces in case of doubt.
In situations where the typeid operator is applied to determine the type of a derived class, a base class reference should be used as the argument of the typeid operator. Consider the following example:
class Base; // contains at least one virtual function
class Derived: public Base;
Base *bp = new Derived; // base class pointer to derived object
if (typeid(bp) == typeid(Derived *)) // 1: false
...
if (typeid(bp) == typeid(Base *)) // 2: true
...
if (typeid(bp) == typeid(Derived)) // 3: false
...
if (typeid(bp) == typeid(Base)) // 4: false
...
if (typeid(*bp) == typeid(Derived)) // 5: true
...
if (typeid(*bp) == typeid(Base)) // 6: false
...
Base &br = *bp;
if (typeid(br) == typeid(Derived)) // 7: true
...
if (typeid(br) == typeid(Base)) // 8: false
...
Here, (1) returns false as a Base * is not a Derived *. (2) returns true, as the two pointer types are the same, (3) and (4) return false as pointers to objects are not the objects themselves.
On the other hand, if *bp is used in the above expressions, then (1) and (2) return false as an object (or reference to an object) is not a pointer to an object, whereas (5) now returns true: *bp actually refers to a Derived class object, and typeid(*bp) returns typeid(Derived). A similar result is obtained if a base class reference is used: 7 returning true and 8 returning false.
The type_info::before(type_info const &rhs) member is used to determine the collating order of classes. This is useful when comparing two types for equality. The function returns a nonzero value if *this precedes rhs in the hierarchy or collating order of the used types. When a derived class is compared to its base class the comparison returns 0, otherwise a non-zero value. E.g.:
cout << typeid(ifstream).before(typeid(istream)) << '\n' << // not 0
typeid(istream).before(typeid(ifstream)) << '\n'; // 0
With built-in types the implementor may implement that non-0 is returned when a `wider' type is compared to a `smaller' type and 0 otherwise:
cout << typeid(double).before(typeid(int)) << '\n' << // not 0
typeid(int).before(typeid(double)) << '\n'; // 0
When two equal types are compared, 0 is returned:
cout << typeid(ifstream).before(typeid(ifstream)) << '\n'; // 0
When a 0-pointer is passed to the operator typeid a bad_typeid exception is thrown.
14.7: Inheritance: when to use to achieve what?
Inheritance should not be applied automatically and thoughtlessly. Often composition can be used instead, improving on a class's design by reducing coupling. When inheritance is used public inheritance should not automatically be used but the type of inheritance that is selected should match the programmer's intent.
We've seen that polymorphic classes on the one hand offer interface members defining the functionality that can be requested of base classes and on the other hand offer virtual members that can be overridden. One of the signs of good class design is that member functions are designed according to the principle of `one function, one task'. In the current context: a class member should either be a member of the class's public or protected interface or it should be available as a virtual member for reimplementation by derived classes. Often this boils down to virtual members that are defined in the base class's private section. Those functions shouldn't be called by code using the base class, but they exist to be overridden by derived classes using polymorphism to redefine the base class's behavior.
The underlying principle was mentioned before in the introductory paragraph of this chapter: according to the Liskov Substitution Principle (LSP) an is-a relationship between classes (indicating that a derived class object is a base class object) implies that a derived class object may be used in code expecting a base class object.
In this case inheritance is used not to let the derived class use the facilities already implemented by the base class but to reuse the base class polymorphically by reimplementing the base class's virtual members in the derived class.
In this section we'll discuss the reasons for using inheritance. Why should inheritance (not) be used? If it is used what do we try to accomplish by it?
Inheritance often competes with composition. Consider the following two alternative class designs:
class Derived: public Base
{ ... };
class Composed
{
Base d_base;
...
};
Why and when prefer Derived over Composed and vice versa? What kind of inheritance should be used when designing the class Derived?
Private inheritance should also be used when a derived class is-a certain type of base class, but in order to initialize that base class an object of another class type must be available. Example: a new istream class-type (say: a stream IRandStream from which random numbers can be extracted) is derived from std::istream. Although an istream can be constructed empty (receiving its streambuf later using its rdbuf member), it is clearly preferable to initialize the istream base class right away.
Assuming that a Randbuffer: public std::streambuf has been created for generating random numbers then IRandStream can be derived from Randbuffer and std::istream. That way the istream base class can be initialized using the Randbuffer base class.
As a RandStream is definitely not a Randbuffer public inheritance is not appropriate. In this case IRandStream is-implemented-in-terms-of a Randbuffer and so private inheritance should be used.
IRandStream's class interface should therefore start like this:
class IRandStream: private Randbuffer, public std::istream
{
public:
IRandStream(int lowest, int highest) // defines the range
:
Randbuffer(lowest, highest),
std::istream(this) // passes &Randbuffer
{}
...
};
Public inheritance should be reserved for classes for which the LSP holds true. In those cases the derived classes can always be used instead of the base class from which they derive by code merely using base class references, pointers or members (I.e., conceptually the derived class is-a base class). This most often applies to classes derived from base classes offering virtual members. To separate the user interface from the redefinable interface the base class's public interface should not contain virtual members (except for the virtual destructor) and the virtual members should all be in the base class's private section. Such virtual members can still be overridden by derived classes (this should not come as a surprise, considering how polymorphism is implemented) and this design offers the base class full control over the context in which the redefined members are used. Often the public interface merely calls a virtual member, but those members can always be redefined to perform additional duties.
The prototypical form of a base class therefore looks like this:
class Base
{
public:
virtual ~Base();
void process(); // calls virtual members (e.g.,
// v_process)
private:
virtual void v_process(); // overridden by derived classes
};
Alternatively a base class may offer a non-virtual destructor, which should then be protected. It shouldn't be public to prevent deleting objects through their base class pointers (in which case virtual destructors should be used). It should be protected to allow derived class destructors to call their base class destructors. Such base classes should, for the same reasons, have non-public constructors and overloaded assignment operators.
14.8: The `streambuf' class
The class std::streambuf receives the character sequences processed by streams and defines the interface between stream objects and devices (like a file on disk). A streambuf object is usually not directly constructed, but usually it is used as base class of some derived class implementing the communication with some concrete device.
The primary reason for existence of the class streambuf is to decouple the stream classes from the devices they operate upon. The rationale here is to add an extra layer between the classes allowing us to communicate with devices and the devices themselves. This implements a chain of command which is seen regularly in software design.
The chain of command is considered a generic pattern when designing reusable software, encountered also in, e.g., the TCP/IP stack.
A streambuf can be considered yet another example of the chain of command pattern. Here the program talks to stream objects, which in turn forward their requests to streambuf objects, which in turn communicate with the devices. Thus, as we will see shortly, we are able to do in user-software what had to be done via (expensive) system calls before.
The class streambuf has no public constructor, but does make available several public member functions. In addition to these public member functions, several member functions are only available to classes derived from streambuf. In section 14.8.2 a predefined specialization of the class streambuf is introduced. All public members of streambuf discussed here are also available in filebuf.
The next section shows the streambuf members that may be overridden when deriving classes from streambuf. Chapter 24 offers concrete examples of classes derived from streambuf.
The class streambuf is used by streams performing input operations and by streams performing output operations and their member functions can be ordered likewise. The type std::streamsize used below may, for all practical purposes, be considered equal to the type size_t.
When inserting information into ostream objects the information is eventually passed on to the ostream's streambuf. The streambuf may decide to throw an exception. However, this exception does not leave the ostream using the streambuf. Rather, the exception is caught by the ostream, which sets its ios::bad_bit. Exceptions thrown by manipulators which are inserted into ostream objects are not caught by the ostream objects.
Public members for input operations
Public members for output operations
Public members for miscellaneous operations
The next three members are normally only used by classes derived from streambuf.
14.8.1: Protected `streambuf' members
The protected members of the class streambuf are important for understanding and using streambuf objects. Although there are both protected data members and protected member functions defined in the class streambuf the protected data members are not mentioned here as using them would violate the principle of data hiding. As streambuf's set of member functions is quite extensive, it is hardly ever necessary to use its data members directly. The following subsections do not even list all protected member functions but only those are covered that are useful for constructing specializations.
Streambuf objects control a buffer, used for input and/or output, for which begin-, actual- and end-pointers have been defined, as depicted in figure 19.
Figure 19: Input- and output buffer pointers of the class `streambuf'
Streambuf offers two protected constructors:
14.8.1.1: Protected members for input operations
Several protected member functions are available for input operations. The member functions marked virtual may of course be redefined in derived classes:
When no input buffering is required this function, rather than underflow, can be overridden to produce the next available character from the device to read from.
It is called when
Often, when buffering is used, the complete buffer is not refreshed as this would make it impossible to put back characters immediately following a reload. Instead, buffers are often refreshed in halves. This system is called a split buffer.
Classes derived from streambuf for reading normally at least override underflow. The prototypical example of an overridden underflow function looks like this:
int underflow()
{
if (not refillTheBuffer()) // assume a member d_buffer is available
return EOF;
// reset the input buffer pointers
setg(d_buffer, d_buffer, d_buffer + d_nCharsRead);
// return the next available character
// (the cast is used to prevent
// misinterpretations of 0xff characters
// as EOF)
return static_cast<unsigned char>(*gptr());
}
14.8.1.2: Protected members for output operations
The following protected members are available for output operations. Again, some members may be overridden by derived classes:
Classes derived from streambuf for writing normally at least override overflow. The prototypical example of an overridden overflow function looks like this:
int OFdStreambuf::overflow(int c)
{
sync(); // flush the buffer
if (c != EOF) // write a character?
{
*pptr() = static_cast<char>(c); // put it into the buffer
pbump(1); // advance the buffer's pointer
}
return c;
}
std::streamsize MyStreambuf::xsputn(char const *buf, std::streamsize len)
{
if (d_openMode & ios::app)
seekoff(0, ios::end);
return write(buf, len);
}
14.8.1.3: Protected members for buffer manipulation
Several protected members are related to buffer management and positioning:
14.8.1.4: Deriving classes from `streambuf'
When classes are derived from streambuf at least underflow should be overridden by classes intending to read information from devices, and overflow should be overridden by classes intending to write information to devices. Several examples of classes derived from streambuf are provided in chapter 24.
Fstream class type objects use a combined input/output buffer, resulting from istream and ostream being virtually derived from ios, which class defines a streambuf. To construct a class supporting both input and output using separate buffers, the streambuf itself may define two buffers. When seekoff is called for reading, a mode parameter can be set to ios::in, otherwise to ios::out. Thus the derived class knows whether it should access the read buffer or the write buffer. Of course, underflow and overflow do not have to inspect the mode flag as they by implication know on which buffer they should operate.
14.8.2: The class `filebuf'
The class filebuf is a specialization of streambuf used by the file stream classes. Before using a filebuf the header file <fstream> must be included.
In addition to the (public) members that are available through the class streambuf, filebuf offers the following (public) members:
14.8.3: Safely interfacing streams to another std::streambuf
Consider classes derived from std::istream or std::ostream. Such a class could be designed as follows:
class XIstream: public std::istream
{
public:
...
};
Assuming that the streambuf to which XIstream interfaces is not yet available construction time, XIstream only offers default constructors. The class could, however, offer a member void switchStream(std::streambuf *sb) to provide XIstream objects with a streambuf to interface to. How to implement switchStream? We could simply call rdbuf, passing it the pointer to the new streambuf may work, but the problem is that there may be an existing streambuf, which may have buffered some information that we don't want to lose.
Instead of using rdbuf the protected member void init(std::streambuf *sb) should be used for switching to another streambuf in an existing stream.
The init member expects a pointer to a streambuf which should be associated with the istream or ostream object. The init member properly ends any existing association before switching to the streambuf whose address is provided to init.
Assuming that the streambuf to which switchStream's sb points persists, then switchStream could simply be implemented like this:
void switchStream(streambuf *sb)
{
init(sb);
}
No further actions are required. The init member ends the current association, and only then switches to using streambuf *sb.
14.9: A polymorphic exception class
Earlier in the C++ Annotations (section 10.3.1) we hinted at the possibility of designing a class Exception whose process member would behave differently, depending on the kind of exception that was thrown. Now that we've introduced polymorphism we can further develop this example.
It probably does not come as a surprise that our class Exception should be a polymorphic base class from which special exception handling classes can be derived. In section 10.3.1 a member severity was used offering functionality that may be replaced by members of the Exception base class.
The base class Exception may be designed as follows:
#ifndef INCLUDED_EXCEPTION_H_
#define INCLUDED_EXCEPTION_H_
#include <iostream>
#include <string>
class Exception
{
std::string d_reason;
public:
Exception(std::string const &reason);
virtual ~Exception();
std::ostream &insertInto(std::ostream &out) const;
void handle() const;
private:
virtual void action() const;
};
inline void Exception::action() const
{
throw;
}
inline Exception::Exception(std::string const &reason)
:
d_reason(reason)
{}
inline void Exception::handle() const
{
action();
}
inline std::ostream &Exception::insertInto(std::ostream &out) const
{
return out << d_reason;
}
inline std::ostream &operator<<(std::ostream &out, Exception const &e)
{
return e.insertInto(out);
}
#endif
Objects of this class may be inserted into ostreams but the core element of this class is the virtual member function action, by default rethrowing an exception.
A derived class Warning simply prefixes the thrown warning text by the text Warning:, but a derived class Fatal overrides Exception::action by calling std::terminate, forcefully terminating the program.
Here are the classes Warning and Fatal
#ifndef WARNINGEXCEPTION_H_
#define WARNINGEXCEPTION_H_
#include "exception.h"
class Warning: public Exception
{
public:
Warning(std::string const &reason)
:
Exception("Warning: " + reason)
{}
};
#endif
#ifndef FATAL_H_
#define FATAL_H_
#include "exception.h"
class Fatal: public Exception
{
public:
Fatal(std::string const &reason);
private:
virtual void action() const;
};
inline Fatal::Fatal(std::string const &reason)
:
Exception(reason)
{}
inline void Fatal::action() const
{
std::cout << "Fatal::action() terminates" << '\n';
std::terminate();
}
#endif
When the example program is started without arguments it throws a Fatal exception, otherwise it throws a Warning exception. Of course, additional exception types could also easily be defined. To make the example compilable the Exception destructor is defined above main. The default destructor cannot be used, as it is a virtual destructor. In practice the destructor should be defined in its own little source file:
#include "warning.h"
#include "fatal.h"
Exception::~Exception()
{}
using namespace std;
int main(int argc, char **argv)
try
{
try
{
if (argc == 1)
throw Fatal("Missing Argument") ;
else
throw Warning("the argument is ignored");
}
catch (Exception const &e)
{
cout << e << '\n';
e.handle();
}
}
catch(...)
{
cout << "caught rethrown exception\n";
}
14.10: How polymorphism is implemented
This section briefly describes how polymorphism is implemented in C++. It is not necessary to understand how polymorphism is implemented if you just want to use polymorphism. However, we think it's nice to know how polymorphism is possible. Also, knowing how polymorphism is implemented clarifies why there is a (small) penalty to using polymorphism in terms of memory usage and efficiency.
The fundamental idea behind polymorphism is that the compiler does not know which function to call at compile-time. The appropriate function is selected at run-time. That means that the address of the function must be available somewhere, to be looked up prior to the actual call. This `somewhere' place must be accessible to the object in question. So when a Vehicle *vp points to a Truck object, then vp->mass() calls Truck's member function. The address of this function is obtained through the actual object to which vp points.
Polymorphism is commonly implemented as follows: an object containing virtual member functions also contains, usually as its first data member a hidden data member, pointing to an array containing the addresses of the class's virtual member functions. The hidden data member is usually called the vpointer, the array of virtual member function addresses the vtable.
The class's vtable is shared by all objects of that class. The overhead of polymorphism in terms of memory consumption is therefore:
Consequently, a statement like vp->mass first inspects the hidden data member of the object pointed to by vp. In the case of the vehicle classification system, this data member points to a table containing two addresses: one pointer to the function mass and one pointer to the function setMass (three pointers if the class also defines (as it should) a virtual destructor). The actually called function is determined from this table.
The internal organization of the objects having virtual functions is illustrated in Figure 20 and Figure 21 (originals provided by Guillaume Caumon).
Figure 20: Internal organization objects when virtual functions are defined.
Figure 21: Complementary figure, provided by Guillaume Caumon
As shown by Figure 20 and Figure 21, objects potentially using virtual member functions must have one (hidden) data member to address a table of function pointers. The objects of the classes Vehicle and Car both address the same table. The class Truck, however, overrides mass. Consequently, Truck needs its own vtable.
A small complication arises when a class is derived from multiple base classes, each defining virtual functions. Consider the following example:
class Base1
{
public:
virtual ~Base1();
void fun1(); // calls vOne and vTwo
private:
virtual void vOne();
virtual void vTwo();
};
class Base2
{
public:
virtual ~Base2();
void fun2(); // calls vThree
private:
virtual void vThree();
};
class Derived: public Base1, public Base2
{
public:
~Derived() override;
private:
void vOne() override;
void vThree() override;
};
In the example Derived is multiply derived from Base1 and Base2, each supporting virtual functions. Because of this, Derived also has virtual functions, and so Derived has a vtable allowing a base class pointer or reference to access the proper virtual member.
When Derived::fun1 is called (or a Base1 pointer pointing to a Derived object calls fun1) then fun1 calls Derived::vOne and Base1::vTwo. Likewise, when Derived::fun2 is called Derived::vThree is called.
The complication occurs with Derived's vtable. When fun1 is called its class type determines the vtable to use and hence which virtual member to call. So when vOne is called from fun1, it is presumably the second entry in Derived's vtable, as it must match the second entry in Base1's vtable. However, when fun2 calls vThree it apparently is also the second entry in Derived's vtable as it must match the second entry in Base2's vtable.
Of course this cannot be realized by a single vtable. Therefore, when multiple inheritance is used (each base class defining virtual members) another approach is followed to determine which virtual function to call. In this situation (cf. figure Figure 22) the class Derived receives two vtables, one for each of its base classes and each Derived class object harbors two hidden vpointers, each one pointing to its corresponding vtable.
Figure 22: Vtables and vpointers with multiple base classes
Since base class pointers, base class references, or base class interface members unambiguously refer to one of the base classes the compiler can determine which vpointer to use.
The following therefore holds true for classes multiply derived from base classes offering virtual member functions:
14.11: Undefined reference to vtable ...
Occasionaly, the linker generates an error like the following:
In function `Derived::Derived()':
: undefined reference to `vtable for Derived'
This error is generated when a virtual function's implementation is missing in a derived class, but the function is mentioned in the derived class's interface.
Such a situation is easily encountered:
undefined reference to `vtable for Derived'
Here is an example producing the error:
class Base
{
virtual void member();
};
inline void Base::member()
{}
class Derived: public Base
{
virtual void member(); // only declared
};
int main()
{
Derived d; // Will compile, since all members were declared.
// Linking will fail, since we don't have the
// implementation of Derived::member()
}
It's of course easy to correct the error: implement the derived class's missing virtual member function.
Virtual functions should never be implemented inline. Since the vtable contains the addresses of the class's virtual functions, these functions must have addresses and so they must have been compiled as real (out-of-line) functions. By defining virtual functions inline you run the risk that the compiler simply overlooks those functions as they may very well never be explicitly called (but only polymorphically, from a base class pointer or reference). As a result their addresses may never enter their class's vtables (and even the vtable itself might remain undefined), causing linkage problems or resulting in programs showing unexpected behavior. All these kinds of problems are simply avoided: never define virtual members inline (see also section 7.8.2.1).
14.12: Virtual constructors
In section 14.2 we learned that C++ supports virtual destructors. Like many other object oriented languages (e.g., Java), however, the notion of a virtual constructor is not supported. Not having virtual constructors becomes a liability when only base class references or pointers are available, and a copy of a derived class object is required. Gamma et al. (1995) discuss the Prototype design pattern to deal with this situation.
According to the Prototype Design Pattern each derived class is given the responsibility of implementing a member function returning a pointer to a copy of the object for which the member is called. The usual name for this function is clone. Separating the user interface from the reimplementation interface clone is made part of the interface and newCopy is defined in the reimplementation interface. A base class supporting `cloning' defines a virtual destructor, clone, returning newCopy's return value and the virtual copy constructor, a pure virtual function, having the prototype virtual Base *newCopy() const = 0. As newCopy is a pure virtual function all derived classes must now implement their own `virtual constructor'.
This setup suffices in most situations where we have a pointer or reference to a base class, but it fails when used with abstract containers. We can't create a vector<Base>, with Base featuring the pure virtual copy member in its interface, as Base is called to initialize new elements of such a vector. This is impossible as newCopy is a pure virtual function, so a Base object can't be constructed.
The intuitive solution, providing newCopy with a default implementation, defining it as an ordinary virtual function, fails too as the container calls Base(Base const &other), which would have to call newCopy to copy other. At this point it is unclear what to do with that copy, as the new Base object already exists, and contains no Base pointer or reference data member to assign newCopy's return value to.
Alternatively (and preferred) the original Base class (defined as an abstract base class) is kept as-is and a wrapper class Clonable is used to manage the Base class pointers returned by newCopy. In chapter 17 ways to merge Base and Clonable into one class are discussed, but for now we'll define Base and Clonable as separate classes.
The class Clonable is a very standard class. It contains a pointer member so it needs a copy constructor, destructor, and overloaded assignment operator. It's given at least one non-standard member: Base &base() const, returning a reference to the derived object to which Clonable's Base * data member refers. It is also provided with an additional constructor to initialize its Base * data member.
Any non-abstract class derived from Base must implement Base *newCopy(), returning a pointer to a newly created (allocated) copy of the object for which newCopy is called.
Once we have defined a derived class (e.g., Derived1), we can put our Clonable and Base facilities to good use. In the next example we see main defining a vector<Clonable>. An anonymous Derived1 object is then inserted into the vector using the following steps:
In this sequence, only the Clonable object containing the Derived1 * is used. No additional copies need to be made (or destroyed).
Next, the base member is used in combination with typeid to show the actual type of the Base & object: a Derived1 object.
Main then contains the interesting definition vector<Clonable> v2(bv). Here a copy of bv is created. This copy construction observes the actual types of the Base references, making sure that the appropriate types appear in the vector's copy.
At the end of the program, we have created two Derived1 objects, which are correctly deleted by the vector's destructors. Here is the full program, illustrating the `virtual constructor' concept ( Jesse van den Kieboom created an alternative implementation of a class Clonable, implemented as a class template. His implementation is found in the source archive under contrib/classtemplates/.):
#include <iostream>
#include <vector>
#include <algorithm>
#include <typeinfo>
// Base and its inline member:
class Base
{
public:
virtual ~Base();
Base *clone() const;
private:
virtual Base *newCopy() const = 0;
};
inline Base *Base::clone() const
{
return newCopy();
}
// Clonable and its inline members:
class Clonable
{
Base *d_bp;
public:
Clonable();
explicit Clonable(Base *base);
~Clonable();
Clonable(Clonable const &other);
Clonable(Clonable &&tmp);
Clonable &operator=(Clonable const &other);
Clonable &operator=(Clonable &&tmp);
Base &base() const;
};
inline Clonable::Clonable()
:
d_bp(0)
{}
inline Clonable::Clonable(Base *bp)
:
d_bp(bp)
{}
inline Clonable::Clonable(Clonable const &other)
:
d_bp(other.d_bp->clone())
{}
inline Clonable::Clonable(Clonable &&tmp)
:
d_bp(tmp.d_bp)
{
tmp.d_bp = 0;
}
inline Clonable::~Clonable()
{
delete d_bp;
}
inline Base &Clonable::base() const
{
return *d_bp;
}
// Derived and its inline member:
class Derived1: public Base
{
public:
~Derived1();
private:
virtual Base *newCopy() const;
};
inline Base *Derived1::newCopy() const
{
return new Derived1(*this);
}
// Members not implemented inline:
Base::~Base()
{}
Clonable &Clonable::operator=(Clonable const &other)
{
Clonable tmp(other);
std::swap(d_bp, tmp.d_bp);
return *this;
}
Clonable &Clonable::operator=(Clonable &&tmp)
{
std::swap(d_bp, tmp.d_bp);
return *this;
}
Derived1::~Derived1()
{
std::cout << "~Derived1() called\n";
}
// The main function:
using namespace std;
int main()
{
vector<Clonable> bv;
bv.push_back(Clonable(new Derived1()));
cout << "bv[0].name: " << typeid(bv[0].base()).name() << '\n';
vector<Clonable> v2(bv);
cout << "v2[0].name: " << typeid(v2[0].base()).name() << '\n';
}
/*
Output:
bv[0].name: 8Derived1
v2[0].name: 8Derived1
~Derived1() called
~Derived1() called
*/
Chapter 15: Friends
In all examples discussed up to now, we've seen that private members are only accessible by the members of their class. This is good, as it enforces encapsulation and data hiding. By encapsulating functionality within a class we prevent that a class exposes multiple responsibilities; by hiding data we promote a class's data integrity and we prevent that other parts of the software become implementation dependent on the data that belong to a class.
In this (very) short chapter we introduce the friend keyword and the principles that underly its use. The bottom line being that by using the friend keyword functions are granted access to a class's private members. Even so, this does not imply that the principle of data hiding is abandoned when the friend keyword is used.
In this chapter the topic of friendship among classes is not discussed. Situations in which it is natural to use friendship among classes are discussed in chapters 17 and 21 and such situations are natural extensions of the way friendship is handled for functions.
There should be a well-defined conceptual reason for declaring friendship (i.e., using the friend keyword). The traditionally offered definition of the class concept usually looks something like this:
A class is a set of data together with the functions that operate on that data.
As we've seen in chapter 11 some functions have to be defined outside of a class interface. They are defined outside of the class interface to allow promotions for their operands or to extend the facilities of existing classes not directly under our control. According to the above traditional definition of the class concept those functions that cannot be defined in the class interface itself should nevertheless be considered functions belonging to the class. Stated otherwise: if permitted by the language's syntax they would certainly have been defined inside the class interface. There are two ways to implement such functions. One way consists of implementing those functions using available public member functions. This approach was used, e.g., in section 11.2. Another approach applies the definition of the class concept to those functions. By stating that those functions in fact belong to the class they should be given direct access to the data members of objects. This is accomplished by the friend keyword.
As a general principle we state that all functions operating on the data of objects of a class that are declared in the same file as the class interface itself belong to that class and may be granted direct access to the class's data members.
15.1: Friend functions
In section 11.2 the insertion operator of the class Person (cf. section 9.3) was implemented like this:
ostream &operator<<(ostream &out, Person const &person)
{
return
out <<
"Name: " << person.name() << ", "
"Address: " << person.address() << ", "
"Phone: " << person.phone();
}
Person objects can now be inserted into streams.
However, this implementation required three member functions to be called, which may be considered a source of inefficiency. An improvement would be reached by defining a member Person::insertInto and let operator<< call that function. These two functions could be defined as follows:
std::ostream &operator<<(std::ostream &out, Person const &person)
{
return person.insertInto(out);
}
std::ostream &Person::insertInto(std::ostream &out)
{
return
out << "Name: " << d_name << ", "
"Address: " << d_address << ", "
"Phone: " << d_phone;
}
As insertInto is a member function it has direct access to the object's data members so no additional member functions must be called when inserting person into out.
The next step consists of realizing that insertInto is only defined for the benefit of operator<<, and that operator<<, as it is declared in the header file containing Person's class interface should be considered a function belonging to the class Person. The member insertInto can therefore be omitted when operator<< is declared as a friend.
Friend functions must be declared as friends in the class interface. These friend declarations are not member functions, and so they are independent of the class's private, protected and public sections. Friend declaration may be placed anywhere in the class interface. Convention dictates that friend declarations are listed directly at the top of the class interface. The class Person, using friend declaration for its extraction and insertion operators starts like this:
class Person
{
friend std::ostream &operator<<(std::ostream &out, Person &pd);
friend std::istream &operator>>(std::istream &in, Person &pd);
// previously shown interface (data and functions)
};
The insertion operator may now directly access a Person object's data members:
std::ostream &operator<<(std::ostream &out, Person const &person)
{
return
cout << "Name: " << person.d_name << ", "
"Address: " << person.d_address << ", "
"Phone: " << person.d_phone;
}
Friend declarations are true declarations. Once a class contains friend declarations these friend functions do not have to be declared again below the class's interface. This also clearly indicates the class designer's intent: the friend functions are declared by the class, and can thus be considered functions belonging to the class.
15.2: Extended friend declarations
C++ has added extended friend declarations to the language. When a class is declared as a friend, then the class keyword no longer has to be provided. E.g.,
class Friend; // declare a class
typedef Friend FriendType; // and a typedef for it
using FName = Friend; // and a using declaration
class Class1
{
friend Friend; // FriendType and FName: also OK
};
In the pre-C++11 standards the friend declaration required an explicit class; e.g., friend class Friend.
The explicit use of class remains required if the compiler hasn't seen the friend's name yet. E.g.,
class Class1
{
// friend Unseen; // fails to compile: Unseen unknown.
friend class Unseen; // OK
};
Section 22.10 covers the use of extended friend declarations in class templates.
Chapter 16: Classes Having Pointers To Members
Classes having pointer data members have been discussed in detail in chapter 9. Classes defining pointer data-members deserve some special attention, as they usually require the definitions of copy constructors, overloaded assignment operators and destructors
Situations exist where we do not need a pointer to an object but rather a pointer to members of a class. Pointers to members can profitably be used to configure the behavior of objects of classes. Depending on which member a pointer to a member points to objects will show certain behavior.
Although pointers to members have their use, polymorphism can frequently be used to realize comparable behavior. Consider a class having a member process performing one of a series of alternate behaviors. Instead of selecting the behavior of choice at object construction time the class could use the interface of some (abstract) base class, passing an object of some derived class to its constructor and could thus configure its behavior. This allows for easy, extensible and flexible configuration, but access to the class's data members would be less flexible and would possibly require the use of `friend' declarations. In such cases pointers to members may actually be preferred as this allows for (somewhat less flexible) configuration as well as direct access to a class's data members.
So the choice apparently is between on the one hand ease of configuration and on the other hand ease of access to a class's data members. In this chapter we'll concentrate on pointers to members, investigating what these pointers have to offer.
16.1: Pointers to members: an example
Knowing how pointers to variables and objects are used does not intuitively lead to the concept of pointers to members . Even if the return types and parameter types of member functions are taken into account, surprises can easily be encountered. For example, consider the following class:
class String
{
char const *(*d_sp)() const;
public:
char const *get() const;
};
For this class, it is not possible to let char const *(*d_sp)() const point to the String::get member function as d_sp cannot be given the address of the member function get.
One of the reasons why this doesn't work is that the variable d_sp has global scope (it is a pointer to a function, not a pointer to a function within String), while the member function get is defined within the String class, and thus has class scope. The fact that d_sp is a data member of the class String is irrelevant here. According to d_sp's definition, it points to a function living somewhere outside of the class.
Consequently, to define a pointer to a member (either data or function, but usually a function) of a class, the scope of the pointer must indicate class scope. Doing so, a pointer to the member String::get is defined like this:
char const *(String::*d_sp)() const;
So, by prefixing the *d_sp pointer data member by String::, it is defined as a pointer in the context of the class String. According to its definition it is a pointer to a function in the class String, not expecting arguments, not modifying its object's data, and returning a pointer to constant characters.
16.2: Defining pointers to members
Pointers to members are defined by prefixing the normal pointer notation with the appropriate class plus scope resolution operator. Therefore, in the previous section, we used char const * (String::*d_sp)() const to indicate that d_sp
The prototype of a matching function is therefore:
char const *String::somefun() const;
which is any const parameterless function in the class String, returning a char const *.
When defining pointers to members the standard procedure for constructing pointers to functions can still be applied:
char const * ( String::somefun ) () const
char const * ( String:: * somefun ) () const
char const * (String::*d_sp)() const
Here is another example, defining a pointer to a data member. Assume the class String contains a string d_text member. How to construct a pointer to this member? Again we follow standard procedure:
std::string (String::d_text)
std::string (String::*d_text)
std::string (String::*tp)
In this case, the parentheses are superfluous and may be omitted:
string String::*tp
Alternatively, a very simple rule of thumb is
For example, the following pointer to a global function
char const * (*sp)() const;
becomes a pointer to a member function after prefixing the class-scope:
char const * (String::*sp)() const;
Nothing forces us to define pointers to members in their target (String) classes. Pointers to members may be defined in their target classes (so they become data members), or in another class, or as a local variable or as a global variable. In all these cases the pointer to member variable can be given the address of the kind of member it points to. The important part is that a pointer to member can be initialized or assigned without requiring the existence of an object of the pointer's target class.
Initializing or assigning an address to such a pointer merely indicates to which member the pointer points. This can be considered some kind of relative address; relative to the object for which the function is called. No object is required when pointers to members are initialized or assigned. While it is allowed to initialize or assign a pointer to member, it is (of course) not possible to call those members without specifying an object of the correct type.
In the following example initialization of and assignment to pointers to members is illustrated (for illustration purposes all members of the class PointerDemo are defined public). In the example itself the &-operator is used to determine the addresses of the members. These operators as well as the class-scopes are required. Even when used inside member implementations:
#include <cstddef>
class PointerDemo
{
public:
size_t d_value;
size_t get() const;
};
inline size_t PointerDemo::get() const
{
return d_value;
}
int main()
{ // initialization
size_t (PointerDemo::*getPtr)() const = &PointerDemo::get;
size_t PointerDemo::*valuePtr = &PointerDemo::d_value;
getPtr = &PointerDemo::get; // assignment
valuePtr = &PointerDemo::d_value;
}
This involves nothing special. The difference with pointers at global scope is that we're now restricting ourselves to the scope of the PointerDemo class. Because of this restriction, all pointer definitions and all variables whose addresses are used must be given the PointerDemo class scope.
Pointers to members can also be used with virtual member functions. No special syntax is required when pointing to virtual members. Pointer construction, initialization and assignment is done identically to the way it is done with non-virtual members.
16.3: Using pointers to members
Using pointers to members to call a member function requires the existence of an object of the class of the members to which the pointer to member refers to. With pointers operating at global scope, the dereferencing operator * is used. With pointers to objects the field selector operator operating on pointers (->) or the field selector operating operating on objects (.) can be used to select appropriate members.
To use a pointer to member in combination with an object the pointer to member field selector (.*) must be specified. To use a pointer to a member via a pointer to an object the `pointer to member field selector through a pointer to an object' (->*) must be specified. These two operators combine the notions of a field selection (the . and -> parts) to reach the appropriate field in an object and of dereferencing: a dereference operation is used to reach the function or variable the pointer to member points to.
Using the example from the previous section, let's see how we can use pointers to member functions and pointers to data members:
#include <iostream>
class PointerDemo
{
public:
size_t d_value;
size_t get() const;
};
inline size_t PointerDemo::get() const
{
return d_value;
}
using namespace std;
int main()
{ // initialization
size_t (PointerDemo::*getPtr)() const = &PointerDemo::get;
size_t PointerDemo::*valuePtr = &PointerDemo::d_value;
PointerDemo object; // (1) (see text)
PointerDemo *ptr = &object;
object.*valuePtr = 12345; // (2)
cout << object.*valuePtr << '\n' <<
object.d_value << '\n';
ptr->*valuePtr = 54321; // (3)
cout << object.d_value << '\n' <<
(object.*getPtr)() << '\n' << // (4)
(ptr->*getPtr)() << '\n';
}
We note:
Pointers to members can be used profitably in situations where a class has a member that behaves differently depending on a configuration setting. Consider once again the class Person from section 9.3. Person defines data members holding a person's name, address and phone number. Assume we want to construct a Person database of employees. The employee database can be queried, but depending on the kind of person querying the database either the name, the name and phone number or all stored information about the person is made available. This implies that a member function like address must return something like `<not available>' in cases where the person querying the database is not allowed to see the person's address, and the actual address in other cases.
The employee database is opened specifying an argument reflecting the status of the employee who wants to make some queries. The status could reflect his or her position in the organization, like BOARD, SUPERVISOR, SALESPERSON, or CLERK. The first two categories are allowed to see all information about the employees, a SALESPERSON is allowed to see the employee's phone numbers, while the CLERK is only allowed to verify whether a person is actually a member of the organization.
We now construct a member string personInfo(char const *name) in the database class. A standard implementation of this class could be:
string PersonData::personInfo(char const *name)
{
Person *p = lookup(name); // see if `name' exists
if (!p)
return "not found";
switch (d_category)
{
case BOARD:
case SUPERVISOR:
return allInfo(p);
case SALESPERSON:
return noPhone(p);
case CLERK:
return nameOnly(p);
}
}
Although it doesn't take much time, the switch must nonetheless be evaluated every time personInfo is called. Instead of using a switch, we could define a member d_infoPtr as a pointer to a member function of the class PersonData returning a string and expecting a pointer to a Person as its argument.
Instead of evaluating the switch this pointer can be used to point to allInfo, noPhone or nameOnly. Furthermore, the member function the pointer points to will be known by the time the PersonData object is constructed and so its value needs to be determined only once (at the PersonData object's construction time).
Having initialized d_infoPtr the personInfo member function is now implemented simply as:
string PersonData::personInfo(char const *name)
{
Person *p = lookup(name); // see if `name' exists
return p ? (this->*d_infoPtr)(p) : "not found";
}
The member d_infoPtr is defined as follows (within the class PersonData, omitting other members):
class PersonData
{
std::string (PersonData::*d_infoPtr)(Person *p);
};
Finally, the constructor initializes d_infoPtr. This could be realized using a simple switch:
PersonData::PersonData(PersonData::EmployeeCategory cat)
{
switch (cat)
{
case BOARD:
case SUPERVISOR:
d_infoPtr = &PersonData::allInfo;
break;
case SALESPERSON:
d_infoPtr = &PersonData::noPhone;
break;
case CLERK:
d_infoPtr = &PersonData::nameOnly;
break;
}
}
Note how addresses of member functions are determined. The class PersonData scope must be specified, even though we're already inside a member function of the class PersonData.
Since the EmployeeCategory values are known, the switch in the above constructor can also easily be avoided by defining a static array of pointers to functions. The class PersonData defines the static array:
class PersonData
{
std::string (PersonData::*d_infoPtr)(Person *p);
static std::string (PersonData::*s_infoPtr[])(Person *p);
};
and s_infoPtr[] can be initialized compile-time:
string (PersonData::*PersonData::s_infoPtr[])(Person *p) =
{
&PersonData::allInfo, // BOARD
&PersonData::allInfo, // SUPERVISOR
&PersonData::noPhone, // SALESPERSON
&PersonData::nameOnly // CLERK
};
The constructor, instead of using a switch, now directly calls the required member from the appropriate array element:
PersonData::PersonData(PersonData::EmployeeCategory cat)
:
d_infoPtr(s_infoPtr[cat])
{}
An example using pointers to data members is provided in section 19.1.60, in the context of the stable_sort generic algorithm.
16.4: Pointers to static members
Static members of a class can be used without having available an object of their class. Public static members can be called like free functions, albeit that their class names must be specified when they are called.
Assume a class String has a public static member function count, returning the number of string objects created so far. Then, without using any String object the function String::count may be called:
void fun()
{
cout << String::count() << '\n';
}
Public static members can be called like free functions (but see also section 8.2.1). Private static members can only be called within the context of their class, by their class's member or friend functions.
Since static members have no associated objects their addresses can be stored in ordinary function pointer variables, operating at the global level. Pointers to members cannot be used to store addresses of static members. Example:
void fun()
{
size_t (*pf)() = String::count;
// initialize pf with the address of a static member function
cout << (*pf)() << '\n';
// displays the value returned by String::count()
}
16.5: Pointer sizes
An interesting characteristic of pointers to members is that their sizes differ from those of `normal' pointers. Consider the following little program:
#include <string>
#include <iostream>
class X
{
public:
void fun();
std::string d_str;
};
inline void X::fun()
{
std::cout << "hello\n";
}
using namespace std;
int main()
{
cout <<
"size of pointer to data-member: " << sizeof(&X::d_str) << "\n"
"size of pointer to member function: " << sizeof(&X::fun) << "\n"
"size of pointer to non-member data: " << sizeof(char *) << "\n"
"size of pointer to free function: " << sizeof(&printf) << '\n';
}
/*
generated output (on 32-bit architectures):
size of pointer to data-member: 4
size of pointer to member function: 8
size of pointer to non-member data: 4
size of pointer to free function: 4
*/
On a 32-bit architecture a pointer to a member function requires eight bytes, whereas other kind of pointers require four bytes (Using GNU's g++ compiler).
Pointer sizes are hardly ever explicitly used, but their sizes may cause confusion in statements like:
printf("%p", &X::fun);
Of course, printf is likely not the right tool for displaying the value of these C++ specific pointers. The values of these pointers can be inserted into streams when a union, reinterpreting the 8-byte pointers as a series of size_t char values, is used:
#include <string>
#include <iostream>
#include <iomanip>
class X
{
public:
void fun();
std::string d_str;
};
inline void X::fun()
{
std::cout << "hello\n";
}
using namespace std;
int main()
{
union
{
void (X::*f)();
unsigned char *cp;
}
u = { &X::fun };
cout.fill('0');
cout << hex;
for (unsigned idx = sizeof(void (X::*)()); idx-- > 0; )
cout << setw(2) << static_cast<unsigned>(u.cp[idx]);
cout << '\n';
}
But why are their sizes different from the sizes of ordinary pointers? To answer this question let's first have a look at the familiar std::fstream. It is derived from std::ifstream and std::ofstream. An fstream, therefore, contains both an ifstream and an ofstream. An fstream will be organized as shown in figure 23.
Figure 23: std::fstream object organization
In fstream (a) the first base class was std::istream, and the second baseclass was std::ofstream. But it could also very well be the other way around, as illustrated in fstream (b): first the std::ofstream, then the std::ifstream. And that's the crux of the biscuit.
If we have an fstream fstr{"myfile"} object and do fstr.seekg(0), then we call ifstream's seekg function. But if we do fstr.seekp(0), then we call ofstream's seekp function. These functions have their own addresses, say &seekg and &seekp. But when we call a member function (like fstr.seekp(0)) then what we in fact are doing is seekp(&fstr, 0).
But the problem here is that &fstr does not represent the correct object address: seekp operates on an ofstream, and that object does not start at &fstr, so (in fstream (a)), at &(fstr + sizeof(ifstream)).
So, the compiler, when calling a member function of a class using inheritance, must make a correction for the relative location of an object whose members we are calling.
However, when we're defining something like
ostream &(fstream::*ptr)(ios::off_type step, ios::seekdir org) = &seekp;
and then do (fstr->*)ptr(0) the compiler doesn't know anymore which function is actually being called: it merely receives the function's address. To solve the compiler's problem the shift (for the location of the ofstream object) is now stored in the member pointer itself. That's one reason why the extra data field is needed when using function pointers.
Here is a concrete illustration: first we define 2 structs, each having a member function (all inline, using single line implementations to save some space):
struct A
{
int a;
};
struct B
{
int b;
void bfun() {}
};
Then we define C, which is derived from both A (first) and B (next) (comparable to fstream, which embeds ifstream and ofstream):
struct C: public A, public B
{};
Next, in main we define objects of two different unions and assign the address of B::bfun to their ptr fields, but BPTR.ptr looks at it as a member in the struct B world, while CPTR.ptr looks at it as a member in the struct C world.
Once the unions' pointer fields have been assigned their value[] arrays are used to display the content of the ptr fields (see below):
int main()
{
union BPTR
{
void (B::*ptr)();
unsigned long value[2];
};
BPTR bp;
bp.ptr = &B::bfun;
cout << hex << bp.value[0] << ' ' << bp.value[1] << dec << '\n';
union CPTR
{
void (C::*ptr)();
unsigned long value[2];
};
CPTR cp;
cp.ptr = &C::bfun;
cout << hex << cp.value[0] << ' ' << cp.value[1] << dec << '\n';
}
When this program is run, we see
400b0c 0
400b0c 4
(your address values (the first ones on the two lines) may differ). Note that the functions' addresses are the same, but since in the C world the B object lives beyond the A object, and the A object is 4 bytes large, we must add 4 to the value of the `this' pointer when calling the function from a C object. That's exactly what the shift value in the pointer's second field is telling the compiler.
Chapter 17: Nested Classes
Classes can be defined inside other classes. Classes defined inside other classes are called nested classes. Nested classes are used in situations where the nested class has a close conceptual relationship to its surrounding class. For example, with the class string a type string::iterator is available which provides all characters that are stored in the string. This string::iterator type could be defined as an object iterator, defined as nested class in the class string.
Since nested classes are defined inside other classes their members, when provided with references or pointers to objects of their surrounding classes, may access all members of those objects, even their private members.
A class can be nested in every part of the surrounding class: in the public, protected or private section. If a class is nested in the public section of a class, it is visible outside the surrounding class. If it is nested in the protected section it is visible in subclasses, derived from the surrounding class, if it is nested in the private section, it is only visible for the members of the surrounding class.
The surrounding class has no special privileges with respect to the nested class. For example, consider the following class definition:
class Surround
{
public:
class FirstWithin
{
int d_variable;
public:
FirstWithin();
int var() const;
};
private:
class SecondWithin
{
int d_variable;
public:
SecondWithin();
int var() const;
};
};
inline int Surround::FirstWithin::var() const
{
return d_variable;
}
inline int Surround::SecondWithin::var() const
{
return d_variable;
}
In the Annotations(), in order to save space, nested class interfaces are usually declared inside their surrounding class, as shown above. Often this can be avoided, which is desirable as it more clearly separates the outer class's interface and the nested class's interface. Likewise, in-class member implementations should be avoided. Here is an illustration of how outer- and nested class interfaces can be separated:
class Surround
{
class SecondWithin;
public:
class FirstWithin;
};
class Surround::FirstWithin
{
int d_variable;
public:
FirstWithin();
int var() const;
};
class Surround::SecondWithin
{
int d_variable;
public:
SecondWithin();
int var() const;
};
For these three classes access to members is defined as follows:
To grant the surrounding class access rights to the private members of a nested class the nested class may declare its surrounding class as a friend. Conversely, as nested classes can be considered members of their surrounding class their member functions have full access to the outer class members, if they are provided with an outer class object (see section 17.3).
Although nested classes can be considered members of the surrounding class, members of nested classes are not members of the surrounding class: members of the class Surround may not directly call FirstWithin::var. This is understandable considering that a Surround object is not also a FirstWithin or SecondWithin object. In fact, nested classes are just typenames. It is not implied that objects of such classes automatically exist in the surrounding class. If a member of the surrounding class should use a (non-static) member of a nested class then the surrounding class must define a nested class object, which can thereupon be used by the members of the surrounding class to use members of the nested class.
For example, in the following class definition there is a surrounding class Outer and a nested class Inner. The class Outer contains a member function caller. The member function caller uses the d_inner object that is composed within Outer to call Inner::infunction:
class Outer
{
public:
void caller();
private:
class Inner
{
public:
void infunction();
};
Inner d_inner; // class Inner must be known
};
void Outer::caller()
{
d_inner.infunction();
}
17.1: Defining nested class members
Member functions of nested classes may be defined as inline functions. Inline member functions can be defined as if they were defined outside of the class definition. To define the member function Outer::caller outside of the class Outer, the function's fully qualified name (starting from the outermost class scope (Outer)) must be provided to the compiler. Inline and in-class functions can be defined accordingly. They can be defined and they can use any nested class. Even if the nested class's definition appears later in the outer class's interface.
When (nested) member functions are defined inline, their definitions should be put below their class interface. Static nested data members are also usually defined outside of their classes. If the class FirstWithin would have had a static size_t datamember epoch, it could have been initialized as follows:
size_t Surround::FirstWithin::epoch = 1970;
Furthermore, multiple scope resolution operators are needed to refer to public static members in code outside of the surrounding class:
void showEpoch()
{
cout << Surround::FirstWithin::epoch;
}
Within the class Surround only the FirstWithin:: scope must be used; within the class FirstWithin there is no need to refer explicitly to the scope.
What about the members of the class SecondWithin? The classes FirstWithin and SecondWithin are both nested within Surround, and can be considered members of the surrounding class. Since members of a class may directly refer to each other, members of the class SecondWithin can refer to (public) members of the class FirstWithin. Consequently, members of the class SecondWithin could refer to the epoch member of FirstWithin as FirstWithin::epoch.
17.2: Declaring nested classes
Nested classes may be declared before they are actually defined in a surrounding class. Such forward declarations are required if a class contains multiple nested classes, and the nested classes contain pointers, references, parameters or return values to objects of the other nested classes.
For example, the following class Outer contains two nested classes Inner1 and Inner2. The class Inner1 contains a pointer to Inner2 objects, and Inner2 contains a pointer to Inner1 objects. Cross references require forward declarations. Forward declarations must be given an access specification that is identical to the access specification of their definitions. In the following example the Inner2 forward declaration must be given in a private section, as its definition is also part of the class Outer's private interface:
class Outer
{
private:
class Inner2; // forward declaration
class Inner1
{
Inner2 *pi2; // points to Inner2 objects
};
class Inner2
{
Inner1 *pi1; // points to Inner1 objects
};
};
17.3: Accessing private members in nested classes
To grant nested classes access rights to the private members of other nested classes, or to grant a surrounding class access to the private members of its nested classes the friend keyword must be used.
No friend declaration is required to grant a nested class access to the private members of its surrounding class. Static members of the surrounding class can directly be accessed, other members can be accessed if a surrounding class object is defined by or passed to members of the nested class. After all, a nested class is a type defined by its surrounding class and as such objects of the nested class are members of the outer class and thus can access all the outer class's members. Here is an example showing this principle. The example won't compile as members of the class Extern are denied access to Outer's private members, but Outer::Inner's members can access Outer's private members:
class Outer
{
int d_value;
static int s_value;
public:
Outer()
:
d_value(12)
{}
class Inner
{
public:
Inner()
{
cout << "Outer's static value: " << s_value << '\n';
}
Inner(Outer &outer)
{
cout << "Outer's value: " << outer.d_value << '\n';
}
};
};
class Extern // won't compile!
{
public:
Extern(Outer &outer)
{
cout << "Outer's value: " << outer.d_value << '\n';
}
Extern()
{
cout << "Outer's static value: " << Outer::s_value << '\n';
}
};
int Outer::s_value = 123;
int main()
{
Outer outer;
Outer::Inner in1;
Outer::Inner in2{ outer };
}
Now consider the situation where a class Surround has two nested classes FirstWithin and SecondWithin. Each of the three classes has a static data member int s_variable:
class Surround
{
static int s_variable;
public:
class FirstWithin
{
static int s_variable;
public:
int value();
};
int value();
private:
class SecondWithin
{
static int s_variable;
public:
int value();
};
};
If the class Surround should be able to access FirstWithin and SecondWithin's private members, these latter two classes must declare Surround to be their friend. The function Surround::value can thereupon access the private members of its nested classes. For example (note the friend declarations in the two nested classes):
class Surround
{
static int s_variable;
public:
class FirstWithin
{
friend class Surround;
static int s_variable;
public:
int value();
};
int value();
private:
class SecondWithin
{
friend class Surround;
static int s_variable;
public:
int value();
};
};
inline int Surround::FirstWithin::value()
{
FirstWithin::s_variable = SecondWithin::s_variable;
return (s_variable);
}
Friend declarations may be provided beyond the definition of the entity that is to be considered a friend. So a class can be declared a friend beyond its definition. In that situation in-class code may already use the fact that it is going to be declared a friend by the upcoming class. As an example, consider an in-class implementation of the function Surround::FirstWithin::value. The required friend declaration can also be inserted after the implementation of the function value:
class Surround
{
public:
class FirstWithin
{
static int s_variable;
public:
int value();
{
FirstWithin::s_variable = SecondWithin::s_variable;
return s_variable;
}
friend class Surround;
};
private:
class SecondWithin
{
friend class Surround;
static int s_variable;
};
};
Note that members named identically in outer and inner classes (e.g., `s_variable') may be accessed using the proper scope resolution expressions, as illustrated below:
class Surround
{
static int s_variable;
public:
class FirstWithin
{
friend class Surround;
static int s_variable; // identically named
public:
int value();
};
int value();
private:
class SecondWithin
{
friend class Surround;
static int s_variable; // identically named
public:
int value();
};
static void classMember();
};
inline int Surround::value()
{ // scope resolution expression
FirstWithin::s_variable = SecondWithin::s_variable;
return s_variable;
}
inline int Surround::FirstWithin::value()
{
Surround::s_variable = 4; // scope resolution expressions
Surround::classMember();
return s_variable;
}
inline int Surround::SecondWithin::value()
{
Surround::s_variable = 40; // scope resolution expression
return s_variable;
}
Nested classes aren't automatically each other's friends. Here friend declarations must be provided to grant one nested classes access to another nested class's private members.
To grant FirstWithin access to SecondWithin's private members, SecondWithin must contain a friend declaration.
Likewise, the class FirstWithin simply uses friend class SecondWithin to grant SecondWithin access to FirstWithin's private members. Even though the compiler hasn't seen SecondWithin yet, a friend declaration is also considered a forward declaration.
Note that SecondWithin's forward declaration cannot be specified inside FirstWithin by using `class Surround::SecondWithin;', as this would generate an error message like:
`Surround' does not have a nested type named `SecondWithin'
Now assume that in addition to the nested class SecondWithin there also exists an outer-level class SecondWithin. To declare that class a friend of FirstWithin's declare friend ::SecondWithin inside class FirstWithin. In that case, an outer level class declaration of FirstWithin must be provided before the compiler encounters the friend ::SecondWithin declaration.
Here is an example in which all classes have full access to all private members of all involved classes: , and a outer level FirstWithin has also been declared:
class SecondWithin;
class Surround
{
// class SecondWithin; not required (but no error either):
// friend declarations (see below)
// are also forward declarations
static int s_variable;
public:
class FirstWithin
{
friend class Surround;
friend class SecondWithin;
friend class ::SecondWithin;
static int s_variable;
public:
int value();
};
int value(); // implementation given above
private:
class SecondWithin
{
friend class Surround;
friend class FirstWithin;
static int s_variable;
public:
int value();
};
};
inline int Surround::FirstWithin::value()
{
Surround::s_variable = SecondWithin::s_variable;
return s_variable;
}
inline int Surround::SecondWithin::value()
{
Surround::s_variable = FirstWithin::s_variable;
return s_variable;
}
17.4: Nesting enumerations
Enumerations may also be nested in classes. Nesting enumerations is a good way to show the close connection between the enumeration and its class. Nested enumerations have the same controlled visibility as other class members. They may be defined in the private, protected or public sections of classes and are inherited by derived classes. In the class ios we've seen values like ios::beg and ios::cur. In the current GNU C++ implementation these values are defined as values of the seek_dir enumeration:
class ios: public _ios_fields
{
public:
enum seek_dir
{
beg,
cur,
end
};
};
As an illustration assume that a class DataStructure represents a data structure that may be traversed in a forward or backward direction. Such a class can define an enumeration Traversal having the values FORWARD and BACKWARD. Furthermore, a member function setTraversal can be defined requiring a Traversal type of argument. The class can be defined as follows:
class DataStructure
{
public:
enum Traversal
{
FORWARD,
BACKWARD
};
setTraversal(Traversal mode);
private:
Traversal
d_mode;
};
Within the class DataStructure the values of the Traversal enumeration can be used directly. For example:
void DataStructure::setTraversal(Traversal mode)
{
d_mode = mode;
switch (d_mode)
{
FORWARD:
// ... do something
break;
BACKWARD:
// ... do something else
break;
}
}
Outside of the class DataStructure the name of the enumeration type is not used to refer to the values of the enumeration. Here the classname is sufficient. Only if a variable of the enumeration type is required the name of the enumeration type is needed, as illustrated by the following piece of code:
void fun()
{
DataStructure::Traversal // enum typename required
localMode = DataStructure::FORWARD; // enum typename not required
DataStructure ds;
// enum typename not required
ds.setTraversal(DataStructure::BACKWARD);
}
In the above example the constant DataStructure;:FORWARD was used to specify a value of an enum defined in the class DataStructure. Instead of DataStructure::FORWARD the construction ds.FORWARD is also accepted. In my opinion this syntactic liberty is ugly: FORWARD is a symbolic value that is defined at the class level; it's not a member of ds, which is suggested by the use of the member selector operator.
Only if DataStructure defines a nested class Nested, in turn defining the enumeration Traversal, the two class scopes are required. In that case the latter example should have been coded as follows:
void fun()
{
DataStructure::Nested::Traversal
localMode = DataStructure::Nested::FORWARD;
DataStructure ds;
ds.setTraversal(DataStructure::Nested::BACKWARD);
}
Here a construction like DataStructure::Nested::Traversal localMode = ds.Nested::FORWARD could also have been used, although I personally would avoid it, as FORWARD is not a member of ds but rather a symbol that is defined in DataStructure.
17.4.1: Empty enumerations
Enum types usually define symbolic values. However, this is not required. In section 14.6.1 the std::bad_cast type was introduced. A bad_cast is thrown by the dynamic_cast<> operator when a reference to a base class object cannot be cast to a derived class reference. The bad_cast could be caught as type, irrespective of any value it might represent.
Types may be defined without any associated values. An empty enum can be defined which is an enum not defining any values. The empty enum's type name may thereupon be used as a legitimate type in, e.g. a catch clause.
The example shows how an empty enum is defined (often, but not necessarily within a class) and how it may be thrown (and caught) as exceptions:
#include <iostream>
enum EmptyEnum
{};
int main()
try
{
throw EmptyEnum();
}
catch (EmptyEnum)
{
std::cout << "Caught empty enum\n";
}
17.5: Revisiting virtual constructors
In section 14.12 the notion of virtual constructors was introduced. In that section a class Base was defined as an abstract base class. A class Clonable was defined to manage Base class pointers in containers like vectors.
As the class Base is a minute class, hardly requiring any implementation, it can very well be defined as a nested class in Clonable. This emphasizes the close relationship between Clonable and Base. Nesting Base under Clonable changes
class Derived: public Base
into:
class Derived: public Clonable::Base
Apart from defining Base as a nested class and deriving from Clonable::Base rather than from Base (and providing Base members with the proper Clonable:: prefix to complete their fully qualified names), no further modifications are required. Here are the modified parts of the program shown earlier (cf. section 14.12), now using Base nested under Clonable:
// Clonable and nested Base, including their inline members:
class Clonable
{
public:
class Base;
private:
Base *d_bp;
public:
class Base
{
public:
virtual ~Base();
Base *clone() const;
private:
virtual Base *newCopy() const = 0;
};
Clonable();
explicit Clonable(Base *base);
~Clonable();
Clonable(Clonable const &other);
Clonable(Clonable &&tmp);
Clonable &operator=(Clonable const &other);
Clonable &operator=(Clonable &&tmp);
Base &base() const;
};
inline Clonable::Base *Clonable::Base::clone() const
{
return newCopy();
}
inline Clonable::Base &Clonable::base() const
{
return *d_bp;
}
// Derived and its inline member:
class Derived1: public Clonable::Base
{
public:
~Derived1();
private:
virtual Clonable::Base *newCopy() const;
};
inline Clonable::Base *Derived1::newCopy() const
{
return new Derived1(*this);
}
// Members not implemented inline:
Clonable::Base::~Base()
{}
Chapter 18: The Standard Template Library
The Standard Template Library (STL) is a general purpose library consisting of containers, generic algorithms, iterators, function objects, allocators, adaptors and data structures. The data structures used by the algorithms are abstract in the sense that the algorithms can be used with (practically) any data type.
The algorithms can process these abstract data types because they are template based. This chapter does not cover template construction (see chapter 21 for that). Rather, it focuses on the use of the algorithms.
Several elements also used by the standard template library have already been discussed in the C++ Annotations. In chapter 12 abstract containers were discussed, and in section 11.10 function objects were introduced. Also, iterators were mentioned at several places in this document.
The main components of the STL are covered in this and the next chapter. Iterators, adaptors, smart pointers, multi threading and other features of the STL are discussed in coming sections. Generic algorithms are covered in the next chapter (19).
Allocators take care of the memory allocation within the STL. The default allocator class suffices for most applications, and is not further discussed in the C++ Annotations.
All elements of the STL are defined in the standard namespace. Therefore, a using namespace std or a comparable directive is required unless it is preferred to specify the required namespace explicitly. In header files the std namespace should explicitly be used (cf. section 7.11.1).
In this chapter the empty angle bracket notation is frequently used. In code a typename must be supplied between the angle brackets. E.g., plus<> is used in the C++ Annotations, but in code plus<string> may be encountered.
18.1: Predefined function objects
Before using the predefined function objects presented in this section the <functional> header file must be included.
Function objects play important roles in generic algorithms. For example, there exists a generic algorithm sort expecting two iterators defining the range of objects that should be sorted, as well as a function object calling the appropriate comparison operator for two objects. Let's take a quick look at this situation. Assume strings are stored in a vector, and we want to sort the vector in descending order. In that case, sorting the vector stringVec is as simple as:
sort(stringVec.begin(), stringVec.end(), greater<string>());
The last argument is recognized as a constructor: it is an instantiation of the greater<> class template, applied to strings. This object is called as a function object by the sort generic algorithm. The generic algorithm calls the function object's operator() member to compare two string objects. The function object's operator() will, in turn, call operator> of the string data type. Eventually, when sort returns, the first element of the vector will contain the string having the greatest string value of all.
The function object's operator() itself is not visible at this point. Don't confuse the parentheses in the `greater<string>()' argument with calling operator(). When operator() is actually used inside sort, it receives two arguments: two strings to compare for `greaterness'. Since greater<string>::operator() is defined inline, the call itself is not actually present in the above sort call. Instead sort calls string::operator> through greater<string>::operator().
Now that we know that a constructor is passed as argument to (many) generic algorithms, we can design our own function objects. Assume we want to sort our vector case-insensitively. How do we proceed? First we note that the default string::operator< (for an incremental sort) is not appropriate, as it does case sensitive comparisons. So, we provide our own CaseInsensitive class, which compares two strings case insensitively. Using the POSIX function strcasecmp, the following program performs the trick. It case-insensitively sorts its command-line arguments in ascending alphabetic order:
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
class CaseInsensitive
{
public:
bool operator()(string const &left, string const &right) const
{
return strcasecmp(left.c_str(), right.c_str()) < 0;
}
};
int main(int argc, char **argv)
{
sort(argv, argv + argc, CaseInsensitive{});
for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";
cout << '\n';
}
The default constructor of the class CaseInsensitive is used to provide sort with its final argument. So the only member function that must be defined is CaseInsensitive::operator(). Since we know it's called with string arguments, we define it to expect two string arguments, which are used when calling strcasecmp. Furthermore, the function call operator operator() is defined inline, so that it does not produce overhead when called by the sort function. The sort function calls the function object with various combinations of strings. If the compiler grants our inline requests, it will in fact call strcasecmp, skipping two extra function calls.
The comparison function object is often a predefined function object. Predefined function object classes are available for many commonly used operations. In the following sections the available predefined function objects are presented, together with some examples showing their use. Near the end of the section about function objects function adaptors are introduced.
Predefined function objects are used predominantly with generic algorithms. Predefined function objects exists for arithmetic, relational, and logical operations.
18.1.1: Arithmetic function objects
The arithmetic function objects support the standard arithmetic operations: addition, subtraction, multiplication, division, modulo and negation. These function objects invoke the corresponding operators of the data types for which they are instantiated. For example, for addition the function object plus<Type> is available. If we replace Type by size_t then the addition operator for size_t values is used, if we replace Type by string, the addition operator for strings is used. For example:
#include <iostream>
#include <string>
#include <functional>
using namespace std;
int main(int argc, char **argv)
{
plus<size_t> uAdd; // function object to add size_ts
cout << "3 + 5 = " << uAdd(3, 5) << '\n';
plus<string> sAdd; // function object to add strings
cout << "argv[0] + argv[1] = " << sAdd(argv[0], argv[1]) << '\n';
}
/*
Output when called as: a.out going
3 + 5 = 8
argv[0] + argv[1] = a.outgoing
*/
Why is this useful? Note that the function object can be used with all kinds of data types (not only with the predefined datatypes) supporting the operator called by the function object.
Suppose we want to perform an operation on a left hand side operand which is always the same variable and a right hand side argument for which, in turn, all elements of an array should be used. E.g., we want to compute the sum of all elements in an array; or we want to concatenate all the strings in a text-array. In situations like these function objects come in handy.
As stated, function objects are heavily used in the context of the generic algorithms, so let's take a quick look ahead at yet another one.
The generic algorithm accumulate visits all elements specified by an iterator-range, and performs a requested binary operation on a common element and each of the elements in the range, returning the accumulated result after visiting all elements specified by the iterator range. It's easy to use this algorithm. The next program accumulates all command line arguments and prints the final string:
#include <iostream>
#include <string>
#include <functional>
#include <numeric>
using namespace std;
int main(int argc, char **argv)
{
string result =
accumulate(argv, argv + argc, string{}, plus<string>());
cout << "All concatenated arguments: " << result << '\n';
}
The first two arguments define the (iterator) range of elements to visit, the third argument is string. This anonymous string object provides an initial value. We could also have used
"All concatenated arguments: "s
in which case the cout statement could simply have been cout << result << '\n'. The string-addition operation is used, called from plus<string>. The final concatenated string is returned.
Now we define a class Time, overloading operator+. Again, we can apply the predefined function object plus, now tailored to our newly defined datatype, to add times:
#include <iostream>
#include <string>
#include <vector>
#include <functional>
#include <numeric>
using namespace std;
class Time
{
friend ostream &operator<<(ostream &str, Time const &time);
size_t d_days;
size_t d_hours;
size_t d_minutes;
size_t d_seconds;
public:
Time(size_t hours, size_t minutes, size_t seconds);
Time &operator+=(Time const &rhs);
};
Time &&operator+(Time const &lhs, Time const &rhs)
{
Time ret(lhs);
return std::move(ret += rhs);
}
Time::Time(size_t hours, size_t minutes, size_t seconds)
:
d_days(0),
d_hours(hours),
d_minutes(minutes),
d_seconds(seconds)
{}
Time &Time::operator+=(Time const &rhs)
{
d_seconds += rhs.d_seconds;
d_minutes += rhs.d_minutes + d_seconds / 60;
d_hours += rhs.d_hours + d_minutes / 60;
d_days += rhs.d_days + d_hours / 24;
d_seconds %= 60;
d_minutes %= 60;
d_hours %= 24;
return *this;
}
ostream &operator<<(ostream &str, Time const &time)
{
return cout << time.d_days << " days, " << time.d_hours <<
" hours, " <<
time.d_minutes << " minutes and " <<
time.d_seconds << " seconds.";
}
int main(int argc, char **argv)
{
vector<Time> tvector;
tvector.push_back(Time( 1, 10, 20));
tvector.push_back(Time(10, 30, 40));
tvector.push_back(Time(20, 50, 0));
tvector.push_back(Time(30, 20, 30));
cout <<
accumulate
(
tvector.begin(), tvector.end(), Time(0, 0, 0), plus<Time>()
) <<
'\n';
}
// Displays: 2 days, 14 hours, 51 minutes and 30 seconds.
The design of the above program is fairly straightforward. Time defines a constructor, it defines an insertion operator and it defines its own operator+, adding two time objects. In main four Time objects are stored in a vector<Time> object. Then, accumulate is used to compute the accumulated time. It returns a Time object, which is inserted into cout.
While this section's first example illustrated using a named function object, the last two examples illustrate how anonymous objects can be passed to the (accumulate) function.
The STL supports the following set of arithmetic function objects. The function call operator (operator()) of these function objects calls the matching arithmetic operator for the objects that are passed to the function call operator, returning that arithmetic operator's return value. The arithmetic operator that is actually called is mentioned below:
In the next example the transform generic algorithm is used to toggle the signs of all elements of an array. Transform expects two iterators, defining the range of objects to be transformed; an iterator defining the begin of the destination range (which may be the same iterator as the first argument); and a function object defining a unary operation for the indicated data type.
#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
using namespace std;
int main(int argc, char **argv)
{
int iArr[] = { 1, -2, 3, -4, 5, -6 };
transform(iArr, iArr + 6, iArr, negate<int>());
for (int idx = 0; idx < 6; ++idx)
cout << iArr[idx] << ", ";
cout << '\n';
}
// Displays: -1, 2, -3, 4, -5, 6,
18.1.2: Relational function objects
The relational operators are called by the relational function objects. All standard relational operators are supported: ==, !=, >, >=, < and <=.
The STL supports the following set of relational function objects. The function call operator (operator()) of these function objects calls the matching relational operator for the objects that are passed to the function call operator, returning that relational operator's return value. The relational operator that is actually called is mentioned below:
An example using the relational function objects in combination with sort is:
#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
using namespace std;
int main(int argc, char **argv)
{
sort(argv, argv + argc, greater_equal<string>());
for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";
cout << '\n';
sort(argv, argv + argc, less<string>());
for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";
cout << '\n';
}
The example illustrates how strings may be sorted alphabetically and reversed alphabetically. By passing greater_equal<string> the strings are sorted in decreasing order (the first word will be the 'greatest'), by passing less<string> the strings are sorted in increasing order (the first word will be the 'smallest').
Note that argv contains char * values, and that the relational function object expects a string. The promotion from char const * to string is silently performed.
18.1.3: Logical function objects
The logical operators are called by the logical function objects. The standard logical operators are supported: and, or, and not.
The STL supports the following set of logical function objects. The function call operator (operator()) of these function objects calls the matching logical operator for the objects that are passed to the function call operator, returning that logical operator's return value. The logical operator that is actually called is mentioned below:
An example using operator! is provided in the following trivial program, using transform to transform the logical values stored in an array:
#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
using namespace std;
int main(int argc, char **argv)
{
bool bArr[] = {true, true, true, false, false, false};
size_t const bArrSize = sizeof(bArr) / sizeof(bool);
for (size_t idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";
cout << '\n';
transform(bArr, bArr + bArrSize, bArr, logical_not<bool>());
for (size_t idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";
cout << '\n';
}
/*
Displays:
1 1 1 0 0 0
0 0 0 1 1 1
*/
18.1.4: The `std::not_fn' negator
A negator is a function object toggling the truth value of a function that's called from the negator: if the function returns true the negator returns false and vv.
The standard negator is std::not_fn, declared in the <functional> header file.
The function not_fn expects a (movable) object as its argument, returning the negated value of the return value of its argument's function call operator.
As an example consider a main function defining an array of int values:
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
}
To count the number of even values count_if, using a lambda function can be used:
cout <<
count_if(arr, arr + size(arr),
[&](int value)
{
return (value & 1 == 0);
}
) << '\n';
To count the number of odd values, not_fn can be used in the above code like so:
cout <<
count_if(arr, arr + size(arr),
not_fn(
[&](int value)
{
return (value & 1 == 0);
}
)
) << '\n';
Of course, in this simple example the lambda function could also easily have been modified. But if instead of a lambda function an existing class implementing a function object had been used it would have been difficult or impossible to change the behavior of that class. If the class offers moving operations then not_fn can be used to negate the values returned by that class's function call operator.
18.2: Iterators
In addition to the conceptual iterator types presented in this section the STL defines several adaptors allowing objects to be passed as iterators. These adaptors are presented in the upcoming sections. Before those adaptors can be used the <iterator> header file must be included.
Although standard iterators are candidates for deprecation (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0174r1.html#2.1), this does not mean that they will (soon) be removed from the std library. It's probably a suboptimal strategy to `reinvent' your own. Instead, it is advised to continue using the std::iterator classes until they have officially been replaced by alternatives.
Iterators are objects acting like pointers. Iterators have the following general characteristics:
vector<int> vi{ 1, 2, 3 };
int *ip = vi.begin().base();
cout << *ip << '\n'; // shows: 1
#include <vector>
#include <iostream>
using namespace std;
int main()
{
vector<int>::iterator vi;
cout << &*vi; // prints 0
}
STL containers usually define members offering iterators (i.e., they define their own type iterator). These members are commonly called begin and end and (for reversed iterators (type reverse_iterator)) rbegin and rend.
Wherease reverse iterators can be constructed from ordinary (forward) iterators using reverse_iterator constructors as in:
string str;
auto revit = string::reverse_iterator{ str.begin() };
the opposite is not accomplished that way. To retrieve the forward iterator corresponding to a reverse iterator, the reverse_iterator.base() member can be used. E.g., to obtain the forward iterator corresponding to revit use
auto forward { revit.base() };
Standard practice requires iterator ranges to be left inclusive. The notation [left, right) indicates that left is an iterator pointing to the first element, while right is an iterator pointing just beyond the last element. The iterator range is empty when left == right.
The following example shows how all elements of a vector of strings can be inserted into cout using its iterator ranges [begin(), end()), and [rbegin(), rend()). Note that the for-loops for both ranges are identical. Furthermore it nicely illustrates how the auto keyword can be used to define the type of the loop control variable instead of using a much more verbose variable definition like vector<string>::iterator (see also section 3.3.7):
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int main(int argc, char **argv)
{
vector<string> args(argv, argv + argc);
for (auto iter = args.begin(); iter != args.end(); ++iter)
cout << *iter << " ";
cout << '\n';
for (auto iter = args.rbegin(); iter != args.rend(); ++iter)
cout << *iter << " ";
cout << '\n';
}
Furthermore, the STL defines const_iterator types that must be used when visiting a series of elements in a constant container. Whereas the elements of the vector in the previous example could have been altered, the elements of the vector in the next example are immutable, and const_iterators are required:
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int main(int argc, char **argv)
{
vector<string> const args(argv, argv + argc);
for
(
vector<string>::const_iterator iter = args.begin();
iter != args.end();
++iter
)
cout << *iter << " ";
cout << '\n';
for
(
vector<string>::const_reverse_iterator iter = args.rbegin();
iter != args.rend();
++iter
)
cout << *iter << " ";
cout << '\n';
}
The examples also illustrate that plain pointers can be used as iterators. The initialization vector<string> args(argv, argv + argc) provides the args vector with a pair of pointer-based iterators: argv points to the first element to initialize args with, argv + argc points just beyond the last element to be used, ++argv reaches the next command line argument. This is a general pointer characteristic, which is why they too can be used in situations where iterators are expected.
The STL defines five types of iterators. These iterator types are expected by generic algorithms, and in order to create a particular type of iterator yourself it is important to know their characteristics. In general, iterators (see also section 22.14) must define:
The following types of iterators are used when describing generic algorithms in chapter 19:
InputIterators are used to read from a container. The dereference operator is guaranteed to work as rvalue in expressions. Instead of an InputIterator it is also possible to use (see below) Forward-, Bidirectional- or RandomAccessIterators. Notations like InputIterator1 and InputIterator2 may be used as well. In these cases, numbers are used to indicate which iterators `belong together'. E.g., the generic algorithm inner_product has the following prototype:
Type inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, Type init);
InputIterator1 first1 and InputIterator1 last1 define a pair of input iterators on one range, while InputIterator2 first2 defines the beginning of another range. Analogous notations may be used with other iterator types.
OutputIterators can be used to write to a container. The dereference operator is guaranteed to work as an lvalue in expressions, but not necessarily as rvalue. Instead of an OutputIterator it is also possible to use (see below) Forward-, Bidirectional- or RandomAccessIterators.
ForwardIterators combine InputIterators and OutputIterators. They can be used to traverse containers in one direction, for reading and/or writing. Instead of a ForwardIterator it is also possible to use (see below) Bidirectional- or RandomAccessIterators.
BidirectionalIterators can be used to traverse containers in both directions, for reading and writing. Instead of a BidirectionalIterator it is also possible to use (see below) a RandomAccessIterator.
RandomAccessIterators provide random access to container elements. An algorithm like sort requires a RandomAccessIterator, and can therefore not be used to sort the elements of lists or maps, which only provide BidirectionalIterators.
The example given with the RandomAccessIterator illustrates how to relate iterators and generic algorithms: look for the iterator that's required by the (generic) algorithm, and then see whether the datastructure supports the required type of iterator. If not, the algorithm cannot be used with the particular datastructure.
18.2.1: std::distance and std::size
Earlier, in section 18.2 it was stated that iterators support pointer arithmetic for containers storing their elements consecutively in memory. This is not completely true: to determine the number of elements between the elements to which two iterators refer the iterator must support the subtraction operator.
Using pointer arithmetic to compute the number of elements between two iterators in, e.g., a std::list or std::unordered_map is not possible, as these containers do not store their elements consecutively in memory.
The function std::distance fills in that little gap: std::distance expects two InputIterators and returns the number of elements between them.
Before using distance the <iterator> header file must be included.
If the iterator specified as first argument exceeds the iterator specified as its second argument then the number of elements is non-positive, otherwise it is non-negative. If the number of elements cannot be determined (e.g., the iterators do not refer to elements in the same container), then distance's return value is undefined.
Example:
#include <iostream>
#include <unordered_map>
using namespace std;
int main()
{
unordered_map<int, int> myMap = {{1, 2}, {3, 5}, {-8, 12}};
cout << distance(++myMap.begin(), myMap.end()) << '\n'; // shows: 2
}
The iterator header file also defines the function std::size, returning the number of elements in a containers (as returned by the container's size member) or of an array whose dimension is known to the compiler at the point of std::size's call. E.g., if the size of an array data is known to the compiler, then to call a function handler (expecting the address of the first element of an array and the address of the location just beyond that array) the following statement can be used:
handler(data, data + std::size(data));
As noted, the std::size function is defined in the iterator header. However, it's also guaranteed available when including the header file of a container supporting iterators (including the string header file).
18.2.2: Insert iterators
Generic algorithms often require a target container into which the results of the algorithm are deposited. For example, the copy generic algorithm has three parameters. The first two define the range of visited elements, the third defines the first position where the results of the copy operation should be stored.
With the copy algorithm the number of elements to copy is usually available beforehand, since that number can usually be provided by pointer arithmetic. However, situations exist where pointer arithmetic cannot be used. Analogously, the number of resulting elements sometimes differs from the number of elements in the initial range. The generic algorithm unique_copy is a case in point. Here the number of elements that are copied to the destination container is normally not known beforehand.
In situations like these an inserter adaptor function can often be used to create elements in the destination container. There are three types of inserter adaptors:
copy(source.rbegin(), source.rend(), back_inserter(destination));
copy(source.begin(), source.end(), front_inserter(destination));
copy(source.begin(), source.end(), inserter(destination,
destination.begin()));
The inserter adaptors require the existence of two typedefs:
Concentrating on back_inserter, this iterator expects the name of a container supporting a member push_back. The inserter's operator() member calls the container's push_back member. Objects of any class supporting a push_back member can be passed as arguments to back_inserter provided the class adds
typedef DataType const &const_reference;
to its interface (where DataType const & is the type of the parameter of the class's member push_back). Example:
#include <iostream>
#include <algorithm>
#include <iterator>
using namespace std;
class Insertable
{
public:
typedef int value_type;
typedef int const &const_reference;
void push_back(int const &)
{}
};
int main()
{
int arr[] = {1};
Insertable insertable;
copy(arr, arr + 1, back_inserter(insertable));
}
18.2.3: Iterators for `istream' objects
The istream_iterator<Type> can be used to define a set of iterators for istream objects. The general form of the istream_iterator iterator is:
istream_iterator<Type> identifier(istream &in)
Here, Type is the type of the data elements read from the istream stream. It is used as the `begin' iterator in an iterator range. Type may be any type for which operator>> is defined in combination with istream objects.
The default constructor is used as the end-iterator and corresponds to the end-of-stream. For example,
istream_iterator<string> endOfStream;
The stream object that was specified when defining the begin-iterator is not mentioned with the default constructor.
Using back_inserter and istream_iterator adaptors, all strings from a stream can easily be stored in a container. Example (using anonymous istream_iterator adaptors):
#include <iostream>
#include <iterator>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
vector<string> vs;
copy(istream_iterator<string>(cin), istream_iterator<string>(),
back_inserter(vs));
for
(
vector<string>::const_iterator begin = vs.begin(), end = vs.end();
begin != end; ++begin
)
cout << *begin << ' ';
cout << '\n';
}
18.2.3.1: Iterators for `istreambuf' objects
Input iterators are also available for streambuf objects.
To read from streambuf objects supporting input operations istreambuf_iterators can be used, supporting the operations that are also available for istream_iterator. Different from the latter iterator type istreambuf_iterators support three constructors:
In section 18.2.4.1 an example is given using both istreambuf_iterators and ostreambuf_iterators.
18.2.4: Iterators for `ostream' objects
An ostream_iterator<Type> adaptor can be used to pass an ostream to algorithms expecting an OutputIterator. Two constructors are available for defining ostream_iterators:
ostream_iterator<Type> identifier(ostream &outStream);
ostream_iterator<Type> identifier(ostream &outStream, char const *delim);
Type is the type of the data elements that should be inserted into an ostream. It may be any type for which operator<< is defined in combination with ostream objects. The latter constructor can be used to separate the individual Type data elements by delimiter strings. The former constructor does not use any delimiters.
The example shows how istream_iterators and an ostream_iterator may be used to copy information of a file to another file. A subtlety here is that you probably want to use in.unsetf(ios::skipws). It is used to clear the ios::skipws flag. As a consequence whitespace characters are simply returned by the operator, and the file is copied character by character. Here is the program:
#include <iostream>
#include <algorithm>
#include <iterator>
using namespace std;
int main()
{
cin.unsetf(ios::skipws);
copy(istream_iterator<char>(cin), istream_iterator<char>(),
ostream_iterator<char>(cout));
}
18.2.4.1: Iterators for `ostreambuf' objects
Output iterators are also available for streambuf objects.
To write to streambuf objects supporting output operations ostreambuf_iterators can be used, supporting the operations that are also available for ostream_iterator. Ostreambuf_iterators support two constructors:
The next example illustrates the use of both istreambuf_iterators and ostreambuf_iterators when copying a stream in yet another way. Since the stream's streambufs are directly accessed the streams and stream flags are bypassed. Consequently there is no need to clear ios::skipws as in the previous section, while the next program's efficiency probably also exceeds the efficiency of the program shown in the previous section.
#include <iostream>
#include <algorithm>
#include <iterator>
using namespace std;
int main()
{
istreambuf_iterator<char> in(cin.rdbuf());
istreambuf_iterator<char> eof;
ostreambuf_iterator<char> out(cout.rdbuf());
copy(in, eof, out);
}
18.3: The class 'unique_ptr'
Before using the unique_ptr class presented in this section the <memory> header file must be included.
When pointers are used to access dynamically allocated memory strict bookkeeping is required to prevent memory leaks. When a pointer variable referring to dynamically allocated memory goes out of scope, the dynamically allocated memory becomes inaccessible and the program suffers from a memory leak. Consequently, the programmer has to make sure that the dynamically allocated memory is returned to the common pool just before the pointer variable goes out of scope.
When a pointer variable points to a dynamically allocated single value or object, bookkeeping requirements are greatly simplified when the pointer variable is defined as a std::unique_ptr object.
Unique_ptrs are objects masquerading as pointers. Since they are objects, their destructors are called when they go out of scope. Their destructors automatically delete the dynamically allocated memory to which they point. Unique_ptrs (and their cousins shared_ptrs (cf. section 18.4) are also called smart pointers).
Unique_ptrs have several special characteristics:
std::unique_ptr<int> up1(new int);
std::unique_ptr<int> up2(up1); // compilation error
The second definition fails to compile as unique_ptr's copy constructor is private (the same holds true for the assignment operator). But the unique_ptr class does offer facilities to initialize and assign from rvalue references:
class unique_ptr // interface partially shown
{
public:
unique_ptr(unique_ptr &&tmp); // rvalues bind here
private:
unique_ptr(const unique_ptr &other);
};
In the next example move semantics is used and so it compiles correctly:
unique_ptr<int> cp(unique_ptr<int>(new int));
class Base
{ ... };
class Derived: public Base
{
...
public:
// assume Derived has a member void process()
static void deleter(Base *bp);
};
void Derived::deleter(Base *bp)
{
delete static_cast<Derived *>(bp);
}
int main()
{
unique_ptr<Base, void (*)(Base *)> bp(new Derived, &Derived::deleter);
static_cast<Derived *>(bp.get())->process(); // OK!
} // here ~Derived is called: no polymorphism required.
The class unique_ptr offers several member functions to access the pointer itself or to have a unique_ptr point to another block of memory. These member functions (and unique_ptr constructors) are introduced in the next few sections.
Unique_ptr can also be used with containers and (generic) algorithms. They can properly destruct any type of object, as their constructors accept customizable deleters. In addition, arrays can be handled by unique_ptrs.
18.3.1: Defining `unique_ptr' objects
There are three ways to define unique_ptr objects. Each definition contains the usual <type> specifier between angle brackets:
unique_ptr<type> identifier;
This form is discussed in section 18.3.2.
unique_ptr<type> identifier(another unique_ptr for type);
This form is discussed in section 18.3.3.
unique_ptr<type> identifier (new-expression [, deleter]);
This form is discussed in section 18.3.4.
18.3.2: Creating a plain `unique_ptr'
Unique_ptr's default constructor defines a unique_ptr not pointing to a particular block of memory:
unique_ptr<type> identifier;
The pointer controlled by the unique_ptr object is initialized to 0 (zero). Although the unique_ptr object itself is not the pointer, its value can be compared to 0. Example:
unique_ptr<int> ip;
if (!ip)
cout << "0-pointer with a unique_ptr object\n";
Alternatively, the member get can be used (cf. section 18.3.5).
18.3.3: Moving another `unique_ptr'
A unique_ptr may be initialized using an rvalue reference to a unique_ptr object for the same type:
unique_ptr<type> identifier(other unique_ptr object);
The move constructor is used, e.g., in the following example:
void mover(unique_ptr<string> &¶m)
{
unique_ptr<string> tmp(move(param));
}
Analogously, the assignment operator can be used. A unique_ptr object may be assigned to a temporary unique_ptr object of the same type (again move-semantics is used). For example:
#include <iostream>
#include <memory>
#include <string>
using namespace std;
int main()
{
unique_ptr<string> hello1{ new string{ "Hello world" } };
unique_ptr<string> hello2{ move(hello1) };
unique_ptr<string> hello3;
hello3 = move(hello2);
cout << // *hello1 << '\n' << // would have segfaulted
// *hello2 << '\n' << // same
*hello3 << '\n';
}
// Displays: Hello world
The example illustrates that
If hello1 or hello2 had been inserted into cout a segmentation fault would have resulted. The reason for this should now be clear: it is caused by dereferencing 0-pointers. In the end, only hello3 actually points to the originally allocated string.
18.3.4: Pointing to a newly allocated object
A unique_ptr is most often initialized using a pointer to dynamically allocated memory. The generic form is:
unique_ptr<type [, deleter_type]> identifier(new-expression
[, deleter = deleter_type{}]);
The second (template) argument (deleter(_type)) is optional and may refer to a free function, a function object handling the destruction of the allocated memory, or a lambda function. A deleter is used, e.g., in situations where a double pointer is allocated and the destruction must visit each nested pointer to destroy the allocated memory (see below for an illustration).
Here is an example initializing a unique_ptr pointing to a string object:
unique_ptr<string> strPtr{ new string{ "Hello world" } };
The argument that is passed to the constructor is the pointer returned by operator new. Note that type does not mention the pointer. The type that is used in the unique_ptr construction is the same as the type that is used in new expressions.
Here is an example showing how an explicitly defined deleter may be used to delete a dynamically allocated array of pointers to strings:
#include <iostream>
#include <string>
#include <memory>
using namespace std;
struct Deleter
{
size_t d_size;
Deleter(size_t size = 0)
:
d_size(size)
{}
void operator()(string **ptr) const
{
for (size_t idx = 0; idx < d_size; ++idx)
delete ptr[idx];
delete[] ptr;
}
};
int main()
{
unique_ptr<string *, Deleter> sp2{ new string *[10], Deleter{ 10 } };
Deleter &obj = sp2.get_deleter();
}
A unique_ptr can be used to reach the member functions that are available for objects allocated by the new expression. These members can be reached as if the unique_ptr was a plain pointer to the dynamically allocated object. For example, in the following program the text `C++' is inserted behind the word `hello':
#include <iostream>
#include <memory>
#include <cstring>
using namespace std;
int main()
{
unique_ptr<string> sp{ new string{ "Hello world" } };
cout << *sp << '\n';
sp->insert(strlen("Hello "), "C++ ");
cout << *sp << '\n';
}
/*
Displays:
Hello world
Hello C++ world
*/
18.3.5: Operators and members
The class unique_ptr offers the following operators:
unique_ptr<int> ip1(new int);
unique_ptr<int> ip2;
ip2 = std::move(ip1);
unique_ptr<string> sp{ new string{ "hello" } };
cout << sp->c_str();
The class unique_ptr supports the following member functions:
18.3.6: Using `unique_ptr' objects for arrays
When a unique_ptr is used to store arrays the dereferencing operator makes little sense but with arrays unique_ptr objects benefit from index operators. The distinction between a single object unique_ptr and a unique_ptr referring to a dynamically allocated array of objects is realized through a template specialization.
With dynamically allocated arrays the following syntax is available:
unique_ptr<int[]> intArr(new int[3]);
intArr[2] = intArr[0];
In these cases the smart pointer's destructors call delete[] rather than delete.
18.4: The class `shared_ptr'
In addition to the class unique_ptr the class std::shared_ptr<Type> is available, which is a reference counting smart pointer.
Before using shared_ptrs the <memory> header file must be included.
The shared pointer automatically destroys its content once its reference count has decayed to zero. As with unique_ptr, when defining a shared_ptr<Base> to store a newly allocated Derived class object, the returned Base * may be cast to a Derived * using a static_cast: polymorphism isn't required, and when resetting the shared_ptr or when the shared_ptr goes out of scope, no slicing occurs, and Derived's destructor (or, if configured: deleter) is called (cf. section 18.3).
Shared_ptrs support copy and move constructors as well as standard and move overloaded assignment operators.
Like unique_ptrs, shared_ptrs may refer to dynamically allocated arrays.
18.4.1: Defining `shared_ptr' objects
There are four ways to define shared_ptr objects. Each definition contains the usual <type> specifier between angle brackets:
shared_ptr<type> identifier;
This form is discussed in section 18.4.2.
shared_ptr<string> org{ new string{ "hi there" } };
shared_ptr<string> copy(org); // reference count now 2
shared_ptr<string> grabber{ shared_ptr<string>{ new string{ "hi there" } } };
shared_ptr<type> identifier (new-expression [, deleter]);
This form is discussed in section 18.4.3.
18.4.2: Creating a plain `shared_ptr'
Shared_ptr's default constructor defines a shared_ptr not pointing to a particular block of memory:
shared_ptr<type> identifier;
The pointer controlled by the shared_ptr object is initialized to 0 (zero). Although the shared_ptr object itself is not the pointer, its value can be compared to 0. Example:
shared_ptr<int> ip;
if (!ip)
cout << "0-pointer with a shared_ptr object\n";
Alternatively, the member get can be used (cf. section 18.4.4).
18.4.3: Pointing to a newly allocated object
Most often a shared_ptr is initialized by a dynamically allocated block of memory. The generic form is:
shared_ptr<type> identifier(new-expression [, deleter]);
The second argument (deleter) is optional and refers to a function object or free function handling the destruction of the allocated memory. A deleter is used, e.g., in situations where a double pointer is allocated and the destruction must visit each nested pointer to destroy the allocated memory (see below for an illustration). It is used in situations comparable to those encountered with unique_ptr (cf. section 18.3.4).
Here is an example initializing a shared_ptr pointing to a string object:
shared_ptr<string> strPtr{ new string{ "Hello world" } };
The argument that is passed to the constructor is the pointer returned by operator new. Note that type does not mention the pointer. The type that is used in the shared_ptr construction is the same as the type that is used in new expressions.
The next example illustrates that two shared_ptrs indeed share their information. After modifying the information controlled by one of the objects the information controlled by the other object is modified as well:
#include <iostream>
#include <memory>
#include <cstring>
using namespace std;
int main()
{
shared_ptr<string> sp(new string{ "Hello world" });
shared_ptr<string> sp2(sp);
sp->insert(strlen("Hello "), "C++ ");
cout << *sp << '\n' <<
*sp2 << '\n';
}
/*
Displays:
Hello C++ world
Hello C++ world
*/
18.4.4: Operators and members
The class shared_ptr offers the following operators:
shared_ptr<string> sp{ new string{ "hello" } };
cout << sp->c_str() << '\n';
The following member function member functions are supported:
18.4.5: Casting shared pointers
Be cautious when using standard C++ style casts in combination with shared_ptr objects. Consider the following two classes:
struct Base
{};
struct Derived: public Base
{};
As with unique_ptr, when defining a shared_ptr<Base> to store a newly allocated Derived class object, the returned Base * may be cast to a Derived * using a static_cast: polymorphism isn't required, and when resetting the shared_ptr or when the shared_ptr goes out of scope, no slicing occurs, and Derived's destructor is called (cf. section 18.3).
Of course, a shared_ptr<Derived> can easily be defined. Since a Derived object is also a Base object, a pointer to Derived can be considered a pointer to Base without using casts, but a static_cast could be used to force the interpretation of a Derived * to a Base *:
Derived d;
static_cast<Base *>(&d);
However, a plain static_cast cannot be used when initializing a shared pointer to a Base using the get member of a shared pointer to a Derived object. The following code snipped eventually results in an attempt to delete the dynamically allocated Base object twice:
shared_ptr<Derived> sd{ new Derived };
shared_ptr<Base> sb{ static_cast<Base *>(sd.get()) };
Since sd and sb point at the same object ~Base will be called for the same object when sb goes out of scope and when sd goes out of scope, resulting in premature termination of the program due to a double free error.
These errors can be prevented using casts that were specifically designed for being used with shared_ptrs. These casts use specialized constructors that create a shared_ptr pointing to memory but shares ownership (i.e., a reference count) with an existing shared_ptr. These special casts are:
shared_ptr<Derived> dp{ new Derived };
shared_ptr<Base> bp = static_pointer_cast<Base>(dp);
shared_ptr<Derived const> cp{ new Derived };
shared_ptr<Derived> ncp = const_pointer_cast<Derived>(cp);
shared_ptr<Base> bp(new Derived());
cout << dynamic_pointer_cast<Derived>(bp).get() << ' ' <<
dynamic_pointer_cast<Derived2>(bp).get() << '\n';
The first get returns a non-0 pointer value, the second get returns 0.
18.4.6: Using `shared_ptr' objects for arrays
Different from the unique_ptr class no specialization exists for the shared_ptr class to handle dynamically allocated arrays of objects.
But like unique_ptrs, with shared_ptrs referring to arrays the dereferencing operator makes little sense while in these circumstances shared_ptr objects would benefit from index operators.
It is not difficult to create a class shared_array offering such facilities. The class template shared_array, derived from shared_ptr merely should provide an appropriate deleter to make sure that the array and its elements are properly destroyed. In addition it should define the index operator and, when applicable should declare the derefencing operators using delete.
Here is an example showing how shared_array can be defined and used:
struct X
{
~X()
{
cout << "destr\n"; // show the object's destruction
}
};
template <typename Type>
class shared_array: public shared_ptr<Type>
{
struct Deleter // Deleter receives the pointer
{ // and calls delete[]
void operator()(Type* ptr)
{
delete[] ptr;
}
};
public:
shared_array(Type *p) // other constructors
: // not shown here
shared_ptr<Type>(p, Deleter())
{}
Type &operator[](size_t idx) // index operators
{
return shared_ptr<Type>::get()[idx];
}
Type const &operator[](size_t idx) const
{
return shared_ptr<Type>::get()[idx];
}
Type &operator*() = delete; // delete pointless members
Type const &operator*() const = delete;
Type *operator->() = delete;
Type const *operator->() const = delete;
};
int main()
{
shared_array<X> sp{ new X[3] };
sp[0] = sp[1];
}
18.5: Smart `smart pointer' construction: `make_shared' and `make_unique'
Usually a shared_ptr is initialized at definition time with a pointer to a newly allocated object. Here is an example:
std::shared_ptr<string> sptr{ new std::string{ "hello world" } }
In such statements two memory allocation calls are used: one for the allocation of the std::string and one used interally by std::shared_ptr's constructor itself.
The two allocations can be combined into one single allocation (which is also slightly more efficient than explicitly calling shared_ptr's constructor) using the make_shared template. The function template std::make_shared has the following prototype:
template<typename Type, typename ...Args>
std::shared_ptr<Type> std::make_shared(Args ...args);
Before using make_shared the <memory> header file must be included.
This function template allocates an object of type Type, passing args to its constructor (using perfect forwarding, see section 22.5.2), and returns a shared_ptr initialized with the address of the newly allocated Type object.
Here is how the above sptr object can be initialized using std::make_shared. Notice the use of auto which frees us from having to specify sptr's type explicitly:
auto sptr(std::make_shared<std::string>("hello world"));
After this initialization std::shared_ptr<std::string> sptr has been defined and initialized. It could be used as follows:
std::cout << *sptr << '\n';
In addition to make_shared the function std::make_unique can be used. It can be used make_shared but returns a std::unique_ptr rather than a shared_ptr.
18.6: Classes having pointer data members
Classes having pointer data members require special attention. In particular at construction time one must be careful to prevent wild pointers and/or memory leaks. Consider the following class defining two pointer data members:
class Filter
{
istream *d_in;
ostream *d_out;
public:
Filter(char const *in, char const *out);
};
Assume that Filter objects filter information read from *d_in and write the filtered information to *d_out. Using pointers to streams allows us to have them point at any kind of stream like istreams, ifstreams, fstreams or istringstreams. The shown constructor could be implemented like this:
Filter::Filter(char const *in, char const *out)
:
d_in(new ifstream{ in }),
d_out(new ofstream{ out })
{
if (!*d_in || !*d_out)
throw "Input and/or output stream not available"s;
}
Of course, the construction could fail. new could throw an exception; the stream constructors could throw exceptions; or the streams could not be opened in which case an exception is thrown from the constructor's body. Using a function try block helps. Note that if d_in's initialization throws, there's nothing to be worried about. The Filter object hasn't been constructed, its destructor is not called and processing continues at the point where the thrown exception is caught. But Filter's destructor is also not called when d_out's initialization or the constructor's if statement throws: no object, and hence no destructor is called. This may result in memory leaks, as delete isn't called for d_in and/or d_out. To prevent this, d_in and d_out must first be initialized to 0 and only then the initialization can be performed:
Filter::Filter(char const *in, char const *out)
try
:
d_in(0),
d_out(0)
{
d_in = new ifstream{ in };
d_out = new ofstream{ out };
if (!*d_in || !*d_out)
throw "Input and/or output stream not available"s;
}
catch (...)
{
delete d_out;
delete d_in;
}
This quickly gets complicated, though. If Filter harbors yet another data member of a class whose constructor needs two streams then that data cannot be constructed or it must itself be converted into a pointer:
Filter::Filter(char const *in, char const *out)
try
:
d_in(0),
d_out(0)
d_filterImp(*d_in, *d_out) // won't work
{ ... }
// instead:
Filter::Filter(char const *in, char const *out)
try
:
d_in(0),
d_out(0),
d_filterImp(0)
{
d_in = new ifstream(in);
d_out = new ofstream(out);
d_filterImp = new FilterImp(*d_in, *d_out);
...
}
catch (...)
{
delete d_filterImp;
delete d_out;
delete d_in;
}
Although the latter alternative works, it quickly gets hairy. In situations like these smart pointers should be used to prevent the hairiness. By defining the stream pointers as (smart pointer) objects they will, once constructed, properly be destroyed even if the rest of the constructor's code throws exceptions. Using a FilterImp and two unique_ptr data members Filter's setup and its constructor becomes:
class Filter
{
std::unique_ptr<std::ifstream> d_in;
std::unique_ptr<std::ofstream> d_out;
FilterImp d_filterImp;
...
};
Filter::Filter(char const *in, char const *out)
try
:
d_in(new ifstream(in)),
d_out(new ofstream(out)),
d_filterImp(*d_in, *d_out)
{
if (!*d_in || !*d_out)
throw "Input and/or output stream not available"s;
}
We're back at the original implementation but this time without having to worry about wild pointers and memory leaks. If one of the member initializers throws the destructors of previously constructed data members (which are now objects) are always called.
As a rule of thumb: when classes need to define pointer data members they should define those pointer data members as smart pointers if there's any chance that their constructors throw exceptions.
18.7: Comparison classes
With the introduction of the spaceship operator (<=>, cf. section 11.6.2) several comparison category classes were added to the standard namespace.
Comparison classes are required when implementing the spaceship operator, and to use them (or when declaring and implementing the spachip operator) the <compare> header file must be included.
The weak class types do not support substitutability. Substitutability means that if two objects one and two are equal (so: one == two is true), then fun(one) == fun(two) is also true. Here fun is any function that only uses public const members of its argument that return value types (as compared to pointer types) which also support comparisons (also called comparison-salient state).
The operators of comparison classes expect at least one argument of their own class types. The other argument may either also be of their own class types or it can be the value 0 (or any value that can be considered 0, like nullptr_t).
There are five comparison classes, primarily used when implementing spaceship operators:
18.7.1: The class `weak_equality'
The class std::weak_equality is used when implementing the spaceship operator for classes that only support (in)equality comparisons, but not substitutability. The class provides free functions operator== and operator!= expecting weak_equality arguments (one argument may be 0) and it defines two static objects:
Note: at the current release of the Gnu C++ compiler (10.0.0) this class is not yet available in the <compare> header file.
18.7.2: The class `strong_equality'
The class std::strong_equality is used when implementing the spaceship operator for classes that only support (in)equality comparisons as well as substitutability. The class provides free functions operator== and operator!= expecting strong_equality arguments (one argument may be 0) and it defines four static objects:
Note: at the current release of the Gnu C++ compiler (10.0.0) this class is not yet available in the <compare> header file.
18.7.3: The class `partial_ordering'
The class std::partial_ordering is used when implementing the spaceship operator for classes that support all comparison operators (where one operand may be zero), that do not support substitutability, and whose objects, using the spaceship operator itself, can also be compared to any other type of object.
The class partial_ordering provides free functions for all comparison operations (==, !=, <, <=, >, and >=) expecting partial_ordering arguments (one argument may be 0). It also defines four static objects which can be returned by the spaceship operator:
As an example, consider road taxes. Trucks, cars, and motor cycles have to pay road taxes, but there's no road tax for bicycles. For ordering road taxes a class RoadTax may be used, defining the following spaceship operator (assuming that all types of vehicles are derived from a class Vehicle, and that Vehicle has a (virtual) member double roadTax() returning the amount of road tax that is due for the various types of vehicles; the amount is negative if no road tax is required):
partial_ordering RoadTax::operator<=>(Vehicle const &lhs,
Vehicle const &rhs)
{
return
lhs.roadTax() < 0 or rhs.roadTax() < 0 ?
partial_ordering::unordered :
lhs.roadTax() < rhs.roadTax() ? partial_ordering::less :
lhs.roadTax() > rhs.roadTax() ? partial_ordering::greater :
partial_ordering::equivalent;
}
18.7.4: The class `weak_ordering'
The class std::weak_ordering is used when implementing the spaceship operator for classes that support all comparison operators (where one operand may be zero), and that do not support substitutability.
The class weak_ordering differs from the partial_ordering class in that unordered cannot be used as a comparison result. Like the class partial_ordering it provides free functions for all comparison operations (==, !=, <, <=, >, and >=) expecting partial_ordering arguments (one argument may be 0). It also defines three static objects which can be returned by the spaceship operator:
The example in the previous section can easily adapted to the weak_ordering comparison class: if the roadTax members of vehicles for which no road tax is due return zero then RoadTax's spaceship operator can be implemented this way:
weak_ordering RoadTax::operator<=>(Vehicle const &lhs,
Vehicle const &rhs)
{
return
lhs.roadTax() < rhs.roadTax() ? weak_ordering::less :
lhs.roadTax() > rhs.roadTax() ? weak_ordering::greater :
weak_ordering::equal;
}
18.7.5: The class `strong_ordering'
The class std::strong_ordering is used when implementing the spaceship operator for classes that support all comparison operators (where one operand may be zero), as well as substitutability.
The class strong_ordering provides free functions for all comparison operations (==, !=, <, <=, >, and >=) expecting partial_ordering arguments (one argument may be 0). It also defines three static objects which can be returned by the spaceship operator:
An example where the class strong_ordering was used has already been provided in section 11.6.2, where the spaceship operator itself was introduced.
18.8: Regular Expressions
C++ itself provides facilities for handling regular expressions. Regular expressions were already available in C++ via its C heritage (as C has always offered functions like regcomp and regexec), but the dedicated regular expression facilities have a richer interface than the traditional C facilities, and can be used in code using templates.
Before using the specific C++ implementations of regular expressions the header file <regex> must be included.
Regular expressions are extensively documented elsewhere (e.g., regex(7), Friedl, J.E.F Mastering Regular Expressions, O'Reilly). The reader is referred to these sources for a refresher on the topic of regular expressions. In essence, regular expressions define a small meta-language recognizing textual units (like `numbers', `identifiers', etc.). They are extensively used in the context of lexical scanners (cf. section 24.6.1) when defining the sequence of input characters associated with tokens. But they are also intensively used in other situations. Programs like sed(1) and grep(1) use regular expressions to find pieces of text in files having certain characteristics, and a program like perl(1) adds some `sugar' to the regular expression language, simplifying the construction of regular expressions. However, though extremely useful, it is also well known that regular expressions tend to be very hard to read. Some even call the regular expression language a write-only language: while specifying a regular expression it's often clear why it's written in a particular way. But the opposite, understanding what a regular expression is supposed to represent if you lack the proper context, can be extremely difficult. That's why, from the onset and as a rule of thumb, it is stressed that an appropriate comment should be provided, with each regular expression, as to what it is supposed to match.
In the upcoming sections first a short overview of the regular expression language is provided, which is then followed by the facilities C++ is currently offering for using regular expressions. These facilities mainly consist of classes helping you to specify regular expression, matching them to text, and determining which parts of the text (if any) match (parts of) the text being analyzed.
18.8.1: The regular expression mini language
Regular expressions are expressions consisting of elements resembling those of numeric expressions. Regular expressions consist of basic elements and operators, having various priorities and associations. Like numeric expressions, parentheses can be used to group elements together to form a unit on which operators operate. For an extensive discussion the reader is referred to, e.g., section 15.10 of the ecma-international.org page, which describes the characteristics of the regular expressions used by default by C++'s regex classes.
C++'s default definition of regular expressions distinguishes the following atoms:
In addition to these basic atoms, the following special atoms are available (which can also be used in character classes):
Atoms may be concatenated. If r and s are atoms then the regular expression rs matches a target text if the target text matches r and s, in that order (without any intermediate characters inside the target text). E.g., the regular expression [ab][cd] matches the target text ac, but not the target text a:c.
Atoms may be combined using operators. Operators bind to the preceding atom. If an operator should operate on multiple atoms the atoms must be surrounded by parentheses (see the last element in the previous itemization). To use an operator character as an atom it can be escaped. Eg., * represents an operator, \* the atom character star. Note that character classes do not recognize escape sequences: [\*] represents a character class consisting of two characters: a backslash and a star.
The following operators are supported (r and s represent regular expression atoms):
When a regular expression contains marked sub-expressions and multipliers, and the marked sub-expressions are multiply matched, then the target's final sub-string matching the marked sub-expression is reported as the text matching the marked sub-expression. E.g, when using regex_search (cf. section 18.8.4.3), marked sub-expression (((a|b)+\s?)), and target text a a b, then a a b is the fully matched text, while b is reported as the sub-string matching the first and second marked sub-expressions.
18.8.1.1: Character classes
Inside a character class all regular expression operators lose their special meanings, except for the special atoms \s, \S, \d, \D, \w, and \W; the character range operator -; the end of character class operator ]; and, at the beginning of the character class, ^. Except in combination with the special atoms the escape character is interpreted as a literal backslash character (to define a character class containing a backslash and a d simply use [d\]).
To add a closing bracket to a character class use [] immediately following the initial open-bracket, or start with [^] for a negated character class not containing the closing bracket. Minus characters are used to define character ranges (e.g., [a-d], defining [abcd]) (be advised that the actual range may depend on the locale being used). To add a literal minus character to a character class put it at the very beginning ([-, or [^-) or at the very end (-]) of a character class.
Once a character class has started, all subsequent characters are added to the class's set of characters, until the final closing bracket (]) has been reached.
In addition to characters and ranges of characters, character classes may also contain predefined sets of character. They are:
[:alnum:] [:alpha:] [:blank:]
[:cntrl:] [:digit:] [:graph:]
[:lower:] [:print:] [:punct:]
[:space:] [:upper:] [:xdigit:]
These predefined sets designate sets of characters equivalent to the corresponding standard C isXXX function. For example, [:alnum:] defines all characters for which isalnum(3) returns true.
18.8.2: Defining regular expressions: std::regex
Before using the (w)regex class presented in this section the <regex> header file must be included.
The types std::regex and std::wregex define regular expression patterns. They define, respectively the types basic_regex<char> and basic_regex<wchar_t> types. Below, the class regex is used, but in the examples wregex could also have been used.
Regular expression facilities were, to a large extent, implemented through templates, using, e.g., the basic_string<char> type (which is equal to std::string). Likewise, generic types like OutputIter (output iterator) and BidirConstIter (bidirectional const iterator) are used with several functions. Such functions are function templates. Function templates determine the actual types from the arguments that are provided at call-time.
These are the steps that are commonly taken when using regular expressions:
The way regex objects handle regular expressions can be configured using a bit_or combined set of std::regex_constants values, defining a regex::flag_type value. These regex_constants are:
Constructors
The default, move and copy constructors are available. Actually, the default constructor defines one parameter of type regex::flag_type, for which the value regex_constants::ECMAScript is used by default.
Here are some examples:
std::regex re("\\w+"); // matches a sequence of alpha-numeric
// and/or underscore characters
std::regex re{'\\', 'w', '+'} ; // idem
std::regex re(R"(\w+xxx")", 3); // idem
Member functions
int main()
{
regex re;
regex::flag_type flags = re.flags();
cout << // displays: 16 0 0
(re.flags() & regex_constants::ECMAScript) << ' ' <<
(re.flags() & regex_constants::icase) << ' ' <<
(re.flags() & regex_constants::awk) << ' ' << '\n';
}
Note that when a combination of flag_type values is specified at construction-time that only those flags that were specified are set. E.g., when re(regex_constants::icase) would have been specified the cout statement would have shown 0 1 0. It's also possible to specify conflicting combinations of flag-values like regex_constants::awk | regex_constants::grep. The construction of such regex objects succeeds, but should be avoided.
int main()
{
regex re("(\\w+)([[:alpha:]]+)");
cout << re.mark_count() << '\n'; // displays: 2
}
18.8.3: Retrieving matches: std::match_results
Once a regex object is available, it can be used to match some target text against the regular expression. To match a target text against a regular expression the following functions, described in the next section (18.8.4), are available:
These functions must be provided with a target text and a regex object (which is not modified by these functions). Usually another argument, a std::match_results object is also passed to these functions, to contain the results of the regular expression matching procedure.
Before using the match_results class the <regex> header file must be included.
Examples of using match_results objects are provided in section 18.8.4. This and the next section are primarily for referential purposes.
Various specializations of the class match_results exist. The specialization that is used should match the specializations of the used regex class. E.g., if the regular expression was specified as a char const * the match_results specialization should also operate on char const * values. The various specializations of match_results have been given names that can easily be remembered, so selecting the appropriate specialization is simple.
The class match_results has the following specializations:
Constructors
The default, copy, and move constructors are available. The default constructor defines an Allocator const & parameter, which by default is initialized to the default allocator. Normally, objects of the class match_results receive their match-related information by passing them to the above-mentioned functions, like regex_match. When returning from these functions members of the class match_results can be used to retrieve specific results of the matching process.
Member functions
Note: when multipliers are used only the last match is counted and reported. E.g., for the pattern (a|b)+ and target aaab two sub-matches are reported: the total match aaab, and the last match (b);
18.8.4: Regular expression matching functions
Before using the functions presented in this section the <regex> header file must be included.
There are three major families of functions that can be used to match a target text against a regular expression. Each of these functions, as well as the match_results::format member, has a final std::regex_constants::match_flag_type parameter (see the next section), which is given the default value regex_constants::match_default which can be used to fine-tune the way the regular expression and the matching process is being used. This final parameter is not explicitly mentioned with the regular expression matching functions or with the format member. The three families of functions are:
The match_results::format member can be used after regex_replace and is discussed after covering regex_replace (section 18.8.4.4).
18.8.4.1: The std::regex_constants::match_flag_type flags
All overloaded format members and all regular expression matching functions accept a final regex_constants::match_flag_type argument, which is a bit-masked type, for which the bit_or operator can be used. All format members by default specify the argument match_default.
The match_flag_type enumeration defines the following values (below, `[first, last)' refers to the character sequence being matched).
18.8.4.2: Matching full texts: std::regex_match
The regular expression matching function std::regex_match returns true if the regular expression defined in its provided regex argument fully matches the provided target text. This means that match_results::prefix and match_results::suffix must return empty strings. But defining sub-expressions is OK.
The following overloaded variants of this function are available:
Here is a small example: the regular expression matches the matched text (provided by argv[1]) if it starts with 5 digits and then merely contains letters ([[:alpha:]]). The digits can be retrieved as sub-expression 1:
#include <iostream>
#include <regex>
using namespace std;
int main(int argc, char const **argv)
{
regex re("(\\d{5})[[:alpha:]]+");
cmatch results;
if (not regex_match(argv[1], results, re))
cout << "No match\n";
else
cout << "size: " << results.size() << ": " <<
results.str(1) << " -- " << results.str() << '\n';
}
18.8.4.3: Partially matching text: std::regex_search
Different from regex_match the regular expression matching function std::regex_search returns true if the regular expression defined in its regex argument partially matches the target text.
The following overloaded variants of this function are available:
The following example illustrates how regex_search could be used:
1: #include <iostream>
2: #include <string>
3: #include <regex>
4:
5: using namespace std;
6:
7: int main()
8: {
9: while (true)
10: {
11: cout << "Enter a pattern or plain Enter to stop: ";
12:
13: string pattern;
14: if (not getline(cin, pattern) or pattern.empty())
15: break;
16:
17: regex re(pattern);
18: while (true)
19: {
20: cout << "Enter a target text for `" << pattern << "'\n"
21: "(plain Enter for the next pattern): ";
22:
23: string text;
24: if (not getline(cin, text) or text.empty())
25: break;
26:
27: smatch results;
28: if (not regex_search(text, results, re))
29: cout << "No match\n";
30: else
31: {
32: cout << "Prefix: " << results.prefix() << "\n"
33: "Match: " << results.str() << "\n"
34: "Suffix: " << results.suffix() << "\n";
35: for (size_t idx = 1; idx != results.size(); ++idx)
36: cout << "Match " << idx << " at offset " <<
37: results.position(idx) << ": " <<
38: results.str(idx) << '\n';
39: }
40: }
41: }
42: }
18.8.4.4: The member std::match:_results::format
The match_results::formatformat member is a rather complex member function of the class match_results, which can be used to modify text which was previously matched against a regular expression, e.g., using the function regex_search. Because of its complexity and because the functionality of another regular expression processing function (regex_replace) offers similar functionality it is discussed at this point in the C++ Annotations, just before discussing the regex_replace function.
The format member operates on (sub-)matches contained in a match_results object, using a format string, and producing text in which format specifiers (like $&) are replaced by matching sections of the originally provided target text. In addition, the format member recognizes all standard C escape sequences (like \n). The format member is used to create text that is modified with respect to the original target text.
As a preliminary illustration: if results is a match_results object and match[0] (the fully matched text) equals `hello world', then calling format with the format string this is [$&] produces the text this is [hello world]. Note the specification $& in this format string: this is an example of a format specifier. Here is an overview of all supported format specifiers:
Four overloaded versions of the format members are available. All overloaded versions define a final regex_constants::match_flag_type parameter, which is by default initialized to match_default. This final parameter is not explicitly mentioned in the following coverage of the format members.
To further illustrate the way the format members can be used it is assumed that the following code has been executed:
1: regex re("([[:alpha:]]+)\\s+(\\d+)"); // letters blanks digits
2:
3: smatch results;
4: string target("this value 1024 is interesting");
5:
6: if (not regex_search(target, results, re))
7: return 1;
After calling regex_search (line 6) the results of the regular expression matching process are available in the match_results results object that is defined in line 3.
The first two overloaded format functions expect an output-iterator to where the formatted text is written. These overloaded members return the final output iterator, pointing just beyond the character that was last written.
results.format(ostream_iterator<char>(cout, ""), "$2"s);
The remaining two overloaded format members expect a std::string or an NTBS defining the format string. Both members return a std::string containing the formatted text:
The next example shows how a string can be obtained in which the order of the first and second marked sub-expressions contained in the previously obtained match_results object have been swapped:
string reverse(results.format("$2 and $1"));
18.8.4.5: Modifying target strings: std::regex_replace
The family of std::regex_replace functions uses regular expressions to perform substitution on sequences of characters. Their functionality closely resembles the functionality of the match_results::format member discussed in the previous section. The following overloaded variants are available:
The function returns the possibly modified text in an iterator range [out, retvalue), where out is the output iterator passed as the first argument to regex_replace, and retvalue is the output iterator returned by regex_replace.
The function matches the text at the range [first, last) against the regular expression stored in re. If the regular expression does not match the target text in the range [first, last) then the target text is literally copied to out. If the regular expression does match the target text then
1: regex re("([[:alpha:]]+)\\s+(\\d+)"); // letters blanks digitsIn line 5 regex_replace is called. Its format string merely contains $2, matching 1024 in the target text. The prefix ends at the word value, the suffix starts beyond 1024, so the statement in line 5 inserts the text
2:
3: string target("this value 1024 is interesting");
4:
5: regex_replace(ostream_iterator<char>(cout, ""), target.begin(),
6: target.end(), re, "$2"s);
this 1024 is interesting
into the standard output stream.
string result(regex_replace(target, re, "$2"s));
18.9: Randomization and Statistical Distributions
Before the statistical distributions and accompanying random number generators can be used the <random> header file must be included.
The STL offers several standard mathematical (statistical) distributions. These distributions allow programmers to obtain randomly selected values from a selected distribution.
These statistical distributions need to be provided with a random number generating object. Several of such random number generating objects are provided, extending the traditional rand function that is part of the C standard library.
These random number generating objects produce pseudo-random numbers, which are then processed by the statistical distribution to obtain values that are randomly selected from the specified distribution.
Although the STL offers various statistical distributions their functionality is fairly limited. The distributions allow us to obtain a random number from these distributions, but probability density functions or cumulative distribution functions are currently not provided by the STL. These functions (distributions as well as the density and the cumulative distribution functions) are, however, available in other libraries, like the boost math library (specifically:
http://www.boost.org/doc/libs/1_44_0/libs/math/doc/sf_and_dist/html/index.html).
It is beyond the scope of the C++ Annotations to discuss the mathematical characteristics of the various statistical distributions. The interested reader is referred to the pertinent mathematical textbooks (like Stuart and Ord's (2009) Kendall's Advanced Theory of Statistics, Wiley) or to web-locations like http://en.wikipedia.org/wiki/Bernoulli_distribution.
18.9.1: Random Number Generators
The following generators are available:
| Class template | Integral/Floating point | Quality | Speed | Size of state |
| linear_congruential_engine | Integral | Medium | Medium | 1 |
| subtract_with_carry_engine | Both | Medium | Fast | 25 |
| mersenne_twister_engine | Integral | Good | Fast | 624 |
The linear_congruential_engine random number generator computes
valuei+1 = (+a * valuei + c+) % m
It expects template arguments for, respectively, the data type to contain the generated random values; the multiplier a; the additive constant c; and the modulo value m. Example:
linear_congruential_engine<int, 10, 3, 13> lincon;
The linear_congruential generator may be seeded by providing its constructor with a seeding-argument. E.g., lincon(time(0)).
The subtract_with_carry_engine random number generator computes
valuei = (valuei-s - valuei-r - carryi-1) % m
It expects template arguments for, respectively, the data type to contain the generated random values; the modulo value m; and the subtractive constants s and r. Example:
subtract_with_carry_engine<int, 13, 3, 13> subcar;
The subtract_with_carry_engine generator may be seeded by providing its constructor with a seeding-argument. E.g., subcar(time(0)).
The predefined mersenne_twister_engine mt19937 (predefined using a typedef defined by the <random> header file) is used in the examples below. It can be constructed using `mt19937 mt' or it can be seeded by providing its constructor with an argument (e.g., mt19937 mt(time(0))). Its function call operator returns a random unsigned integral value.
Other ways to initialize the mersenne_twister_engine are beyond the scope of the C++ Annotations (but see Lewis et al. ( Lewis, P.A.W., Goodman, A.S., and Miller, J.M. (1969), A pseudorandom number generator for the System/360, IBM Systems Journal, 8, 136-146.) (1969)).
The random number generators may also be seeded by calling their members seed accepting unsigned long values or generator functions (as in lc.seed(time(0)), lc.seed(mt)).
The random number generators offer members min and max returning, respectively, their minimum and maximum values (inclusive). If a reduced range is required the generators can be nested in a function or class adapting the range.
Here's a small example showing how the mersenne_twister_engine mt19937 can be used to generate random numbers:
#include <iostream>
#include <ctime>
#include <random>
using namespace std;
// arguments: 1st: number of random numbers to generate
// 2nd: lowest positve random number,
// 3rd: highest positive random number
int main(int argc, char **argv)
{
mt19937 mt( time(0) ); // seed with the current time in secs.
for (
size_t nGenerate = stoul(argv[1]), lowest = stoul(argv[2]),
mod = stoul(argv[3]) + 1 - lowest;
nGenerate--;
)
cout << (lowest + mt() % mod) << ' ';
cout << '\n';
}
18.9.2: Statistical distributions
In the following sections the various statistical distributions that are supported by C++ are covered. The notation RNG is used to indicate a Random Number Generator and URNG is used to indicate a Uniform Random Number Generator. With each distribution a struct param_type is defined containing the distribution's parameters. The organization of these param_type structs depends on (and is described at) the actual distribution.
All distributions offer the following members (result_type refers to the type name of the values returned by the distribution):
All distributions support the following operators (distribution-name should be replaced by the name of the intended distribution, e.g., normal_distribution):
The following example shows how the distributions can be used. Replacing the name of the distribution (normal_distribution) by another distribution's name is all that is required to switch distributions. All distributions have parameters, like the mean and standard deviation of the normal distribution, and all parameters have default values. The names of the parameters vary over distributions and are mentioned below at the individual distributions. Distributions offer members returning or setting their parameters.
Most distributions are defined as class templates, requiring the specification of a data type that is used for the function's return type. If so, an empty template parameter type specification (<>) will get you the default type. The default types are either double (for real valued return types) or int (for integral valued return types). The template parameter type specification must be omitted with distributions that are not defined as template classes.
Here is an example showing the use of the statistical distributions, applied to the normal distribution:
#include <iostream>
#include <ctime>
#include <random>
using namespace std;
int main()
{
std::mt19937 engine(time(0));
std::normal_distribution<> dist;
for (size_t idx = 0; idx < 10; ++idx)
std::cout << "a random value: " << dist(engine) << "\n";
cout << '\n' <<
dist.min() << " " << dist.max() << '\n';
}
18.9.2.1: Bernoulli distribution
The bernoulli_distribution is used to generate logical truth (boolean) values with a certain probability p. It is equal to a binomial distribution for one experiment (cf 18.9.2.2).
The bernoulli distribution is not defined as a class template.
Defined types:
typedef bool result_type;
struct param_type
{
explicit param_type(double prob = 0.5);
double p() const; // returns prob
};
Constructor and members:
18.9.2.2: Binomial distribution
The binomial_distribution<IntType = int> is used to determine the probability of the number of successes in a sequence of n independent success/failure experiments, each of which yields success with probability p.
The template type parameter IntType defines the type of the generated random value, which must be an integral type.
Defined types:
typedef IntType result_type;
struct param_type
{
explicit param_type(IntType trials, double prob = 0.5);
IntType t() const; // returns trials
double p() const; // returns prob
};
Constructors and members and example:
18.9.2.3: Cauchy distribution
The cauchy_distribution<RealType = double> looks similar to a normal distribution. But cauchy distributions have heavier tails. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of how sensitive the tests are to heavy-tail departures from normality.
The mean and standard deviation of the Cauchy distribution are undefined.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType a = RealType(0),
RealType b = RealType(1));
double a() const;
double b() const;
};
Constructors and members:
18.9.2.4: Chi-squared distribution
The chi_squared_distribution<RealType = double> with n degrees of freedom is the distribution of a sum of the squares of n independent standard normal random variables.
Note that even though the distribution's parameter n usually is an integral value, it doesn't have to be integral, as the chi_squared distribution is defined in terms of functions (exp and Gamma) that take real arguments (see, e.g., the formula shown in the <bits/random.h> header file, provided with the GNU g++ compiler distribution).
The chi-squared distribution is used, e.g., when testing the goodness of fit of an observed distribution to a theoretical one.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType n = RealType(1));
RealType n() const;
};
Constructors and members:
18.9.2.5: Extreme value distribution
The extreme_value_distribution<RealType = double> is related to the Weibull distribution and is used in statistical models where the variable of interest is the minimum of many random factors, all of which can take positive or negative values.
It has two parameters: a location parameter a and scale parameter b. See also
http://www.itl.nist.gov/div898/handbook/apr/section1/apr163.htm
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType a = RealType(0),
RealType b = RealType(1));
RealType a() const; // the location parameter
RealType b() const; // the scale parameter
};
Constructors and members:
18.9.2.6: Exponential distribution
The exponential_distribution<RealType = double> is used to describe the lengths between events that can be modeled with a homogeneous Poisson process. It can be interpreted as the continuous form of the geometric distribution.
Its parameter prob defines the distribution's lambda parameter, called its rate parameter. Its expected value and standard deviation are both 1 / lambda.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType lambda = RealType(1));
RealType lambda() const;
};
Constructors and members:
18.9.2.7: Fisher F distribution
The fisher_f_distribution<RealType = double> is intensively used in statistical methods like the Analysis of Variance. It is the distribution resulting from dividing two Chi-squared distributions.
It is characterized by two parameters, being the degrees of freedom of the two chi-squared distributions.
Note that even though the distribution's parameter n usually is an integral value, it doesn't have to be integral, as the Fisher F distribution is constructed from Chi-squared distributions that accept a non-integral parameter value (see also section 18.9.2.4).
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType m = RealType(1),
RealType n = RealType(1));
RealType m() const; // The degrees of freedom of the nominator
RealType n() const; // The degrees of freedom of the denominator
};
Constructors and members:
18.9.2.8: Gamma distribution
The gamma_distribution<RealType = double> is used when working with data that are not distributed according to the normal distribution. It is often used to model waiting times.
It has two parameters, alpha and beta. Its expected value is alpha * beta and its standard deviation is alpha * beta2.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType alpha = RealType(1),
RealType beta = RealType(1));
RealType alpha() const;
RealType beta() const;
};
Constructors and members:
18.9.2.9: Geometric distribution
The geometric_distribution<IntType = int> is used to model the number of bernoulli trials (cf. 18.9.2.1) needed until the first success.
It has one parameter, prob, representing the probability of success in an individual bernoulli trial.
Defined types:
typedef IntType result_type;
struct param_type
{
explicit param_type(double prob = 0.5);
double p() const;
};
Constructors, members and example:
#include <iostream>
#include <ctime>
#include <random>
int main()
{
std::linear_congruential_engine<unsigned, 7, 3, 61> engine(0);
std::geometric_distribution<> dist;
for (size_t idx = 0; idx < 10; ++idx)
std::cout << "a random value: " << dist(engine) << "\n";
std::cout << '\n' <<
dist.min() << " " << dist.max() << '\n';
}
18.9.2.10: Log-normal distribution
The lognormal_distribution<RealType = double> is a probability distribution of a random variable whose logarithm is normally distributed. If a random variable X has a normal distribution, then Y = eX has a log-normal distribution.
It has two parameters, m and s representing, respectively, the mean and standard deviation of ln(X).
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType m = RealType(0),
RealType s = RealType(1));
RealType m() const;
RealType s() const;
};
Constructor and members:
18.9.2.11: Normal distribution
The normal_distribution<RealType = double> is commonly used in science to describe complex phenomena. When predicting or measuring variables, errors are commonly assumed to be normally distributed.
It has two parameters, mean and standard deviation.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType mean = RealType(0),
RealType stddev = RealType(1));
RealType mean() const;
RealType stddev() const;
};
Constructors and members:
18.9.2.12: Negative binomial distribution
The negative_binomial_distribution<IntType = int> probability distribution describes the number of successes in a sequence of Bernoulli trials before a specified number of failures occurs. For example, if one throws a die repeatedly until the third time 1 appears, then the probability distribution of the number of other faces that have appeared is a negative binomial distribution.
It has two parameters: (IntType) k (> 0), being the number of failures until the experiment is stopped and (double) p the probability of success in each individual experiment.
Defined types:
typedef IntType result_type;
struct param_type
{
explicit param_type(IntType k = IntType(1), double p = 0.5);
IntType k() const;
double p() const;
};
Constructors and members:
18.9.2.13: Poisson distribution
The poisson_distribution<IntType = int> is used to model the probability of a number of events occurring in a fixed period of time if these events occur with a known probability and independently of the time since the last event.
It has one parameter, mean, specifying the expected number of events in the interval under consideration. E.g., if on average 2 events are observed in a one-minute interval and the duration of the interval under study is 10 minutes then mean = 20.
Defined types:
typedef IntType result_type;
struct param_type
{
explicit param_type(double mean = 1.0);
double mean() const;
};
Constructors and members:
18.9.2.14: Student t distribution
The student_t_distribution<RealType = double> is a probability distribution that is used when estimating the mean of a normally distributed population from small sample sizes.
It is characterized by one parameter: the degrees of freedom, which is equal to the sample size - 1.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType n = RealType(1));
RealType n() const; // The degrees of freedom
};
Constructors and members:
18.9.2.15: Uniform int distribution
The uniform_int_distribution<IntType = int> can be used to select integral values randomly from a range of uniformly distributed integral values.
It has two parameters, a and b, specifying, respectively, the lowest value that can be returned and the highest value that can be returned.
Defined types:
typedef IntType result_type;
struct param_type
{
explicit param_type(IntType a = 0, IntType b = max(IntType));
IntType a() const;
IntType b() const;
};
Constructors and members:
18.9.2.16: Uniform real distribution
The uniform_real_distribution<RealType = double> can be used to select RealType values randomly from a range of uniformly distributed RealType values.
It has two parameters, a and b, specifying, respectively, the half-open range of values ([a, b)) that can be returned by the distribution.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType a = 0, RealType b = max(RealType));
RealType a() const;
RealType b() const;
};
Constructors and members:
18.9.2.17: Weibull distribution
The weibull_distribution<RealType = double> is commonly used in reliability engineering and in survival (life data) analysis.
It has two or three parameters and the two-parameter variant is offered by the STL. The three parameter variant has a shape (or slope) parameter, a scale parameter and a location parameter. The two parameter variant implicitly uses the location parameter value 0. In the two parameter variant the shape parameter (a) and the scale parameter (b) are provided. See
http://www.weibull.com/hotwire/issue14/relbasics14.htm for an interesting coverage of the meaning of the Weibull distribution's parameters.
Defined types:
typedef RealType result_type;
struct param_type
{
explicit param_type(RealType a = RealType{ 1 },
RealType b = RealType{ 1 });
RealType a() const; // the shape (slope) parameter
RealType b() const; // the scale parameter
};
Constructors and members:
18.10: tie
We already encountered structured bindings in section 3.3.7.1. Structured bindings allow us to access the fields of structured types (like structs, std::pair or (cf. section 22.6) tuples) as local variables inside functions. A basic example using structured bindings is shown in the following code snippet:
pair<int, int> factory()
{
return { 1, 2 };
}
void fun()
{
auto [one, two] = factory();
cout << one << ' ' << two << '\n';
}
Being able to use structured bindings is very useful in cases like these.
But what if we want to assign the fields of a struct to variables that have already been defined or that were passed to a function via its parameters? In those situations structured bindings offer no help. E.g., in the following code snippet a function retrieve is defined having an int & parameter and an int local variable and we want to assign the values returned by factory to those variables:
void retrieve(int &one)
{
int two;
// ... = factory() ??
}
Structured bindings cannot be used here: the elements of structured bindings cannot be references. Although it is possible to define a std::pair<int &, int &> such an object cannot be initialized with the references of one and two which are directly referring to the fields returned by factory. These statements won't compile:
pair<int &, int &> p{one, two} = factory();
pair<int &, int &>{one, two} = factory();
While it is possible to first define a pair<int &, int &> object and then assign factory's return value to it, that approach clearly is less elegant than what's offered by structured bindings:
pair<int &, int &> p{one, two};
p = factory();
Fortunately, there is a better alternative. After including the <tuple> header file (see also section 22.6) std::tie is available allowing us to `tie' references to fields of structured data types. Using std::tie it is very easy to associate the variables one and two of the function retrieve with the fields of the pair returned by factory:
void retrieve(int &one)
{
int two;
tie(one, two) = factory();
cout << one << ' ' << two << '\n';
}
When Executing these statements:
int one = 0;
int two = 0;
cout << one << ' ' << two << '\n';
retrieve(one);
cout << one << ' ' << two << '\n';
the following output is obtained:
0 0
1 2
1 0
In addition to the above the std::tie function also supports ordering and (in)equality comparisons. The struct Data in the next example defines three fields: an int, a std::string and a double. Each of these fields support ordering and (in)equality comparisons. In those cases, all comparison operators can easily be implemented through the spaceship operator (cf. section 11.6.2) using std::tie:
struct Data
{
int d_int;
string d_string;
double d_double;
};
bool operator==(Data const &lhs, Data const &rhs)
{
return tie(lhs.d_int, lhs.d_string, lhs.d_double) ==
tie(rhs.d_int, rhs.d_string, rhs.d_double);
}
partial_ordering operator<=>(Data const &lhs, Data const &rhs)
{
return tie(lhs.d_int, lhs.d_string, lhs.d_double) <=>
tie(rhs.d_int, rhs.d_string, rhs.d_double);
}
Note that struct Data's spaceship operator returns partial_ordering values (cf. section 18.7.3). Although int and std::string's spaceship operators return strong_ordering values, double's spaceship operator doesn't. Instead it returns partial_ordering values. Consequently, struct Data's spaceship operator also returns partial_ordering values.
Chapter 19: The STL Generic Algorithms
19.1: The Generic Algorithms
Before using the generic algorithms presented in this chapter, except for those in the Operators category (defined below), the <algorithm> header file must be included. Before using a generic algorithm in the Operators category the <numeric> header file must be included.
In the previous chapter the Standard Template Library (STL) was introduced. An important element of the STL, the generic algorithms, was not covered in that chapter as they form a fairly extensive part of the STL. Over time the STL has grown considerably, mainly as a result of a growing importance and appreciation of templates. Covering generic algorithm in the STL chapter itself would turn that chapter into an unwieldy one and so the generic algorithms were moved to a chapter of their own.
Generic algorithms perform an amazing task. Due to the strength of templates, algorithms could be developed that can be applied to a wide range of different data types while maintaining type safety. The prototypical example of this is the sort generic algorithm. To contrast: while C requires programmers to write callback functions in which type-unsafe void const * parameters have to be used, internally forcing the programmer to resort to casts, STL's sort frequently allows the programmer merely to state something akin to
sort(first-element, last-element)
Generic algorithms should be used wherever possible. Avoid the urge to design your own code for commonly encountered algorithms. Make it a habit to first thoroughly search the generic algorithms for an available candidate. The generic algorithms should become your weapon of choice when writing code: acquire full familiarity with them and make their use your `second nature'.
This chapter's sections cover the STL's generic algorithms in alphabetical order. For each algorithm the following information is provided:
In the prototypes of the algorithms Type is used to specify a generic data type. Furthermore, the particular type of iterator (see section 18.2) that is required is mentioned as well as other generic types that might be required (e.g., performing BinaryOperations, like plus<Type>). Although iterators are commonly provided by abstract containers and comparable pre-defined data structures, at some point you may want to design your own iterators. Section 22.14 offers guidelines for constructing your own iterator classes and provides an overview of of operators that must be implemented for the various types of iterators.
Almost every generic algorithm expects an iterator range [first, last), defining the series of elements on which the algorithm operates. The iterators point to objects or values. When an iterator points to a Type value or object, function objects used by the algorithms usually receive Type const & objects or values. Usually function objects cannot modify the objects they receive as their arguments. This does not hold true for modifying generic algorithms, which are of course able to modify the objects they operate upon.
Generic algorithms may be categorized. The C++ Annotations distinguishes the following categories of generic algorithms:
equal; includes; lexicographical_compare; max; min; mismatch;
copy; copy_backward; partial_sort_copy; remove_copy; remove_copy_if; replace_copy; replace_copy_if; reverse_copy; rotate_copy; unique_copy;
count; count_if;
make_heap; pop_heap; push_heap; sort_heap;
fill; fill_n; generate; generate_n;
accumulate; adjacent_difference; inner_product; partial_sum;
adjacent_find; binary_search; equal_range; find; find_end; find_first_of; find_if; lower_bound; max_element; min_element; search; search_n; set_difference; set_intersection; set_symmetric_difference; set_union; upper_bound;
inplace_merge; iter_swap; merge; next_permutation; nth_element; partial_sort; partial_sort_copy; partition; prev_permutation; remove; remove_copy; remove_copy_if; remove_if; reverse; reverse_copy; rotate; rotate_copy; sort; stable_partition; stable_sort; swap; unique;
for_each; replace; replace_copy; replace_copy_if; replace_if; transform; unique_copy;
19.1.1: accumulate
#include <numeric>
#include <vector>
#include <iostream>
using namespace std;
int main()
{
int ia[] = {1, 2, 3, 4};
vector<int> iv(ia, ia + 4);
cout <<
"Sum of values: " << accumulate(iv.begin(), iv.end(), int()) <<
"\n"
"Product of values: " << accumulate(iv.begin(), iv.end(), int(1),
multiplies<int>()) << '\n';
}
/*
Displays:
Sum of values: 10
Product of values: 24
*/
19.1.2: adjacent_difference
#include <numeric>
#include <vector>
#include <iterator>
#include <iostream>
using namespace std;
int main()
{
int ia[] = {1, 2, 5, 10};
vector<int> iv(ia, ia + 4);
vector<int> ov(iv.size());
adjacent_difference(iv.begin(), iv.end(), ov.begin());
copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));
cout << '\n';
adjacent_difference(iv.begin(), iv.end(), ov.begin(), minus<int>());
copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
1 1 3 5
1 1 3 5
*/
19.1.3: adjacent_find
#include <algorithm>
#include <string>
#include <iostream>
using namespace std;
class SquaresDiff
{
size_t d_minimum;
public:
SquaresDiff(size_t minimum)
:
d_minimum(minimum)
{}
bool operator()(size_t first, size_t second)
{
return second * second - first * first >= d_minimum;
}
};
int main()
{
string sarr[] =
{
"Alpha", "bravo", "charley", "delta", "echo", "echo",
"foxtrot", "golf"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
string *result = adjacent_find(sarr, last);
cout << *result << '\n';
result = adjacent_find(++result, last);
cout << "Second time, starting from the next position:\n" <<
(
result == last ?
"** No more adjacent equal elements **"
:
"*result"
) << '\n';
size_t iv[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
size_t *ilast = iv + sizeof(iv) / sizeof(size_t);
size_t *ires = adjacent_find(iv, ilast, SquaresDiff(10));
cout <<
"The first numbers for which the squares differ at least 10: "
<< *ires << " and " << *(ires + 1) << '\n';
}
/*
Displays:
echo
Second time, starting from the next position:
** No more adjacent equal elements **
The first numbers for which the squares differ at least 10: 5 and 6
*/
19.1.4: binary_search
#include <algorithm>
#include <string>
#include <iostream>
#include <functional>
using namespace std;
int main()
{
string sarr[] =
{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
bool result = binary_search(sarr, last, "foxtrot");
cout << (result ? "found " : "didn't find ") << "foxtrot" << '\n';
reverse(sarr, last); // reverse the order of elements
// binary search now fails:
result = binary_search(sarr, last, "foxtrot");
cout << (result ? "found " : "didn't find ") << "foxtrot" << '\n';
// ok when using appropriate
// comparator:
result = binary_search(sarr, last, "foxtrot", greater<string>());
cout << (result ? "found " : "didn't find ") << "foxtrot" << '\n';
// alternatively, using a lambda expression showing the used 'sarr'
// indices and the value of the second parameter:
result = binary_search(sarr, last, "foxtrot",
[&](string const &sarrEl, string const &value)
{
cout << "comparing element " << (&sarrEl - sarr) <<
" (" << sarrEl << ") to " << value << '\n';
return sarrEl > value;
}
);
cout << "found it: " << result << '\n';
}
// Displays:
// found foxtrot
// didn't find foxtrot
// found foxtrot
// comparing element 4 (delta) to foxtrot
// comparing element 2 (foxtrot) to foxtrot
// comparing element 1 (golf) to foxtrot
// comparing element -3 (foxtrot) to foxtrot
// found it: 1
If value is in fact present in the range of values, then this generic algorithm doesn't answer the question where value is located. If that question must be answered the generic algorithms lower_bound and upper_bound can be used. Refer to section 19.1.66 for an extensive example illustrating the use of these latter two algorithms.
19.1.5: copy
#include <algorithm>
#include <string>
#include <iostream>
#include <iterator>
using namespace std;
int main()
{
string sarr[] =
{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
copy(sarr + 2, last, sarr); // move all elements two positions left
// copy to cout using an ostream_iterator
// for strings,
copy(sarr, last, ostream_iterator<string>(cout, " "));
cout << '\n';
}
// Displays: charley delta echo foxtrot golf hotel golf hotel
19.1.6: copy_backward
Note that this algorithm does not reverse the order of the elements when copying them to the destination range.
The return value is the BidirectionalIterator pointing to the last element that was copied to the destination range (so, `first' in the destination range, pointed to by last2 - (last - first), is returned).
#include <algorithm>
#include <string>
#include <iostream>
#include <iterator>
using namespace std;
int main()
{
string sarr[] =
{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
copy
(
copy_backward(sarr + 3, last, last - 3),
last,
ostream_iterator<string>(cout, " ")
);
cout << '\n';
}
// Displays: golf hotel foxtrot golf hotel foxtrot golf hotel
19.1.7: count
#include <algorithm>
#include <iostream>
using namespace std;
int main()
{
int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};
cout << "Number of times the value 3 is available: " <<
count(ia, ia + sizeof(ia) / sizeof(int), 3) <<
'\n';
}
// Displays: Number of times the value 3 is available: 3
19.1.8: count_if
#include <algorithm>
#include <iostream>
using namespace std;
class Odd
{
public:
bool operator()(int value) const
{
return value & 1;
}
};
int main()
{
int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};
cout << "The number of odd values in the array is: " <<
count_if(ia, ia + sizeof(ia) / sizeof(int), Odd{}) << '\n';
}
// Displays: The number of odd values in the array is: 5
19.1.9: equal
#include <algorithm>
#include <string>
#include <cstring>
#include <iostream>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first,
string const &second) const
{
return !strcasecmp(first.c_str(), second.c_str());
}
};
int main()
{
string first[] =
{
"Alpha", "bravo", "Charley", "delta", "Echo",
"foxtrot", "Golf", "hotel"
};
string second[] =
{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"
};
string *last = first + sizeof(first) / sizeof(string);
cout << "The elements of `first' and `second' are pairwise " <<
(equal(first, last, second) ? "equal" : "not equal") <<
'\n' <<
"compared case-insensitively, they are " <<
(
equal(first, last, second, CaseString{}) ?
"equal" : "not equal"
) << '\n';
}
/*
Displays:
The elements of `first' and `second' are pairwise not equal
compared case-insensitively, they are equal
*/
19.1.10: equal_range
#include <algorithm>
#include <functional>
#include <iterator>
#include <iostream>
using namespace std;
int main()
{
int range[] = {1, 3, 5, 7, 7, 9, 9, 9};
size_t const size = sizeof(range) / sizeof(int);
pair<int *, int *> pi;
pi = equal_range(range, range + size, 6);
cout << "Lower bound for 6: " << *pi.first << '\n';
cout << "Upper bound for 6: " << *pi.second << '\n';
pi = equal_range(range, range + size, 7);
cout << "Lower bound for 7: ";
copy(pi.first, range + size, ostream_iterator<int>(cout, " "));
cout << '\n';
cout << "Upper bound for 7: ";
copy(pi.second, range + size, ostream_iterator<int>(cout, " "));
cout << '\n';
sort(range, range + size, greater<int>());
cout << "Sorted in descending order\n";
copy(range, range + size, ostream_iterator<int>(cout, " "));
cout << '\n';
pi = equal_range(range, range + size, 7, greater<int>());
cout << "Lower bound for 7: ";
copy(pi.first, range + size, ostream_iterator<int>(cout, " "));
cout << '\n';
cout << "Upper bound for 7: ";
copy(pi.second, range + size, ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
Lower bound for 6: 7
Upper bound for 6: 7
Lower bound for 7: 7 7 9 9 9
Upper bound for 7: 9 9 9
Sorted in descending order
9 9 9 7 7 5 3 1
Lower bound for 7: 7 7 5 3 1
Upper bound for 7: 5 3 1
*/
19.1.11: exchange
#include <utility>
#include <iostream>
using namespace std;
int main(int argc, char **argv)
{
bool more = argc > 5;
cout << "more than 5: " << exchange(more, argc > 2) <<
", more than 2: " << more << '\n';
}
/*
Using g++ at least version 7.0.0:
With `a.out one two three' displays:
more than 5: 0, more than 2: 1
*/
19.1.12: fill
#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
using namespace std;
int main()
{
vector<int> iv(8);
fill(iv.begin(), iv.end(), 8);
copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));
cout << '\n';
}
// Displays: 8 8 8 8 8 8 8 8
19.1.13: fill_n
#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
using namespace std;
int main()
{
vector<int> iv(8);
fill_n(iv.begin() + 2, 4, 8);
copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));
cout << '\n';
}
// Displays: 0 0 8 8 8 8 0 0
19.1.14: find
#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>
using namespace std;
int main()
{
string sarr[] =
{
"alpha", "bravo", "charley", "delta", "echo"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
copy
(
find(sarr, last, "delta"), last,
ostream_iterator<string>(cout, " ")
);
cout << '\n';
if (find(sarr, last, "india") == last)
{
cout << "`india' was not found in the range\n";
copy(sarr, last, ostream_iterator<string>(cout, " "));
cout << '\n';
}
}
/*
Displays:
delta echo
`india' was not found in the range
alpha bravo charley delta echo
*/
19.1.15: find_end
#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>
using namespace std;
class Twice
{
public:
bool operator()(size_t first, size_t second) const
{
return first == (second << 1);
}
};
int main()
{
string sarr[] =
{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel",
"foxtrot", "golf", "hotel",
"india", "juliet", "kilo"
};
string search[] =
{
"foxtrot",
"golf",
"hotel"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
copy
(
find_end(sarr, last, search, search + 3), // sequence starting
last, ostream_iterator<string>{ cout, " " } // at 2nd 'foxtrot'
);
cout << '\n';
size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};
size_t nrs[] = {2, 3, 4};
copy // sequence of values starting at last sequence
( // of range[] that are twice the values in nrs[]
find_end(range, range + 9, nrs, nrs + 3, Twice{}),
range + 9, ostream_iterator<size_t>{ cout, " " }
);
cout << '\n';
}
/*
Displays:
foxtrot golf hotel india juliet kilo
4 6 8 10
*/
19.1.16: find_first_of
#include <algorithm>
#include <string>
#include <iterator>
#include <iostream>
using namespace std;
class Twice
{
public:
bool operator()(size_t first, size_t second) const
{
return first == (second << 1);
}
};
int main()
{
string sarr[] =
{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel",
"foxtrot", "golf", "hotel",
"india", "juliet", "kilo"
};
string search[] =
{
"foxtrot",
"golf",
"hotel"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
copy
( // sequence starting
find_first_of(sarr, last, search, search + 3),// at 1st 'foxtrot'
last, ostream_iterator<string>{ cout, " " }
);
cout << '\n';
size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};
size_t nrs[] = {2, 3, 4};
// copy the sequence of values in 'range', starting at the
// first element in 'range' that is equal to twice one of the
// values in 'nrs', and ending at the last element of 'range'
copy
(
find_first_of(range, range + 9, nrs, nrs + 3, Twice{}),
range + 9, ostream_iterator<size_t>{ cout, " " }
);
cout << '\n';
}
/*
Displays:
foxtrot golf hotel foxtrot golf hotel india juliet kilo
4 6 8 10 4 6 8 10
*/
19.1.17: find_if
#include <algorithm>
#include <string>
#include <cstring>
#include <iterator>
#include <iostream>
using namespace std;
class CaseName
{
std::string d_string;
public:
CaseName(char const *str): d_string(str)
{}
bool operator()(std::string const &element) const
{
return strcasecmp(element.c_str(), d_string.c_str()) == 0;
}
};
int main()
{
string sarr[] =
{
"Alpha", "Bravo", "Charley", "Delta", "Echo"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
copy
(
find_if(sarr, last, CaseName{ "charley" }),
last, ostream_iterator<string>{ cout, " " }
);
cout << '\n';
if (find_if(sarr, last, CaseName{ "india" }) == last)
{
cout << "`india' was not found in the range\n";
copy(sarr, last, ostream_iterator<string>{ cout, " " });
cout << '\n';
}
}
/*
Displays:
Charley Delta Echo
`india' was not found in the range
Alpha Bravo Charley Delta Echo
*/
19.1.18: for_each
#include <algorithm>
#include <string>
#include <cstring>
#include <iostream>
#include <cctype>
using namespace std;
void lowerCase(char &c) // `c' *is* modified
{
c = tolower(static_cast<unsigned char>(c));
}
void capitalizedOutput(string const &str) // `str' is *not* modified
{
char *tmp = strcpy(new char[str.size() + 1], str.c_str());
for_each(tmp + 1, tmp + str.size(), lowerCase);
tmp[0] = toupper(*tmp);
cout << tmp << " ";
delete tmp;
};
int main()
{
string sarr[] =
{
"alpha", "BRAVO", "charley", "DELTA", "echo",
"FOXTROT", "golf", "HOTEL"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
for_each(sarr, last, capitalizedOutput)("that's all, folks");
cout << '\n';
}
/*
Displays:
Alpha Bravo Charley Delta Echo Foxtrot Golf Hotel That's all, folks
*/
#include <algorithm>
#include <string>
#include <iostream>
#include <cctype>
using namespace std;
void lowerCase(char &c)
{
c = tolower(static_cast<unsigned char>(c));
}
class Show
{
int d_count;
public:
Show()
:
d_count(0)
{}
void operator()(std::string &str)
{
std::for_each(str.begin(), str.end(), lowerCase);
str[0] = toupper(str[0]); // assuming str is not empty
std::cout << ++d_count << " " << str << "; ";
}
int count() const
{
return d_count;
}
};
int main()
{
string sarr[] =
{
"alpha", "BRAVO", "charley", "DELTA", "echo",
"FOXTROT", "golf", "HOTEL"
};
string *last = sarr + sizeof(sarr) / sizeof(string);
cout << for_each(sarr, last, Show{}).count() << '\n';
}
/*
Displays (all on one line):
1 Alpha; 2 Bravo; 3 Charley; 4 Delta; 5 Echo; 6 Foxtrot;
7 Golf; 8 Hotel; 8
*/
The example also shows that the for_each algorithm may be used with functions defining const and non-const parameters. Also, see section 19.1.63 for differences between the for_each and transform generic algorithms.
The for_each algorithm cannot directly be used (i.e., by passing *this as the function object argument) inside a member function to modify its own object as the for_each algorithm first creates its own copy of the passed function object. A lambda function or a wrapper class whose constructor accepts a pointer or reference to the current object and possibly to one of its member functions solves this problem.
19.1.19: generate
#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
using namespace std;
class NaturalSquares
{
size_t d_newsqr;
size_t d_last;
public:
NaturalSquares(): d_newsqr(0), d_last(0)
{}
size_t operator()()
{ // using: (a + 1)^2 == a^2 + 2*a + 1
return d_newsqr += (d_last++ << 1) + 1;
}
};
int main()
{
vector<size_t> uv(10);
generate(uv.begin(), uv.end(), NaturalSquares{});
copy(uv.begin(), uv.end(), ostream_iterator<int>{ cout, " " });
cout << '\n';
}
// Displays: 1 4 9 16 25 36 49 64 81 100
19.1.20: generate_n
#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
using namespace std;
class NaturalSquares
{
size_t d_newsqr;
size_t d_last;
public:
NaturalSquares(): d_newsqr(0), d_last(0)
{}
size_t operator()()
{ // using: (a + 1)^2 == a^2 + 2*a + 1
return d_newsqr += (d_last++ << 1) + 1;
}
};
int main()
{
vector<size_t> uv(10);
generate_n(uv.begin(), 5, NaturalSquares{});
copy(uv.begin(), uv.end(), ostream_iterator<int>{ cout, " " });
cout << '\n';
}
// Displays: 1 4 9 16 25 0 0 0 0 0
19.1.21: includes
#include <algorithm>
#include <string>
#include <cstring>
#include <iostream>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first,
string const &second) const
{
return !strcasecmp(first.c_str(), second.c_str());
}
};
int main()
{
string first1[] =
{
"alpha", "bravo", "charley", "delta", "echo",
"foxtrot", "golf", "hotel"
};
string first2[] =
{
"Alpha", "bravo", "Charley", "delta", "Echo",
"foxtrot", "Golf", "hotel"
};
string second[] =
{
"charley", "foxtrot", "hotel"
};
size_t n = sizeof(first1) / sizeof(string);
cout << "The elements of `second' are " <<
(includes(first1, first1 + n, second, second + 3) ? "" : "not")
<< " contained in the first sequence:\n"
"second is a subset of first1\n";
cout << "The elements of `first1' are " <<
(includes(second, second + 3, first1, first1 + n) ? "" : "not")
<< " contained in the second sequence\n";
cout << "The elements of `second' are " <<
(includes(first2, first2 + n, second, second + 3) ? "" : "not")
<< " contained in the first2 sequence\n";
cout << "Using case-insensitive comparison,\n"
"the elements of `second' are "
<<
(includes(first2, first2 + n, second, second + 3, CaseString{}) ?
"" : "not")
<< " contained in the first2 sequence\n";
}
/*
Displays:
The elements of `second' are contained in the first sequence:
second is a subset of first1
The elements of `first1' are not contained in the second sequence
The elements of `second' are not contained in the first2 sequence
Using case-insensitive comparison,
the elements of `second' are contained in the first2 sequence
*/
19.1.22: inner_product
#include <numeric>
#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>
using namespace std;
class Cat
{
std::string d_sep;
public:
Cat(string const &sep)
:
d_sep(sep)
{}
string operator()
(string const &s1, string const &s2) const
{
return s1 + d_sep + s2;
}
};
int main()
{
size_t ia1[] = {1, 2, 3, 4, 5, 6, 7};
size_t ia2[] = {7, 6, 5, 4, 3, 2, 1};
size_t init = 0;
cout << "The sum of all squares in ";
copy(ia1, ia1 + 7, ostream_iterator<size_t>{ cout, " " });
cout << "is " <<
inner_product(ia1, ia1 + 7, ia1, init) << '\n';
cout << "The sum of all cross-products in ";
copy(ia1, ia1 + 7, ostream_iterator<size_t>{ cout, " " });
cout << "and ";
copy(ia2, ia2 + 7, ostream_iterator<size_t>{ cout, " " });
cout << "is " <<
inner_product(ia1, ia1 + 7, ia2, init) << '\n';
string names1[] = {"Frank", "Karel", "Piet"};
string names2[] = {"Brokken", "Kubat", "Plomp"};
cout << "A list of all combined names in ";
copy(names1, names1 + 3, ostream_iterator<string>{ cout, " " });
cout << "and\n";
copy(names2, names2 + 3, ostream_iterator<string>{ cout, " " });
cout << "is:" <<
inner_product(names1, names1 + 3, names2, string{ "\t" },
Cat{ "\n\t"}, Cat{ " " }) <<
'\n';
}
/*
Displays:
The sum of all squares in 1 2 3 4 5 6 7 is 140
The sum of all cross-products in 1 2 3 4 5 6 7 and 7 6 5 4 3 2 1 is 84
A list of all combined names in Frank Karel Piet and
Brokken Kubat Plomp is:
Frank Brokken
Karel Kubat
Piet Plomp
*/
19.1.23: inplace_merge
#include <algorithm>
#include <string>
#include <cstring>
#include <iterator>
#include <iostream>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first, string const &second) const
{
return strcasecmp(first.c_str(), second.c_str()) < 0;
}
};
int main()
{
string range[] =
{
"alpha", "charley", "echo", "golf",
"bravo", "delta", "foxtrot",
};
inplace_merge(range, range + 4, range + 7);
copy(range, range + 7, ostream_iterator<string>{ cout, " " });
cout << '\n';
string range2[] =
{
"ALPHA", "CHARLEY", "DELTA", "foxtrot", "hotel",
"bravo", "ECHO", "GOLF"
};
inplace_merge(range2, range2 + 5, range2 + 8, CaseString{});
copy(range2, range2 + 8, ostream_iterator<string>{ cout, " " });
cout << '\n';
}
/*
Displays:
alpha bravo charley delta echo foxtrot golf
ALPHA bravo CHARLEY DELTA ECHO foxtrot GOLF hotel
*/
19.1.24: iter_swap
#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>
using namespace std;
int main()
{
string first[] = {"alpha", "bravo", "charley"};
string second[] = {"echo", "foxtrot", "golf"};
size_t const n = sizeof(first) / sizeof(string);
cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << '\n';
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << '\n';
for (size_t idx = 0; idx < n; ++idx)
iter_swap(first + idx, second + idx);
cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << '\n';
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
Before:
alpha bravo charley
echo foxtrot golf
After:
echo foxtrot golf
alpha bravo charley
*/
19.1.25: lexicographical_compare
#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first,
string const &second) const
{
return strcasecmp(first.c_str(), second.c_str()) < 0;
}
};
int main()
{
string word1 = "hello";
string word2 = "help";
cout << word1 << " is " <<
(
lexicographical_compare(word1.begin(), word1.end(),
word2.begin(), word2.end()) ?
"before "
:
"beyond or at "
) <<
word2 << " in the alphabet\n";
cout << word1 << " is " <<
(
lexicographical_compare(word1.begin(), word1.end(),
word1.begin(), word1.end()) ?
"before "
:
"beyond or at "
) <<
word1 << " in the alphabet\n";
cout << word2 << " is " <<
(
lexicographical_compare(word2.begin(), word2.end(),
word1.begin(), word1.end()) ?
"before "
:
"beyond or at "
) <<
word1 << " in the alphabet\n";
string one[] = {"alpha", "bravo", "charley"};
string two[] = {"ALPHA", "BRAVO", "DELTA"};
copy(one, one + 3, ostream_iterator<string>{ cout, " " });
cout << " is ordered " <<
(
lexicographical_compare(one, one + 3,
two, two + 3, CaseString{}) ?
"before "
:
"beyond or at "
);
copy(two, two + 3, ostream_iterator<string>{ cout, " " });
cout << "\n"
"using case-insensitive comparisons.\n";
}
/*
Displays:
hello is before help in the alphabet
hello is beyond or at hello in the alphabet
help is beyond or at hello in the alphabet
alpha bravo charley is ordered before ALPHA BRAVO DELTA
using case-insensitive comparisons.
*/
19.1.26: lower_bound
As illustrated by the following example, the function object function's first parameter refers to an element in the iterator range, while the function object's second parameter refers to value.
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
#include <functional>
using namespace std;
int main()
{
int ia[] = { 10, 20, 30 };
cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << "\n"
"15 can be inserted before " <<
*lower_bound(ia, ia + 3, 15) << "\n"
"35 can be inserted after " <<
(lower_bound(ia, ia + 3, 35) == ia + 3 ?
"the last element" : "???") << '\n';
cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << "\n"
"15 can be inserted before " <<
*lower_bound(ia, ia + 3, 15, less<int>()) << "\n"
"35 can be inserted before " <<
(lower_bound(ia, ia + 3, 35, less<int>()) == ia ?
"the first element " : "???") << '\n';
vector<int> array{ 5, 10, 20, 20, 20, 30 };
auto iter = lower_bound(array.begin(), array.end(), 20,
[&](int &arrayEl, int value)
{
cout << "Comparing " << arrayEl <<
" (index: " << (&arrayEl - &array[0]) << ")"
" to " << value << '\n';
return arrayEl < value;
}
);
cout << "New 20 to insert at idx " << (iter - array.begin()) << '\n';
}
// Displays:
// Sequence: 10 20 30
// 15 can be inserted before 20
// 35 can be inserted after the last element
// Sequence: 10 20 30
// 15 can be inserted before 20
// 35 can be inserted before ???
// Comparing 20 (index: 3) to 20
// Comparing 10 (index: 1) to 20
// Comparing 20 (index: 2) to 20
// New 20 to insert at idx 2
The binary_search generic algorithm (cf. section 19.1.4)can be used to determine whether or not value is present in the iterator range. The upper_bound algorithm can be used to find the last element of a series of values equal to value. The upper_bound section (19.1.66) also contains an extensive example illustrating the use of lower_bound and as upper_bound.
19.1.27: max
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first, string const &second) const
{
return strcasecmp(second.c_str(), first.c_str()) > 0;
}
};
int main()
{
cout << "Word '" << max("first"s, "second"s) <<
"' is lexicographically last\n";
cout << "Word '" << max("first"s, "SECOND"s) <<
"' is lexicographically last\n";
cout << "Word '" << max("first"s, "SECOND"s,
CaseString{}) << "' is lexicographically last\n";
}
/*
Displays:
Word 'second' is lexicographically last
Word 'first' is lexicographically last
Word 'SECOND' is lexicographically last
*/
19.1.28: max_element
#include <algorithm>
#include <iostream>
using namespace std;
class AbsValue
{
public:
bool operator()(int first, int second) const
{
return abs(first) < abs(second);
}
};
int main()
{
int ia[] = {-4, 7, -2, 10, -12};
cout << "The max. int value is " << *max_element(ia, ia + 5) << '\n';
cout << "The max. absolute int value is " <<
*max_element(ia, ia + 5, AbsValue{}) << '\n';
}
/*
Displays:
The max. int value is 10
The max. absolute int value is -12
*/
19.1.29: merge
#include <algorithm>
#include <string>
#include <cstring>
#include <iterator>
#include <iostream>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first, string const &second) const
{
return strcasecmp(first.c_str(), second.c_str()) < 0;
}
};
int main()
{
string range1[] =
{ // 5 elements
"alpha", "bravo", "foxtrot", "hotel", "zulu"
};
string range2[] =
{ // 4 elements
"delta", "echo", "golf", "romeo"
};
string result[5 + 4];
copy(result,
merge(range1, range1 + 5, range2, range2 + 4, result),
ostream_iterator<string>{ cout, " " });
cout << '\n';
string range3[] =
{
"ALPHA", "bravo", "foxtrot", "HOTEL", "ZULU"
};
string range4[] =
{
"delta", "ECHO", "GOLF", "romeo"
};
copy(result,
merge(range3, range3 + 5, range4, range4 + 4, result,
CaseString{}),
ostream_iterator<string>{ cout, " " });
cout << '\n';
}
/*
Displays:
alpha bravo delta echo foxtrot golf hotel romeo zulu
ALPHA bravo delta ECHO foxtrot GOLF HOTEL romeo ZULU
*/
19.1.30: min
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first, string const &second) const
{
return strcasecmp(second.c_str(), first.c_str()) > 0;
}
};
int main()
{
cout << "Word '" << min(string{ "first" }, string{ "second" }) <<
"' is lexicographically first\n";
cout << "Word '" << min(string{ "first" }, string{ "SECOND" }) <<
"' is lexicographically first\n";
cout << "Word '" << min(string{ "first" }, string{ "SECOND" },
CaseString{}) << "' is lexicographically first\n";
}
/*
Displays:
Word 'first' is lexicographically first
Word 'SECOND' is lexicographically first
Word 'first' is lexicographically first
*/
19.1.31: min_element
#include <algorithm>
#include <iostream>
using namespace std;
class AbsValue
{
public:
bool operator()(int first, int second) const
{
return abs(first) < abs(second);
}
};
int main()
{
int ia[] = {-4, 7, -2, 10, -12};
cout << "The minimum int value is " << *min_element(ia, ia + 5) <<
'\n';
cout << "The minimum absolute int value is " <<
*min_element(ia, ia + 5, AbsValue{}) << '\n';
}
/*
Displays:
The minimum int value is -12
The minimum absolute int value is -2
*/
19.1.32: mismatch
#include <algorithm>
#include <string>
#include <cstring>
#include <iostream>
#include <utility>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first, string const &second) const
{
return strcasecmp(first.c_str(), second.c_str()) == 0;
}
};
int main()
{
string range1[] =
{
"alpha", "bravo", "foxtrot", "hotel", "zulu"
};
string range2[] =
{
"alpha", "bravo", "foxtrot", "Hotel", "zulu"
};
pair<string *, string *> pss = mismatch(range1, range1 + 5, range2);
cout << "The elements " << *pss.first << " and " << *pss.second <<
" at offset " << (pss.first - range1) << " differ\n";
if
(
mismatch(range1, range1 + 5, range2, CaseString{}).first
==
range1 + 5
)
cout << "When compared case-insensitively they match\n";
}
/*
Displays:
The elements hotel and Hotel at offset 3 differ
When compared case-insensitively they match
*/
19.1.33: next_permutation
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
This example shows that the elements are reordered such that each new permutation represents the next bigger value (132 is bigger than 123, 213 is bigger than 132, etc.) using operator< of the data type to which the iterators point. The value true is returned if a reordering took place, the value false is returned if no reordering took place, which is the case if the sequence represents the last (biggest) value. In that case, the sequence is also sorted using operator<.
#include <algorithm>
#include <iterator>
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first, string const &second) const
{
return strcasecmp(first.c_str(), second.c_str()) < 0;
}
};
int main()
{
string saints[] = {"Oh", "when", "the", "saints"};
cout << "All permutations of 'Oh when the saints':\n";
cout << "Sequences:\n";
do
{
copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });
cout << '\n';
}
while (next_permutation(saints, saints + 4, CaseString{}));
cout << "After first sorting the sequence:\n";
sort(saints, saints + 4, CaseString{});
cout << "Sequences:\n";
do
{
copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });
cout << '\n';
}
while (next_permutation(saints, saints + 4, CaseString{}));
}
/*
Displays (partially):
All permutations of 'Oh when the saints':
Sequences:
Oh when the saints
saints Oh the when
saints Oh when the
saints the Oh when
...
After first sorting the sequence:
Sequences:
Oh saints the when
Oh saints when the
Oh the saints when
Oh the when saints
...
*/
19.1.34: nth_element
#include <algorithm>
#include <iostream>
#include <iterator>
#include <functional>
using namespace std;
int main()
{
int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};
nth_element(ia, ia + 3, ia + 10);
cout << "sorting with respect to " << ia[3] << '\n';
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << '\n';
nth_element(ia, ia + 5, ia + 10, greater<int>());
cout << "sorting with respect to " << ia[5] << '\n';
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
sorting with respect to 4
1 2 3 4 9 7 5 6 8 10
sorting with respect to 5
10 8 7 9 6 5 3 4 2 1
*/
19.1.35: partial_sort
#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};
partial_sort(ia, ia + 3, ia + 10);
cout << "find the 3 smallest elements:\n";
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << '\n';
cout << "find the 5 biggest elements:\n";
partial_sort(ia, ia + 5, ia + 10, greater<int>());
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
find the 3 smallest elements:
1 2 3 7 9 5 4 6 8 10
find the 5 biggest elements:
10 9 8 7 6 1 2 3 4 5
*/
19.1.36: partial_sort_copy
#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
int ia[] = {1, 10, 3, 8, 5, 6, 7, 4, 9, 2};
int ia2[6];
partial_sort_copy(ia, ia + 10, ia2, ia2 + 6);
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << '\n';
cout << "the 6 smallest elements: ";
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << '\n';
cout << "the 4 smallest elements to a larger range:\n";
partial_sort_copy(ia, ia + 4, ia2, ia2 + 6);
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << '\n';
cout << "the 4 biggest elements to a larger range:\n";
partial_sort_copy(ia, ia + 4, ia2, ia2 + 6, greater<int>());
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
1 10 3 8 5 6 7 4 9 2
the 6 smallest elements: 1 2 3 4 5 6
the 4 smallest elements to a larger range:
1 3 8 10 5 6
the 4 biggest elements to a larger range:
10 8 3 1 5 6
*/
19.1.37: partial_sum
#include <numeric>
#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
int ia[] = {1, 2, 3, 4, 5};
int ia2[5];
copy(ia2,
partial_sum(ia, ia + 5, ia2),
ostream_iterator<int>(cout, " "));
cout << '\n';
copy(ia2,
partial_sum(ia, ia + 5, ia2, multiplies<int>()),
ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
1 3 6 10 15
1 2 6 24 120
*/
19.1.38: partition
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
class LessThan
{
int d_x;
public:
LessThan(int x)
:
d_x(x)
{}
bool operator()(int value) const
{
return value <= d_x;
}
};
int main()
{
int ia[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};
int *split;
split = partition(ia, ia + 10, LessThan{ ia[9] });
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";
copy(ia, ia + 10, ostream_iterator<int>{ cout, " " });
cout << '\n';
}
/*
Displays:
Last element <= 4 is ia[3]
1 3 4 2 9 10 7 8 6 5
*/
19.1.39: prev_permutation
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
#include <iterator>
using namespace std;
class CaseString
{
public:
bool operator()(string const &first, string const &second) const
{
return strcasecmp(first.c_str(), second.c_str()) < 0;
}
};
int main()
{
string saints[] = {"Oh", "when", "the", "saints"};
cout << "All previous permutations of 'Oh when the saints':\n";
cout << "Sequences:\n";
do
{
copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });
cout << '\n';
}
while (prev_permutation(saints, saints + 4, CaseString{}));
cout << "After first sorting the sequence:\n";
sort(saints, saints + 4, CaseString{});
cout << "Sequences:\n";
while (prev_permutation(saints, saints + 4, CaseString{}))
{
copy(saints, saints + 4, ostream_iterator<string>{ cout, " " });
cout << '\n';
}
cout << "No (more) previous permutations\n";
}
/*
Displays:
All previous permutations of 'Oh when the saints':
Sequences:
Oh when the saints
Oh when saints the
Oh the when saints
Oh the saints when
Oh saints when the
Oh saints the when
After first sorting the sequence:
Sequences:
No (more) previous permutations
*/
19.1.40: remove
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",
"alpha", "alpha", "papa", "quebec" };
string *removed;
size_t const size = sizeof(words) / sizeof(string);
cout << "Removing all \"alpha\"s:\n";
removed = remove(words, words + size, "alpha");
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << '\n'
<< "Leftover elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
Removing all "alpha"s:
kilo lima mike november papa quebec
Leftover elements are:
alpha alpha alpha papa quebec
*/
19.1.41: remove_copy
#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",
"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
string remaining
[
size -
count_if
(
words, words + size,
bind2nd(equal_to<string>(), "alpha"s)
)
];
string *returnvalue =
remove_copy(words, words + size, remaining, "alpha");
cout << "Removing all \"alpha\"s:\n";
copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
Removing all "alpha"s:
kilo lima mike november oscar papa quebec
*/
19.1.42: remove_copy_if
#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",
"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
string remaining[
size -
count_if
(
words, words + size,
bind2nd(equal_to<string>(), "alpha")
)
];
string *returnvalue =
remove_copy_if
(
words, words + size, remaining,
bind2nd(equal_to<string>(), "alpha")
);
cout << "Removing all \"alpha\"s:\n";
copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
Removing all "alpha"s:
kilo lima mike november oscar papa quebec
*/
19.1.43: remove_if
#include <functional>
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",
"oscar", "alpha", "alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
cout << "Removing all \"alpha\"s:\n";
string *removed = remove_if(words, words + size,
bind2nd(equal_to<string>(), "alpha"s));
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << '\n'
<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
Removing all "alpha"s:
kilo lima mike november oscar papa quebec
Trailing elements are:
oscar alpha alpha papa quebec
*/
19.1.44: replace
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",
"oscar", "alpha", "alpha", "papa" };
size_t const size = sizeof(words) / sizeof(string);
replace(words, words + size, "alpha"s, "ALPHA"s);
copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays
kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa
*/
19.1.45: replace_copy
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",
"oscar", "alpha", "alpha", "papa"};
size_t const size = sizeof(words) / sizeof(string);
string remaining[size];
copy
(
remaining,
replace_copy(words, words + size, remaining, "alpha"s, "ALPHA"s),
ostream_iterator<string>(cout, " ")
);
cout << '\n';
}
/*
Displays:
kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa
*/
19.1.46: replace_copy_if
#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november",
"alpha", "oscar", "alpha", "alpha", "papa"};
size_t const size = sizeof(words) / sizeof(string);
string result[size];
// Note: the comparisons are: "mike" > word[i]
replace_copy_if(words, words + size, result,
bind1st(greater<string>(), "mike"s), "ALPHA"s);
copy (result, result + size, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays (all strings in words[] which are exceeded by 'mike' are
replaced by ALPHA):
ALPHA ALPHA ALPHA mike ALPHA november ALPHA oscar ALPHA ALPHA papa
*/
19.1.47: replace_if
#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",
"oscar", "alpha", "alpha", "papa"};
size_t const size = sizeof(words) / sizeof(string);
replace_if(words, words + size,
bind1st(equal_to<string>(), "alpha"s), "ALPHA"s);
copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa
*/
19.1.48: reverse
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;
int main()
{
string line;
while (getline(cin, line))
{
reverse(line.begin(), line.end());
cout << line << '\n';
}
}
19.1.49: reverse_copy
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;
int main()
{
string line;
while (getline(cin, line))
{
size_t size = line.size();
char copy[size + 1];
cout << "line: " << line << '\n' <<
"reversed: ";
reverse_copy(line.begin(), line.end(), copy);
copy[size] = 0; // 0 is not part of the reversed
// line !
cout << copy << '\n';
}
}
19.1.50: rotate
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "lima", "mike", "november", "oscar",
"foxtrot", "golf", "hotel", "india", "juliet" };
size_t const size = sizeof(words) / sizeof(string);
size_t const midsize = size / 2;
rotate(words, words + midsize, words + size);
copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
foxtrot golf hotel india juliet kilo lima mike november oscar
*/
19.1.51: rotate_copy
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string words[] =
{ "kilo", "lima", "mike", "november", "oscar",
"foxtrot", "golf", "hotel", "india", "juliet" };
size_t const size = sizeof(words) / sizeof(string);
size_t const midsize = size / 2;
string out[size];
copy(out,
rotate_copy(words, words + midsize, words + size, out),
ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
foxtrot golf hotel india juliet kilo lima mike november oscar
*/
19.1.52: search
#include <algorithm>
#include <iostream>
#include <iterator>
using namespace std;
class absInt
{
public:
bool operator()(int i1, int i2) const
{
return abs(i1) == abs(i2);
}
};
int main()
{
int range1[] = {-2, -4, -6, -8, 2, 4, 6, 8};
int range2[] = {6, 8};
copy
(
search(range1, range1 + 8, range2, range2 + 2),
range1 + 8,
ostream_iterator<int>(cout, " ")
);
cout << '\n';
copy
(
search(range1, range1 + 8, range2, range2 + 2, absInt()),
range1 + 8,
ostream_iterator<int>(cout, " ")
);
cout << '\n';
}
/*
Displays:
6 8
-6 -8 2 4 6 8
*/
19.1.53: search_n
#include <algorithm>
#include <iostream>
#include <iterator>
using namespace std;
bool eqInt(int i1, int i2)
{
return abs(i1) == abs(i2);
}
int main()
{
int range1[] = {-2, -4, -4, -6, -8, 2, 4, 4, 6, 8};
copy
(
search_n(range1, range1 + 8, 2, 4),
range1 + 8,
ostream_iterator<int>(cout, " ")
);
cout << '\n';
copy
(
search_n(range1, range1 + 8, 2, 4, eqInt),
range1 + 8,
ostream_iterator<int>(cout, " ")
);
cout << '\n';
}
/*
Displays:
4 4
-4 -4 -6 -8 2 4 4
*/
19.1.54: set_difference
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
#include <iterator>
using namespace std;
bool caseless(string const &left, string const &right)
{
return strcasecmp(left.c_str(), right.c_str()) < 0;
}
int main()
{
string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };
string set2[] = { "papa", "quebec", "romeo"};
string result[7];
string *returned;
copy(result,
set_difference(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));
cout << '\n';
string set3[] = { "PAPA", "QUEBEC", "ROMEO"};
copy(result,
set_difference(set1, set1 + 7, set3, set3 + 3, result,
caseless),
ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
kilo lima mike november oscar
kilo lima mike november oscar
*/
19.1.55: set_intersection
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
#include <iterator>
using namespace std;
bool caseless(string const &left, string const &right)
{
return strcasecmp(left.c_str(), right.c_str()) < 0;
}
int main()
{
string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };
string set2[] = { "papa", "quebec", "romeo"};
string result[7];
string *returned;
copy(result,
set_intersection(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));
cout << '\n';
string set3[] = { "PAPA", "QUEBEC", "ROMEO"};
copy(result,
set_intersection(set1, set1 + 7, set3, set3 + 3, result,
caseless),
ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
papa quebec
papa quebec
*/
19.1.56: set_symmetric_difference
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
#include <iterator>
using namespace std;
bool caseless(string const &left, string const &right)
{
return strcasecmp(left.c_str(), right.c_str()) < 0;
}
int main()
{
string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };
string set2[] = { "papa", "quebec", "romeo"};
string result[7];
copy(result,
set_symmetric_difference(set1, set1 + 7, set2, set2 + 3,
result),
ostream_iterator<string>(cout, " "));
cout << '\n';
string set3[] = { "PAPA", "QUEBEC", "ROMEO"};
copy(result,
set_symmetric_difference(set1, set1 + 7, set3, set3 + 3,
result, caseless),
ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
kilo lima mike november oscar romeo
kilo lima mike november oscar ROMEO
*/
19.1.57: set_union
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
#include <iterator>
using namespace std;
bool caseless(string const &left, string const &right)
{
return strcasecmp(left.c_str(), right.c_str()) < 0;
}
int main()
{
string set1[] = { "kilo", "lima", "mike", "november",
"oscar", "papa", "quebec" };
string set2[] = { "papa", "quebec", "romeo"};
string result[8];
copy(result,
set_union(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));
cout << '\n';
string set3[] = { "PAPA", "QUEBEC", "ROMEO"};
copy(result,
set_union(set1, set1 + 7, set3, set3 + 3, result, caseless),
ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
kilo lima mike november oscar papa quebec romeo
kilo lima mike november oscar papa quebec ROMEO
*/
19.1.58: sort
#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
string words[] = {"november", "kilo", "mike", "lima",
"oscar", "quebec", "papa"};
sort(words, words + 7);
copy(words, words + 7, ostream_iterator<string>(cout, " "));
cout << '\n';
sort(words, words + 7, greater<string>());
copy(words, words + 7, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
kilo lima mike november oscar papa quebec
quebec papa oscar november mike lima kilo
*/
19.1.59: stable_partition
#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
#include <iterator>
using namespace std;
int main()
{
int org[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};
int ia[10];
int *split;
copy(org, org + 10, ia);
split = partition(ia, ia + 10, bind2nd(less_equal<int>(), ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << '\n';
copy(org, org + 10, ia);
split = stable_partition(ia, ia + 10,
bind2nd(less_equal<int>(), ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
Last element <= 4 is ia[3]
1 3 4 2 9 10 7 8 6 5
Last element <= 4 is ia[3]
1 3 2 4 5 7 9 10 8 6
*/
19.1.60: stable_sort
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <iterator>
using namespace std;
struct Pss: public pair<string, string> // 1
{
Pss(string const &s1, string const &s2)
:
pair<string, string>(s1, s2)
{}
};
ostream &operator<<(ostream &out, Pss const &p) // 2
{
return out << " " << p.first << " " << p.second << '\n';
}
class Sortby
{
string Pss::*d_field;
public:
Sortby(string Pss::*field) // 3
:
d_field(field)
{}
bool operator()(Pss const &p1, Pss const &p2) const // 4
{
return p1.*d_field < p2.*d_field;
}
};
int main()
{
vector<Pss> namecity { // 5
Pss("Hampson", "Godalming"),
Pss("Moran", "Eugene"),
Pss("Goldberg", "Eugene"),
Pss("Moran", "Godalming"),
Pss("Goldberg", "Chicago"),
Pss("Hampson", "Eugene")
};
sort(namecity.begin(), namecity.end(), Sortby{ &Pss::first });// 6
cout << "sorted by names:\n";
copy(namecity.begin(), namecity.end(),
ostream_iterator<Pss>{ cout });
// 7
stable_sort(namecity.begin(), namecity.end(),
Sortby{ &Pss::second });
cout << "sorted by names within sorted cities:\n";
copy(namecity.begin(), namecity.end(),
ostream_iterator<Pss>{ cout });
}
/*
Displays:
sorted by names:
Goldberg Eugene
Goldberg Chicago
Hampson Godalming
Hampson Eugene
Moran Eugene
Moran Godalming
sorted by names within sorted cities:
Goldberg Chicago
Goldberg Eugene
Hampson Eugene
Moran Eugene
Hampson Godalming
Moran Godalming
*/
Note that the example implements a solution to an often occurring problem: how to sort using multiple hierarchal criteria. The example deserves some additional attention:
19.1.61: swap
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string first[] = {"alpha", "bravo", "charley"};
string second[] = {"echo", "foxtrot", "golf"};
size_t const n = sizeof(first) / sizeof(string);
cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << '\n';
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << '\n';
for (size_t idx = 0; idx < n; ++idx)
swap(first[idx], second[idx]);
cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << '\n';
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
Before:
alpha bravo charley
echo foxtrot golf
After:
echo foxtrot golf
alpha bravo charley
*/
19.1.62: swap_ranges
#include <algorithm>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;
int main()
{
string first[] = {"alpha", "bravo", "charley"};
string second[] = {"echo", "foxtrot", "golf"};
size_t const n = sizeof(first) / sizeof(string);
cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << '\n';
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << '\n';
swap_ranges(first, first + n, second);
cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << '\n';
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
Before:
alpha bravo charley
echo foxtrot golf
After:
echo foxtrot golf
alpha bravo charley
*/
19.1.63: transform
#include <functional>
#include <vector>
#include <algorithm>
#include <iostream>
#include <string>
#include <cctype>
#include <iterator>
using namespace std;
string caps(string const &src)
{
string tmp;
tmp.resize(src.length());
transform(src.begin(), src.end(), tmp.begin(), ::toupper);
return tmp;
}
int main()
{
string words[] = {"alpha", "bravo", "charley"};
copy(words, transform(words, words + 3, words, caps),
ostream_iterator<string>(cout, " "));
cout << '\n';
int values[] = {1, 2, 3, 4, 5};
vector<int> squares;
transform(values, values + 5, values,
back_inserter(squares), multiplies<int>());
copy(squares.begin(), squares.end(),
ostream_iterator<int>(cout, " "));
cout << '\n';
}
/*
Displays:
ALPHA BRAVO CHARLEY
1 4 9 16 25
*/
the following differences between the for_each (section 19.1.18) and transform generic algorithms should be noted:
Also note that the range-based for loop can often be used instead of the transform generic algorithm. However, but different from the range-based for-loop the transform algorithm can also be used width sub-ranges and with reverse-iterators.
19.1.64: unique
#include <algorithm>
#include <iostream>
#include <string>
#include <cstring>
#include <iterator>
using namespace std;
bool casestring(string const &first, string const &second)
{
return strcasecmp(first.c_str(), second.c_str()) == 0;
}
int main()
{
string words[] = {"alpha", "alpha", "Alpha", "papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
string *removed = unique(words, words + size);
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << '\n'
<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << '\n';
removed = unique(words, words + size, casestring);
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << '\n'
<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
alpha Alpha papa quebec
Trailing elements are:
quebec
alpha papa quebec
Trailing elements are:
quebec quebec
*/
19.1.65: unique_copy
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <iterator>
#include <cstring>
using namespace std;
bool casestring(string const &first, string const &second)
{
return strcasecmp(first.c_str(), second.c_str()) == 0;
}
int main()
{
string words[] = {"oscar", "Alpha", "alpha", "alpha",
"papa", "quebec" };
size_t const size = sizeof(words) / sizeof(string);
vector<string> remaining;
unique_copy(words, words + size, back_inserter(remaining));
copy(remaining.begin(), remaining.end(),
ostream_iterator<string>(cout, " "));
cout << '\n';
vector<string> remaining2;
unique_copy(words, words + size,
back_inserter(remaining2), casestring);
copy(remaining2.begin(), remaining2.end(),
ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
Displays:
oscar Alpha alpha papa quebec
oscar Alpha papa quebec
*/
19.1.66: upper_bound
Caveat: note that the comp object's parameters when using upper_bound are swapped compared to the parameters expected by lower_bound.
When the iterator range contains a series of values which are, according to comp, equal to value then upper_bound returns an iterator to the first element beyond that series, while lower_bound returns an iterator to the first element of that series.
The following program illustrates the various possibilities. Th program illustrates both lower_bound and upper_bound and also illustrates the situation where value' Type is unequal to the types of the values in the iterator range. Specific comment is provided below the program's code.
1: #include <algorithm>
2: #include <iostream>
3: using namespace std;
4:
5: int main()
6: {
7: typedef pair<int, char> pic;
8:
9: pic picArr[] =
10: { {1, 'f'}, {5, 'r'}, {5, 'a'}, {7, 'n'}, {8, 'k'} };
11: pic *picArrEnd = picArr + size(picArr);
12:
13: cout << "Sequence: ";
14: for (auto &pair: picArr)
15: cout << '{' << pair.first << ',' << pair.second << "}, ";
16: cout << '\n';
17:
18: auto iter = lower_bound(picArr, picArrEnd, 5,
19: [&](pic const &range, int value)
20: {
21: return range.first < value;
22: }
23: );
24: cout << " lower bound, <, {5,?} can be inserted before {" <<
25: iter->first << ',' << iter->second << "}\n";
26:
27: iter = upper_bound(picArr, picArrEnd, 5,
28: [&](int value, pic const &range)
29: {
30: return value < range.first;
31: }
32: );
33: cout << " upper_bound, <, {5,?} can be inserted before {" <<
34: iter->first << ',' << iter->second << "}\n";
35:
36: iter = upper_bound(picArr, picArrEnd, 9,
37: [&](int value, pic const &range)
38: {
39: return value < range.first;
40: }
41: );
42: cout << " upper_bound, <, {9,?} can be inserted " <<
43: ( &*iter == picArrEnd ? "at the end" : "???") << '\n';
44:
45: sort(picArr, picArrEnd,
46: [](pic const &lhs, pic const &rhs)
47: {
48: return lhs.first > rhs.first;
49: }
50: );
51:
52: cout << "\nSequence: ";
53: for (auto &pair: picArr)
54: cout << '{' << pair.first << ',' << pair.second << "}, ";
55: cout << '\n';
56:
57: iter = lower_bound(picArr, picArrEnd, 5,
58: [&](pic const &range, int value)
59: {
60: return range.first > value;
61: }
62: );
63: cout << " lower_bound, >, {5,?} can be inserted before {" <<
64: iter->first << ',' << iter->second << "}\n";
65:
66: iter = upper_bound(picArr, picArrEnd, 5,
67: [&](int value, pic const &range)
68: {
69: return value > range.first;
70: }
71: );
72: cout << " upper_bound, >, {5,?} can be inserted before {" <<
73: iter->first << ',' << iter->second << "}\n";
74:
75: iter = upper_bound(picArr, picArrEnd, 0,
76: [&](int value, pic const &range)
77: {
78: return value > range.first;
79: }
80: );
81: cout << " upper_bound, >, {0,?} can be inserted " <<
82: ( &*iter == picArrEnd ? "at the end" : "???") << '\n';
83: }
84: // Displays:
85: // Sequence: {1,f}, {5,r}, {5,a}, {7,n}, {8,k},
86: // lower bound, <, {5,?} can be inserted before {5,r}
87: // upper_bound, <, {5,?} can be inserted before {7,n}
88: // upper_bound, <, {9,?} can be inserted at the end
89: //
90: // Sequence: {8,k}, {7,n}, {5,r}, {5,a}, {1,f},
91: // lower_bound, >, {5,?} can be inserted before {5,r}
92: // upper_bound, >, {5,?} can be inserted before {1,f}
93: // upper_bound, >, {0,?} can be inserted at the end
The binary_search generic algorithm can be used to simply determine whether or nog value is present in the iterator range. The lower_bound generic algorithm can be used to find the first element of a series of values equal to value.
19.1.67: Heap algorithms
A heap is a kind of binary tree which can be represented by an array. In the standard heap, the key of an element is not smaller than the key of its children. This kind of heap is called a max heap. A tree in which numbers are keys could be organized as shown in figure 24.
Figure 24: A binary tree representation of a heap
Such a tree may also be organized in an array:
12, 11, 10, 8, 9, 7, 6, 1, 2, 4, 3, 5
In the following description, keep two pointers into this array in mind: a pointer node indicates the location of the next node of the tree, a pointer child points to the next element which is a child of the node pointer. Initially, node points to the first element, and child points to the second element.
Since child now points beyond the array, the remaining nodes have no children. So, nodes 6, 1, 2, 4, 3 and 5 don't have children.
Note that the left and right branches are not ordered: 8 is less than 9, but 7 is larger than 6.
A heap is created by traversing a binary tree level-wise, starting from the top node. The top node is 12, at the zeroth level. At the first level we find 11 and 10. At the second level 8, 9, 7 and 6 are found, etc.
Heaps can be constructed in containers supporting random access. So, a list is not an appropriate data structure for a heap. Heaps can be constructed from an (unsorted) array (using make_heap). The top-element can be pruned from a heap, followed by reordering the heap (using pop_heap), a new element can be added to the heap, followed by reordering the heap (using push_heap), and the elements in a heap can be sorted (using sort_heap, which, of course, invalidates the heap).
19.1.67.1: The `make_heap' function
19.1.67.2: The `pop_heap' function
19.1.67.3: The `push_heap' function
19.1.67.4: The `sort_heap' function
19.1.67.5: An example using the heap functions
Here is an example showing the various generic algorithms manipulating heaps:
#include <algorithm>
#include <iostream>
#include <functional>
#include <iterator>
using namespace std;
void show(int *ia, char const *header)
{
cout << header << ":\n";
copy(ia, ia + 20, ostream_iterator<int>(cout, " "));
cout << '\n';
}
int main()
{
int ia[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
make_heap(ia, ia + 20);
show(ia, "The values 1-20 in a max-heap");
pop_heap(ia, ia + 20);
show(ia, "Removing the first element (now at the end)");
push_heap(ia, ia + 20);
show(ia, "Adding 20 (at the end) to the heap again");
sort_heap(ia, ia + 20);
show(ia, "Sorting the elements in the heap");
make_heap(ia, ia + 20, greater<int>());
show(ia, "The values 1-20 in a heap, using > (and beyond too)");
pop_heap(ia, ia + 20, greater<int>());
show(ia, "Removing the first element (now at the end)");
push_heap(ia, ia + 20, greater<int>());
show(ia, "Re-adding the removed element");
sort_heap(ia, ia + 20, greater<int>());
show(ia, "Sorting the elements in the heap");
}
/*
Displays:
The values 1-20 in a max-heap:
20 19 15 18 11 13 14 17 9 10 2 12 6 3 7 16 8 4 1 5
Removing the first element (now at the end):
19 18 15 17 11 13 14 16 9 10 2 12 6 3 7 5 8 4 1 20
Adding 20 (at the end) to the heap again:
20 19 15 17 18 13 14 16 9 11 2 12 6 3 7 5 8 4 1 10
Sorting the elements in the heap:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
The values 1-20 in a heap, using > (and beyond too):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Removing the first element (now at the end):
2 4 3 8 5 6 7 16 9 10 11 12 13 14 15 20 17 18 19 1
Re-adding the removed element:
1 2 3 8 4 6 7 16 9 5 11 12 13 14 15 20 17 18 19 10
Sorting the elements in the heap:
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
*/
Chapter 20: Multi Threading
The 98 C++ standard did not acknowledge the existence of multi-threading. Between then and the release of the current C++ standard computers have evolved to multi-core machines, and using multi-threading by now is a real option to consider when developing software.
Multi-threading is an extensive and complex subject, and many good reference texts on the subject exist. The C++ multi-threading is built upon the facilities offered by the pthreads library (cf. Nichols, B, et al.'s Pthreads Programming, O'Reilly ). However, in line with C++'s current-day philosophy the multi-threading implementation offered by the language offers a high level interface to multi-threading, and using the raw pthread building blocks is hardly ever necessary (cf. Williams, A. (2012): C++ Concurrency in action).
This chapter covers the facilities for multi-threading as supported by C++. Although the coverage aims at providing the tools and examples allowing you to create your own multi-threaded programs, coverage necessarily is far from complete. The topic of multi threading is too extensive for that. The mentioned reference texts provide a good starting point for any further study of multi threading.
A thread of execution (commonly abbreviated to a thread) is a single flow of control within a program. It differs from a separately executed program, as created by the fork(1) system call in the sense that threads all run inside one program, while fork(1) creates independent copies of a running program. Multi-threading means that multiple tasks are being executed in parallel inside one program, and no assumptions can be made as to which thread is running first or last, or at what moment in time. Especially when the number of threads does not exceed the number of cores, each thread may be active at the same time. If the number of threads exceed the number of cores, the operating system will resort to task switching, offering each thread time slices in which it can perform its tasks. Task switching takes time, and the law of diminishing returns applies here as well: if the number of threads greatly exceeds the number of available cores (also called overpopulation), then the overhead incurred may exceed the benefit of being able to run multiple tasks in parallel.
Since all threads are running inside one single program, all threads share the program's data and code. When the same data are accessed by multiple threads, and at least one of the threads is modifying these data, access must be synchronized to avoid that threads read data while these data are being modified by other threads, and to avoid that multiple threads modify the same data at the same time.
So how do we run a multi-threaded program in C++? Let's look at hello world, the multi-threaded way:
1: #include <iostream>
2: #include <thread>
3:
4: void hello()
5: {
6: std::cout << "hello world!\n";
7: }
8:
9: int main()
10: {
11: std::thread hi(hello);
12: hi.join();
13: }
When compiling multi-threaded programs using the GNU g++ compiler the -pthread option must be specified.
To create a multi-threaded program defined in a source file multi.cc the g++ compiler can be called like this:
g++ --std=c++14 -pthread -Wall multi.cc
20.1: Multi Threading
In C++ multi threading may be implemented at various levels of abstraction. In general the highest level of abstraction which is available to implement a mult-threaded problem should be used. Not so much because it's often simpler than using lower levels of abstraction, but because higher levels of abstraction are usually semantically closer to the original problem description, resulting in code which is easier to understand and therefore easier to maintain. Also, high-abstraction classes also provide exception safety and prevent the occurrence of memory leaks.
C++'s main tool for creating multi-threaded programs is the class std::thread, and some examples of its use have already been shown at the beginning of this chapter.
Characteristics of individual threads can be queried from the std::this_thread namespace. Also, std::this_thread offers some control over the behavior of an individual thread.
To synchronize access to shared data C++ offers mutexes (implemented by the class std::mutex) and condition variables (implemented by the class std::condition_variable).
Members of these classes may throw system_error objects (cf. section 10.9) when encountering a low-level error condition.
20.1.1: The namespace std::this_thread
The namespace std::this_thread contains functions that are uniquely associated with the currently running thread.
Before using the namespace this_thread the <thread> header file must be included.
Inside the std::this_thread namespace several free functions are defined, providing information about the current thread or that can be used to control its behavior:
std::this_thread::sleep_for(std::chrono::seconds(5));
// assume using namespace std
this_thread::sleep_until(chrono::system_clock().now() + chrono::seconds(5));
Conversely, the sleep_until call in the next example immediately returns:
this_thread::sleep_until(chrono::system_clock().now() - chrono::seconds(5));
20.1.2: The class std::thread
Multi threading in C++ starts off with objects of the class std::thread. Each object of this class handles a separate thread.
Before using Thread objects the <thread> header file must be included.
Thread objects can be constructed in various ways:
The notation Arg &&...args indicates that any additional arguments are passed as is to the function. The types of the arguments that are passed to the thread constructor and that are expected by the called function must match: values must be values, references must be reference, r-value references must be r-value references (or move construction must be supported). The following example illustrates this requirement:
1: #include <iostream>
2: #include <thread>
3:
4: using namespace std;
5:
6: struct NoMove
7: {
8: NoMove() = default;
9: NoMove(NoMove &&tmp) = delete;
10: };
11:
12: struct MoveOK
13: {
14: int d_value = 10;
15:
16: MoveOK() = default;
17: MoveOK(MoveOK const &) = default;
18:
19: MoveOK(MoveOK &&tmp)
20: {
21: d_value = 0;
22: cout << "MoveOK move cons.\n";
23: }
24: };
25:
26: void valueArg(int value)
27: {}
28: void refArg(int &ref)
29: {}
30: void r_refArg(int &&tmp)
31: {
32: tmp = 100;
33: }
34: void r_refNoMove(NoMove &&tmp)
35: {}
36: void r_refMoveOK(MoveOK &&tmp)
37: {}
38:
39: int main()
40: {
41: int value = 0;
42:
43: std::thread(valueArg, value).join();
44: std::thread(refArg, ref(value)).join();
45: std::thread(r_refArg, move(value)).join();
46:
47: // std::thread(refArg, value);
48:
49: std::thread(r_refArg, value).join();
50: cout << "value after r_refArg: " << value << '\n';
51:
52: // std::thread(r_refNoMove, NoMove());
53:
54: NoMove noMove;
55: // std::thread(r_refNoMove, noMove).join();
56:
57: MoveOK moveOK;
58: std::thread(r_refMoveOK, moveOK).join();
59: cout << moveOK.d_value << '\n';
60: }
Be careful when passing local variables as arguments to thread objects: if the thread continues to run when the function whose local variables are used terminates, then the thread suddenly uses wild pointers or wild references, as the local variables no longer exist. To prevent this from happening (illustrated by the next example) do as follows:
1: #include <iostream>In line 18 be sure not to call std::ref(text) instead of std::string{ text }.
2: #include <thread>
3: #include <string>
4: #include <chrono>
5:
6: void threadFun(std::string const &text)
7: {
8: for (size_t iter = 1; iter != 6; ++iter)
9: {
10: std::cout << text << '\n';
11: std::this_thread::sleep_for(std::chrono::seconds(1));
12: }
13: }
14:
15: std::thread safeLocal()
16: {
17: std::string text = "hello world";
18: return std::thread(threadFun, std::string{ text });
19: }
20:
21: int main()
22: {
23: std::thread local(safeLocal());
24: std::cout << "safeLocal has ended\n";
25: local.join();
26: }
If the thread cannot be created a std::system_error exception is thrown.
Since this constructor not only accepts functions but also function objects as its first argument, a local context may be passed to the function object's constructor. Here is an example of a thread receiving a function object using a local context:
#include <iostream>
#include <thread>
#include <array>
using namespace std;
class Functor
{
array<int, 30> &d_data;
int d_value;
public:
Functor(array<int, 30> &data, int value)
:
d_data(data),
d_value(value)
{}
void operator()(ostream &out)
{
for (auto &value: d_data)
{
value = d_value++;
out << value << ' ';
}
out << '\n';
}
};
int main()
{
array<int, 30> data;
Functor functor{ data, 5 };
thread funThread{ functor, ref(cout) };
funThread.join();
};
The class std::thread does not provide a copy constructor.
The following members are available:
If the operator's left-hand side operand (lhs) is a joinable thread, then terminate is called. Otherwise, tmp is assigned to the operator's lhs and tmp's state is changed to the thread's default state (i.e., thread()).
Since detach disconnects a thread from the running program, e.g., main no longer can wait for the thread's completion. As a program ends when main ends, its still running detached threads also stop, and a program may not properly finish all its threads, as demonstrated by the following example:
#include <thread>
#include <iostream>
#include <chrono>
void fun(size_t count, char const *txt)
{
for (; count--; )
{
std::this_thread::sleep_for(std::chrono::milliseconds(100));
std::cout << count << ": " << txt << std::endl;
}
}
int main()
{
std::thread first(fun, 5, "hello world");
first.detach();
std::thread second(fun, 5, "a second thread");
second.detach();
std::this_thread::sleep_for(std::chrono::milliseconds(400));
std::cout << "leaving" << std::endl;
}
A detached thread may very well continue to run after the function that launched it has finished. Here, too, you should be very careful not to pass local variables to the detached thread, as their references or pointers will be undefined once the function defining the local variables terminates:
#include <iostream>
#include <thread>
#include <chrono>
using namespace std;
using namespace chrono;
void add(int const &p1, int const &p2)
{
this_thread::sleep_for(milliseconds(200));
cerr << p1 << " + " << p2 << " = " << (p1 + p2) << '\n';
}
void run()
{
int v1 = 10;
int v2 = 20;
// thread(add, ref(v1), ref(v2)).detach(); // DON'T DO THIS
thread(add, int(v1), int(v2)).detach(); // this is OK: own copies
}
void oops()
{
int v1 = 0;
int v2 = 0;
}
int main()
{
run();
oops();
this_thread::sleep_for(seconds(1));
}
This member was used in several examples shown so far. As noted: when main ends while a joinable thread is still running, terminate is called, aborting the program.
Things to note:
void doSomething();
int main()
{
thread(doSomething); // nothing happens??
thread(doSomething).join() // doSomething is executed??
}
This similar to the situation we encountered in section 7.5: the first statement doesn't define an anonymous thread object at all. It simply defines the thread object doSomething. Consequently, compilation of the second statement fails, as there is no thread(thread &) constructor. When the first statement is omitted, the doSomething function is executed by the second statement. If the second statement is omitted, a default constructed thread object by the name of doSomething is defined.
thread object(thread(doSomething));
the move constructor is used to transfer control from an anonymous thread executing doSomething to the thread object. Only after object's construction has completed doSomething is started in the separate thread.
A thread ends when the function executing a thread finishes. When a thread object is destroyed while its thread function is still running, terminate is called, aborting the program's end. Bad news: the destructors of existing objects aren't called and exceptions that are thrown are left uncaught. This happens in the following program as the thread is still active when main ends:
#include <iostream>
#include <thread>
void hello()
{
while (true)
std::cout << "hello world!\n";
}
int main()
{
std::thread hi(hello);
}
There are several ways to solve this problem. One of them is discussed in the next section.
20.1.2.1: Static data and threads: thread_local
With multi-threaded programs the well-known distinction between global and local data is somewhat too coarse. For single- and multi-threaded programs alike, global data are available to all of the program's code, and local data are available to the function (or compound statement) in which the local data are defined. But multi-threaded programs may feel the need for an intermediate type of data, uniquely available to the different threads.
The thread_local keyword provides this intermediate data level. Global variables declared as thread_local are global within each individual thread. Each thread owns a copy of the thread_local variables, and may modify them at will. A thread_local variable in one thread is completely separated from that variable in another thread. Here is an example:
1: #include <iostream>
2: #include <thread>
3:
4: using namespace std;
5:
6: thread_local int t_value = 100;
7:
8: void modify(char const *label, int newValue)
9: {
10: cout << label << " before: " << t_value << ". Address: " <<
11: &t_value << endl;
12: t_value = newValue;
13: cout << label << " after: " << t_value << endl;
14: }
15:
16: int main()
17: {
18: thread(modify, "first", 50).join();
19: thread(modify, "second", 20).join();
20: modify("main", 0);
21: }
Running this program shows that each separate thread starts with t_value being 100, and then modifies it without affecting the values of t_value used by other threads.
Note that, although the t_value variables are unique to each thread, identical addresses may be shown for them. Since each thread uses its own stack, these variables may occupy the same relative locations within their respective stacks, giving the illusion that their physical addresses are identical.
20.1.2.2: Exceptions and join()
Once a thread starts and it isn't detached it must eventually join its starting (parent) thread, or the program aborts. Usually, once a thread has started the parent thread continues to do some work by itself:
void childActions();
void doSomeWork();
void parent()
{
thread child(childActions);
doSomeWork();
child.join();
}
However, maybe doSomeWork can't complete its work, and throws an exception, to be caught outside of parent. This, unfortunately, ends parent, and child.join() is missed. Consequently, the program aborts because of a thread that hasn't been joined.
Clearly, all exceptions must be caught, join must be called, and the exception must be rethrown. But parent cannot use a function try-block, as the thread object is already out of scope once execution reaches the matching catch-clause. So we get:
void childActions();
void doSomeWork();
void parent()
{
thread child(childActions);
try
{
doSomeWork();
child.join();
}
catch (...)
{
child.join();
throw;
}
}
This is ugly: suddenly the function's code is clobbered with a try-catch clause, as well as some unwelcome code-duplication.
This situation can be avoided using object based programming. Like, e.g., unique pointers, which use their destructors to encapsulate the destruction of dynamically allocated memory, we can use a comparable technique to encapsulate thread joining in an object's destructor.
By defining the thread object inside a class we're sure that by the time the our object goes out of scope, even if the childActions function throws an exception, the thread's join member is called. Here are the bare essentials of our JoinGuard class, providing the join-guarantee (using in-line member implementations for brevity):
1: #include <thread>
2:
3: class JoinGuard
4: {
5: std::thread d_thread;
6:
7: public:
8: JoinGuard(std::thread &&threadObj)
9: :
10: d_thread(std::move(threadObj))
11: {}
12: ~JoinGuard()
13: {
14: if (d_thread.joinable())
15: d_thread.join();
16: }
17: };
Here is an example how JoinGuard could be used:
1: #include <iostream>
2: #include "joinguard.h"
3:
4: void childActions();
5:
6: void doSomeWork()
7: {
8: throw std::runtime_error("doSomeWork throws");
9: }
10:
11: void parent()
12: {
13: JoinGuard{std::thread{childActions}};
14: doSomeWork();
15: }
16:
17: int main()
18: try
19: {
20: parent();
21: }
22: catch (std::exception const &exc)
23: {
24: std::cout << exc.what() << '\n';
25: }
20.2: Synchronization (mutexes)
Objects of mutex classes are used to protect shared data.
Before using mutexes the <mutex> header file must be included.
One of the key characteristics of multi-threaded programs is that threads may share data. Functions running as separate threads have access to all global data, and may also share the local data of their parent threads. However, unless proper measures are taken, this may easily result in data corruption, as illustrated by the following simulation of some steps that could be encountered in a multi-threaded program:
---------------------------------------------------------------------------
Time step: Thread 1: var Thread 2: description
---------------------------------------------------------------------------
0 5
1 starts T1 active
2 writes var T1 commences writing
3 stopped Context switch
4 starts T2 active
5 writes var T2 commences writing
6 10 assigns 10 T2 writes 10
7 stopped Context switch
8 assigns 12 T1 writes 12
9 12
----------------------------------------------------------------------------
In this example, threads 1 and 2 share variable var, initially having the value 5. At step 1 thread 1 starts, and starts to write a value into var. However, it is interrupted by a context switch, and thread 2 is started (step 4). Thread 2 also wants to write a value into var, and succeeds until time step 7, when another context switch takes place. By now var is 10. However, thread 1 was also in the process of writing a value into var, and it is given a chance to complete its work: it assigns 12 to var in time step 8. Once time step 9 is reached, thread 2 proceeds on the (erroneous) assumption that var must be equal to 10. Clearly, from the point of view of thread 2 its data have been corrupted.
In this case data corruption was caused by multiple threads accessing the same data in an uncontrolled way. To prevent this from happening, access to shared data should be protected in such a way that only one thread at a time may access the shared data.
Mutexes are used to prevent the abovementioned kinds of problems by offering a guarantee that data are only accessed by the thread that could lock the mutex that is used to synchronize access to those data.
Exclusive data access completely depends on cooperation between the threads. If thread 1 uses mutexes, but thread 2 doesn't, then thread 2 may freely access the common data. Of course that's bad practice, which should be avoided.
It is stressed that although using mutexes is the programmer's responsibility, their implementation isn't: mutexes offer the necessary atomic calls. When requesting a mutex-lock the thread is blocked (i.e., the mutex statement does not return) until the lock has been obtained by the requesting thread.
Apart from the class std::mutex the class std::recursive_mutex is available. When a recursive_mutex is called multiple times by the same thread it increases its lock-count. Before other threads may access the protected data the recursive mutex must be unlocked again that number of times. Moreover, the classes std::timed_mutex and std::recursive_timed_mutex are available. Their locks expire when released, but also after a certain amount of time.
The members of the mutex classes perform atomic actions: no context switch occurs while they are active. So when two threads are trying to lock a mutex only one can succeed. In the above example: if both threads would use a mutex to control access to var thread 2 would not have been able to assign 12 to var, with thread 1 assuming that its value was 10. We could even have two threads running purely parallel (e.g., on two separate cores). E.g.:
-------------------------------------------------------------------------
Time step: Thread 1: Thread 2: escription
-------------------------------------------------------------------------
1 starts starts T1 and T2 active
2 locks locks Both threads try to
lock the mutex
3 blocks... obtains lock T2 obtains the lock,
and T1 must wait
4 (blocked) processes var T2 processes var,
T1 still blocked
5 obtains lock releases lock T2 releases the lock,
and T1 immediately
obtains the lock
6 processes var now T1 processes var
7 releases lock T1 also releases the lock
-------------------------------------------------------------------------
Although mutexes can directly be used in programs, this rarely happens. It is more common to embed mutex handling in locking classes that make sure that the mutex is automatically unlocked again when the mutex lock is no longer needed. Therefore, this section merely offers an overview of the interfaces of the mutex classes. Examples of their use will be given in the upcoming sections (e.g., section 20.3).
All mutex classes offer the following constructors and members:
The timed-mutex classes (timed_mutex, recursive_timed_mutex) also offer these members:
std::timed_mutex timedMutex;
timedMutex.try_lock_for(chrono::seconds(5));
std::timed_mutex timedMutex;
timedMutex.try_lock_until(chrono::system_clock::now() + chrono::seconds(5));
20.2.1: Initialization in multi-threaded programs
Before using the std::once_flag and the std::call_once function, introduced in this section, the <mutex> header file must be included.
In single threaded programs the initialization of global data does not necessarily occur at one point in code. An example is the initialization of the object of a singleton class (cf. Gamma et al. (1995), Design Patterns, Addison-Wesley). Singleton classes may define a single static pointer data member Singleton *s_object, pointing to the singleton's object, and may offer a static member instance, implemented something like this:
Singleton &Singleton::instance()
{
return s_object ?
s_object
:
(s_object = new Singleton);
}
With multi-threaded programs this approach immediately gets complex. For example, if two threads call instance at the same time, while s_object still equals 0, then both may call new Singleton, resulting in one dynamically allocated Singleton object becoming unreachable. Other threads, called after s_object was initialized for the first time, may either return a reference to that object, or may return a reference to the object initialized by the second thread. Not exactly the expected behavior of a singleton.
Mutexes (cf. section 20.2) can be used to solve these kinds of problems, but they result in some overhead and inefficiency, as the mutex must be inspected at each call of Singleton::instance.
When variables must dynamically be initialized, and the initialization should take place only once the std::once_flag type and the std::call_once function should be used.
The call_once function expects two or three arguments:
A thread-safe implementation of the singleton's instance function can now easily be designed (using in-class implementations for brevity):
class Singleton
{
static std::once_flag s_once;
static Singleton *s_singleton;
...
public:
static Singleton *instance()
{
std::call_once(s_once, []{s_singleton = new Singleton;} );
return s_singleton;
}
...
};
However, there are additional ways to initialize data, even for multi-threaded programs:
#include <iostream>This feature causes a thread to wait automatically if another thread is still initializing the static data (note that non-static data never cause problems, as non-static local variables only exist within their own thread of execution).
struct Cons
{
Cons()
{
std::cout << "Cons called\n";
}
};
void called(char const *time)
{
std::cout << time << "time called() activated\n";
static Cons cons;
}
int main()
{
std::cout << "Pre-1\n";
called("first");
called("second");
std::cout << "Pre-2\n";
Cons cons;
}
/*
Displays:
Pre-1
firsttime called() activated
Cons called
secondtime called() activated
Pre-2
Cons called
*/
20.2.2: Shared mutexes
Shared mutexes (via the type std::shared_mutex) are available after including the <shared_mutex> header file. Shared mutex types behave like timed_mutex types and optionally have the characteristics described below.
The class shared_mutex provides a non-recursive mutex with shared ownership semantics, comparable to, e.g., the shared_ptr type. A program using shared_mutexes is undefined if:
Shared mutex types provide a shared lock ownership mode. Multiple threads can simultaneously hold a shared lock ownership of a shared_mutex type of object. But no thread can hold a shared lock while another thread holds an exclusive lock on the same shared_mutex object, and vice-versa.
The type shared_mutex offers the following members:
20.3: Locks and lock handling
Locks are used to simplify the use of mutexes. Before locks can be used the <mutex> header file must be included.
Whenever threads share data, and at least one of the threads may change common data, mutexes should be used to prevent threads from using the same data synchronously.
Usually locks are released at the end of action blocks. This requires explicit calls to the mutexes' unlock function, which introduces comparable problems as we've seen with the thread's join member.
To simplify locking and unlocking two mutex wrapper classes are available:
The class lock_guard offers a limited, but useful interface:
1: void threadAction(std::mutex &mut, int &sharedInt)
2: {
3: std::lock_guard<std::mutex> lg{mut, std::adopt_lock_t()};
4: // do something with sharedInt
5: }
Here is a simple example of a multi-threaded program using lock_guards to prevent information inserted into cout from getting mixed.
bool oneLine(istream &in, mutex &mut, int nr)
{
lock_guard<mutex> lg(mut);
string line;
if (not getline(in, line))
return false;
cout << nr << ": " << line << endl;
return true;
}
void io(istream &in, mutex &mut, int nr)
{
while (oneLine(in, mut, nr))
this_thread::yield();
}
int main(int argc, char **argv)
{
ifstream in(argv[1]);
mutex ioMutex;
thread t1(io, ref(in), ref(ioMutex), 1);
thread t2(io, ref(in), ref(ioMutex), 2);
thread t3(io, ref(in), ref(ioMutex), 3);
t1.join();
t2.join();
t3.join();
}
As with lock_guard, a mutex-type must be specified when defining objects of the class std::unique_lock. The class unique_lock is much more elaborate than the basic lock_guard class template. Its interface does not define a copy constructor or overloaded assignment operator, but it does define a move constructor and a move assignment operator. In the following overview of unique_lock's inteface Mutex refers to the mutex-type that is specified when defining a unique_lock:
unique_lock<mutex> ul(mutexObj, defer_lock_t())
std::unique_lock<std::timed_mutex> ulock(timedMutex,
std::chrono::seconds(5));
std::unique_lock<std::timed_mutex> ulock(
timedMutex,
std::chrono::system_clock::now() + std::chrono::seconds(5)
);
In addition to the members of the classes std::lock_guard and std::unique_lock the functions std::lock and std::try_lock are available. These functions can be used to prevent deadlocks, the topic of the next section.
20.3.1: Deadlocks
A deadlock occurs when two locks are required to process data, but one thread obtains the first lock and another thread obtains the second lock. C++ defines the generic std::lock and std::try_lock functions that can be used to help preventing such situations.
Before these functions can be used the <mutex> header file must be included
In the following overview L1 &l1, ... represents one or more references to objects of lockable types:
As an example consider the following little multi-threaded program: The threads use mutexes to obtain unique access to cout and to an int value. However, fun1 first locks cout (line 7), and then value (line 10); fun2 first locks value (line 16) and then cout (line 19). Clearly, if fun1 has locked cout fun2 can't obtain the lock until fun1 has released it. Unfortunately, fun2 has locked value, and the functions only release their locks when returning. But in order to access the information in value fun1 it must have obtained a lock on value, which it can't, as fun2 has already locked value: the threads are waiting for each other, and neither thread gives in.
1:
2: int value;
3: mutex valueMutex;
4: mutex coutMutex;
5:
6: void fun1()
7: {
8: lock_guard<mutex> lg1(coutMutex);
9: cout << "fun 1 locks cout\n";
10:
11: lock_guard<mutex> lg2(valueMutex);
12: cout << "fun 1 locks value\n";
13: }
14:
15: void fun2()
16: {
17: lock_guard<mutex> lg1(valueMutex);
18: cerr << "fun 2 locks value\n";
19:
20: lock_guard<mutex> lg2(coutMutex);
21: cout << "fun 2 locks cout\n";
22: }
23:
24: int main()
25: {
26: thread t1(fun1);
27: fun2();
28: t1.join();
29: }
30:
A good recipe for avoiding deadlocks is to prevent nested (or multiple) mutex lock calls. But if multiple mutexes must be used, always obtain the locks in the same order. Rather than doing this yourself, std::lock and std::try_lock should be used whenever possible to obtain multiple mutex locks. These functions accept multiple arguments, which must be lockable types like lock_guard, unique_lock, or even a plain mutex. The previous deadlocking program, can be modified to call std::lock to lock both mutexes. In this example using one single mutex would also work, but the modified program now looks as similar as possible to the previous program. Note how in lines 10 and 21 a different ordering of the unique_locks arguments was used: it is not necessary to use an identical argument order when calling std::lock or std::try_lock.
1:
2: int value;
3: mutex valueMutex;
4: mutex coutMutex;
5:
6: void fun1()
7: {
8: unique_lock<mutex> lg1(coutMutex, defer_lock);
9: unique_lock<mutex> lg2(valueMutex, defer_lock);
10:
11: lock(lg1, lg2);
12:
13: cout << "fun 1 locks cout\n";
14: cout << "fun 1 locks value\n";
15: }
16:
17: void fun2()
18: {
19: unique_lock<mutex> lg1(coutMutex, defer_lock);
20: unique_lock<mutex> lg2(valueMutex, defer_lock);
21:
22: lock(lg2, lg1);
23:
24: cout << "fun 2 locks cout\n";
25: cout << "fun 2 locks value\n";
26: }
27:
28: int main()
29: {
30: thread t1(fun1);
31: thread t2(fun2);
32: t1.join();
33: t2.join();
34: }
35:
20.3.2: Shared locks
Shared locks are available through the type std::shared_lock, after including the <shared_mutex> header file.
An object of the type std::shared_lock controls the shared ownership of a lockable object within a scope. Shared ownership of the lockable object may be acquired at construction time or thereafter, and once acquired, it may be transferred to another shared_lock object. Objects of type shared_lock cannot be copied, but move construction and assignment is supported.
The behavior of a program is undefined if the contained pointer to a mutex (pm) has a non-zero value and the lockable object pointed to by pm does not exist for the entire remaining lifetime of the shared_lock object. The supplied mutex type must be a shared_mutex or a type having the same characteristics.
The type shared_lock offers the following constructors, destructor and operators:
The following members are provided:
20.4: Event handling (condition variables)
This section introduces condition variables. Condition variables allow programs to synchronize threads using the states of data, rather than simply locking the access to data (which is realized using mutexes).
Before condition variables can be used the <condition_variable> header file must be included.
To start our discussion, consider a classic producer-consumer scenario: the producer generates items which are consumed by a consumer. The producer can only produce a certain number of items before its storage capacity has filled up and the client cannot consume more items than the producer has produced.
At some point the producer's storage capacity has filled to the brim, and the producer has to wait until the client has at least consumed some items, thereby creating space in the producer's storage. Similarly, the consumer cannot start consuming until the producer has at least produced some items.
Implementing this scenario only using mutexes (data locking) is not an attractive option, as merely using mutexes forces a program to implement the scenario using polling: processes must continuously (re)acquire the mutex's lock, determine whether they can perform some action, followed by the release of the lock. Often there's no action to perform, and the process is busy acquiring and releasing the mutex's lock. Polling forces threads to wait until they can lock the mutex, even though continuation might already be possible. The polling interval could be reduced, but that too isn't an attractive option, as that increases the overhead associated with handling the mutexes (also called `busy waiting').
Condition variables can be used to prevent polling. Threads can use condition variables to notify waiting threads that there is something for them to do. This way threads can synchronize on data values (states).
As data values may be modified by multiple threads, threads still need to use mutexes, but only for controlling access to the data. In addition, condition variables allow threads to release ownership of mutexes until a certain value has been obtained, until a preset amount of time has been passed, or until a preset point in time has been reached.
The prototypical setup of threads using condition variables looks like this:
lock the mutex
while the required condition has not yet been attained (i.e., is false):
wait until being notified
(this automatically releasing the mutex's lock).
once the mutex's lock has been reacquired, and the required condition
has been attained:
process the data
release the mutex's lock.
lock the mutex
while the required condition has not yet been attained:
do something to attain the required condition
notify waiting threads (that the required condition has been attained)
release the mutex's lock.
No matter which thread starts, the thread holding the mutex's lock will at some point release the lock, allowing the other process to (re)acquire it. If the consumer starts it immediately releases the lock once it enters its waiting state; if the producer starts it releases the lock once the condition is true.
This protocol hides a subtle initial synchronization requirement. The consumer will miss the producer's notification if it (i.e., the consumer) hasn't yet entered its waiting state. So waiting (consumer) threads should start before notifying (producer) threads. Once threads have started, no assumptions can be made anymore about the order in which any of the condition variable's members (notify_one, notify_all, wait, wait_for, and wait_until) are called.
Condition variables come in two flavors: objects of the class std::condition_variable are used in combination with objects of type unique_lock<mutex>. Because of optimizations which are available for this specific combination using condition_variables is somewhat more efficient than using the more generally applicable class std::condition_variable_any, which may be used with any (e.g., user supplied) lock type.
Condition variable classes (covered in detail in the next two sections) offer members like wait, wait_for, wait_until, notify_one and notify_all that may concurrently be called. The notifying members are always atomically executed. Execution of the wait members consists of three atomic parts:
So, returning from wait-members the previously waiting thread has reacquired the mutex's lock.
In addition to the condition variable classes the following free function and enum type is provided:
Waiting threads must verify that the thread they were waiting for has indeed ended. This is usually realized by first obtaining the lock on lockObject, followed by verifying that the condition they were waiting for is true and that the lock was not reacquired before notify_all_at_thread_exit was called.
namespace std
{
enum class cv_status
{
no_timeout,
timeout
};
}
20.4.1: The class std::condition_variable
The class std::condition_variable merely offers a default constructor. No copy constructor or overloaded assignment operator is provided.
Before using the class condition_variable the <condition_variable> header file must be included.
The class's destructor requires that no thread is blocked by the thread destroying the condition_variable. So all threads waiting on a condition_variable must be notified before a condition_variable object's lifetime ends. Calling notify_all (see below) before a condition_variable's lifetime ends takes care of that, as the condition_variable's thread releases its lock of the mutex variable, allowing one of the notified threads to lock the mutex.
In the following member-descriptions a type Predicate indicates that a provided Predicate argument can be called as a function without arguments, returning a bool. Also, other member functions are frequently referred to. It is tacitly assumed that all member referred to below were called using the same condition variable object.
The class condition_variable supports several wait members, which block the thread until notified by another thread (or after a configurable waiting time). However, wait members may also spuriously unblock, without having reacquired the lock. Therefore, returning from wait members threads should verify that the required condition is actually true. If not, again calling wait may be appropriate. The next piece of pseudo code illustrates this scheme:
while (conditionNotTrue())
condVariable.wait(&uniqueLock);
The class condition_variable's members are:
Before calling wait the current thread must have acquired the lock of uniqueLock. As long as `pred' returns false wait(lock) is called.
cond.wait_for(&unique_lock, std::chrono::seconds(5));
This member returns when being notified or when the time interval specified by relTime has passed.
When returning due to a timeout, std::cv_status::timeout is returned, otherwise std::cv_status::no_timeout is returned.
Threads should verify that the required data condition has been met after wait_for has returned.
As long as pred returns false, the previous wait_for member is called. If the previous member returns cv_status::timeout, then pred is returned, otherwise true.
cond.wait_until(&unique_lock, chrono::system_clock::now() +
std::chrono::minutes(5));
This function acts identically to the wait_for(unique_lock<mutex> &uniqueLock, chrono::duration<Rep, Period> const &relTime) member described earlier, but uses an absolute point in time, rather than a relative time specification.
This member returns when being notified or when the time interval specified by relTime has passed. When returning due to a timeout, std::cv_status::timeout is returned, otherwise std::cv_status::no_timeout is returned.
As long as pred returns false, the previous wait_until member is called. If the previous member returns cv_status::timeout, then pred is returned, otherwise true.
Threads should verify that the required condition is true when wait-members of condition variables return.
20.4.2: The class std::condition_variable_any
Different from the class condition_variable the class std::condition_variable_any can be used with any (e.g., user supplied) lock type, and not just with the stl-provided unique_lock<mutex>.
Before using the class condition_variable_any the <condition_variable> header file must be included.
The functionality that is offered by condition_variable_any is identical to the functionality offered by the class condition_variable, albeit that the lock-type that is used by condition_variable_any is not predefined. The class condition_variable_any therefore requires the specification of the lock-type that must be used by its objects.
In the interface shown below this lock-type is referred to as Lock. Most of condition_variable_any's members are defined as member templates, defining a Lock type as one of its parameters. The requirements of these lock-types are identical to those of the stl-provided unique_lock, and user-defined lock-type implementations should provide at least the interface and semantics that is also provided by unique_lock.
This section merely presents the interface of the class condition_variable_any. As its interface offers the same members as condition_variable (allowing, where applicable, passing any lock-type instead of just unique_lock to corresponding members), the reader is referred to the previous section for a description of the semantics of the class members.
Like condition_variable, the class condition_variable_any only offers a default constructor. No copy constructor or overloaded assignment operator is provided.
Also, like condition_variable, the class's destructor requires that no thread is blocked by the current thread. This implies that all other (waiting) threads must have been notified; those threads may, however, subsequently block on the lock specified in their wait calls.
Note that, in addition to Lock, the types Clock, Duration, Period, Predicate, and Rep are template types, defined just like the identically named types mentioned in the previous section.
Assuming that MyMutex is a user defined mutex type, and that MyLock is a user defined lock-type (cf. section 20.3 for details about lock-types), then a condition_variable_any object can be defined and used like this:
MyMutex mut;
MyLock<MyMutex> ul(mut);
condition_variable_any cva;
cva.wait(ul);
These are the class condition_variable_any's members:
20.4.3: An example using condition variables
Condition variables are used to synchronize threads on the values of data, rather than on the mere access to data (for which plain mutex-objects can be used). Using condition variables, a thread simply sleeps until it is notified by another thread. In a producer-consumer type of program this is usually accomplished like this:
consumer loop:
- wait until there's an item in store,
then reduce the number of stored items
- remove the item from the store
- increment the number of available storage locations
- do something with the retrieved item
producer loop:
- produce the next item
- wait until there's room to store the item,
then reduce the number of available storage locations
- store the item
- increment the number of stored items
It is important that the two storage administrative tasks (registering the number of available items and available storage locations) are either performed by the client or by the producer. For the consumer `waiting' means:
This scheme is implemented in a class Semaphore, offering members wait and notify_all. For a more extensive discussion of semaphores see Tanenbaum, A.S. and Austin, T. (2013) Structured Computer Organization, Pearson Prentice-Hall.
The data member containing the actual count is called d_available. It is protected by mutex d_mutex. In addition a condition_variable d_condition is defined:
mutable std::mutex d_mutex;
std::condition_variable d_condition;
size_t d_available;
The waiting process is implemented through its member function wait:
1: void Semaphore::wait()
2: {
3: std::unique_lock<std::mutex> lk(d_mutex); // get the lock
4: while (d_available == 0)
5: d_condition.wait(lk); // internally releases the lock
6: // and waits, on exit
7: // acquires the lock again
8: --d_available; // dec. available
9: } // the lock is released
In line 5 d_condition.wait releases the lock. It waits until receiving a notification, and re-acquires the lock just before returning. Consequently, wait's code always has complete and unique control over d_available.
What about notifying the a waiting thread? This is handled in lines 4 and 5 of the member function notify_all:
1: void Semaphore::notify_all()
2: {
3: std::lock_guard<std::mutex> lk(d_mutex); // get the lock
4: if (d_available++ == 0)
5: d_condition.notify_all(); // use notify_one to notify one other
6: // thread
7: } // the lock is released
At line 4 d_available is always incremented; by using a postfix increment it can simultaneously be tested for being zero. If it was initially zero then d_available is now one. A thread waiting until d_available exceeds zero may now continue. A waiting thread is notified by calling d_condition.notify_one. In situations where multiple threads are waiting `notify_all' can also be used.
Using the facilities of the class Semaphore whose constructor expects an initial value of its semaphore data member, the classic consumer-producer paradigm can now be implemented using multi-threading (A more elaborate example of the producer-consumer program is found in the yo/threading/examples/events.cc file in the C++ Annotations's source archive):
Semaphore available(10);
Semaphore filled(0);
std::queue itemQueue;
void consumer()
{
while (true)
{
filled.wait();
// mutex lock the queue with multiple consumers
size_t item = itemQueue.front();
itemQueue.pop();
available.notify_all();
process(item); // not implemented here
}
}
void producer()
{
size_t item = 0;
while (true)
{
++item;
available.wait();
// mutex lock the queue with multiple consumers
itemQueue.push(item);
filled.notify_all();
}
}
int main()
{
thread consume(consumer);
thread produce(producer);
consume.join();
produce.join();
}
20.5: Atomic actions: mutexes not required
Before using the facilities introduced in this section the <atomic> header file must be included.
When data are shared among multiple threads, data corruption is usually prevented using mutexes. To increment a simple int using this strategy code as shown below is commonly used:
{
lock_guard<mutex> lk{ intVarMutex };
++intVar;
}
The compound statement is used to limit the lock_guard's lifetime, so that intVar is only locked for a short little while.
This scheme is not complex, but at the end of the day having to define a lock_guard for every single use of a simple variable, and having to define a matching mutex for each simple variable is a bit annoying and cumbersome.
C++ offers a way out through the use of atomic data types. Atomic data types are available for all basic types, and also for (trivial) user defined types. Trivial types are (see also section 23.6.2) all scalar types, arrays of elements of a trivial type, and classes whose constructors, copy constructors, and destructors all have default implementations, and their non-static data members are themselves of trivial types.
The class template std::atomic<Type> is available for all built-in types, including pointer types. E.g., std::atomic<bool> defines an atomic bool type. For many types alternative somewhat shorter type names are available. E.g, instead of std::atomic<unsigned short> the type std::atomic_ushort can be used. Refer to the atomic header file for a complete list of alternate names.
If Trivial is a user-defined trivial type then std::atomic<Trivial> defines an atomic variant of Trivial: such a type does not require a separate mutex to synchronize access by multiple threads.
Objects of the class template std::atomic<Type> cannot directly be copied or assigned to each other. However, they can be initialized by values of type Type, and values of type Type can also directly be assigned to std::atomic<Type> objects. Moreover, since atomic<Type> types offer conversion operators returning their Type values, an atomic<Type> objects can also be assigned to or initialized by another atomic<Type> object using a static_cast:
atomic<int> a1 = 5;
atomic<int> a2{ static_cast<int>(a1) };
The class std::atomic<Type> provides several public members, shown below. Non-member (free) functions operating on atomic<Type> objects are also available.
The std::memory_order enumeration defines the following symbolic constants, which are used to specify ordering constraints of atomic operations:
The memory order cannot be specified for the overloaded operators provided by atomic<Type>. Otherwise, most atomic member functions may also be given a final memory_order argument. Where this is not available it is explictly mentioned at the function's description.
Here are the standard available std::atomic<Type> member functions:
In addition to the above members, integral atomic types `Integral' (essentially the atomic variants of all built-in integral types) also offer the following member functions:
The prefix decrement operator, returning object's new value;
The postfix decrement operator, returning the object's value before it was decremented;
Some of the free member functions have names ending in _explicit. The _explicit functions define an additional parameter `memory_order order', which is not available for the non-_explicit functions (e.g., atomic_load(atomic<Type> *ptr) and atomic_load_explicit(atomic<Type> *ptr, memory_order order))
Here are the free functions that are available for all atomic types:
In addition to the abovementioned free functions atomic<Integral> types also offer the following free member functions:
20.6: An example: threaded quicksort
The quicksort sorting algorithm (Hoare, 1962) is a well-known sorting algorithm. Given an array of n elements, it works like this:
To convert this algorithm to a multi-threaded algorithm appears to be be a simple task:
void quicksort(Iterator begin, Iterator end)
{
if (end - begin < 2) // less than 2 elements are left
return; // and we're done
Iter pivot = partition(begin, end); // determine an iterator pointing
// to the pivot element
thread lhs(quicksort, begin, pivot);// start threads on the left-hand
// side sub-arrays
thread rhs(quicksort, pivot + 1, end); // and on the right-hand side
// sub-arrays
lhs.join();
rhs.join(); // and we're done
}
Unfortunately, this translation to a multi-threaded approach won't work for reasonably large arrays because of a phenomenon called overpopulation: more threads are started than the operating system is prepared to give us. In those cases a Resource temporarily unavailable exception is thrown, and the program ends.
Overpopulation can be avoided by using a pool of workers, where each `worker' is a thread, which in this case is responsible for handling one (sub) array, but not for the nested calls. The pool of workers is controlled by a scheduler, receiving the requests to sort sub-arrays, and passing these requests on to the next available worker.
The main data structure of the example program developed in this section is a queue of std::pairs containing iterators of the array to be sorted (cf. Figure 25, the sources of the program are found in the C++ Annotations's yo/threading/examples/multisort directory). Two queues are being used: one queue is a task-queue, receiving the iterators of sub-arrays to be partitioned. Instead of immediately launching new threads (the lhs and rhs threads in the above example), the ranges to be sorted are pushed on the task-queue. The other queue is the work-queue: elements are moved from the task-queue to the work-queue, where they will be processed by one of the worker threads.
Figure 25: Data structure used for multi-threading quicksort
The program's main function starts the workforce, reads the data, pushes the arrays begin and end iterators on the task queue and then starts the scheduler. Once the scheduler ends the sorted array is displayed:
int main()
{
workForce(); // start the worker threads
readData(); // read the data into vector<int> g_data
g_taskQ.push( // prepare the main task
Pair(g_data.begin(), g_data.end())
);
scheduler(); // sort g_data
display(); // show the sorted elements
}
The workforce consists of a bunch of detached threads. Each thread represents a worker, implemented in the function void worker. Since the number of worker threads is fixed, overpopulation doesn't occur. Once the array has been sorted and the program stops these detached threads simply end:
for (size_t idx = 0; idx != g_sizeofWorkforce; ++idx)
thread(worker).detach();
The scheduler continues for as long as there are sub-arrays to sort. When this is the case the task queue's front element is moved to the work queue. This reduces the work queue's size, and prepares an assignment for the next available worker. The scheduler now waits until a worker is available. Once workers are available one of them is informed of the waiting assignment, and the scheduler waits for the next task:
void scheduler()
{
while (newTask())
{
g_workQ.rawPushFront(g_taskQ);
g_workforce.wait(); // wait for a worker to be available
g_worker.notify_all(); // activate a worker
}
}
The function newTask simply checks whether the task queue is empty. If so, and none of the workers is currently busy sorting a sub-array then the array has been sorted, and newTask can return false. When the task queue is empty but a worker is still busy, it may be that new sub-array dimensions are going to be placed on the task queue by an active worker. Whenever a worker is active the Semaphore g_workforce's size is less than the size of the work force:
bool wip()
{
return g_workforce.size() != g_sizeofWorkforce;
}
bool newTask()
{
bool done;
unique_lock<mutex> lk(g_taskMutex);
while ((done = g_taskQ.empty()) && wip())
g_taskCondition.wait(lk);
return not done;
}
Each detached worker thread performs a continuous loop. In the loop it waits for a notification by the scheduler. Once it receives a notification it retrieves its assignment from the work queue, and partitions the sub-array specified in its assignment. Partitioning may result in new tasks. Once this has been completed the worker has completed its assignment: it increments the available workforce and notifies the scheduler that it should check whether all tasks have been performed:
void worker()
{
while (true)
{
g_worker.wait(); // wait for action
partition(g_workQ.popFront());
g_workforce.notify_all();
lock_guard<mutex> lk(g_taskMutex);
g_taskCondition.notify_one();
}
}
Sub-arrays smaller than two elements need no partitioning. All larger sub-arrays are partitioned relative to their first element. The std::partition generic algorithm does this well, but if the pivot is itself an element of the array to partition then the pivot's eventual location is undetermined: it may be found anywhere in the series of elements which are at least equal to the pivot. The two required sub-arrays, however, can easily be constructed:
The two iterator pairs defining these two sub-arrays are thereupon added to the task queue, creating two new tasks to be dealt with by the scheduler:
void partition(Pair const &range)
{
if (range.second - range.first < 2)
return;
auto rhsBegin = partition(range.first + 1, range.second,
bind2nd(less<int>(), *range.first));
auto lhsEnd = rhsBegin - 1;
swap(*range.first, *lhsEnd);
pushTask(range.first, lhsEnd);
pushTask(rhsBegin, range.second);
}
20.7: Shared States
Just before a thread ends it may have produced some results. These results may have to to be communicated to other threads. In multi threaded programs several classes and functions can be used that produce shared states, making it easy to communicate results to other threads. Results could be values, objects or exceptions.
Objects that contain such shared states are called asynchronous return objects. However, due to the nature of multi threading, a thread may request the results of an asynchronous return object before these result are actually available. In those cases the requesting thread blocks, waiting for the results to become available. Asynchronous return objects offer wait and get members which, respectively, wait until the results have become available, and produce the asynchronous results once they are available. The phrase that is used to indicate that the results are available is `the shared state has been made ready'.
Shared states are made ready by asynchronous providers. Asynchronous providers are simply objects or functions providing results to shared states. Making a shared state ready means that an asynchronous provider
Once a shared state has been made ready it contains a value, object, or exception which can be retrieved by objects having access to the shared state. While code is waiting for a shared state to become ready the value or exception that is going to be stored in the shared state may be computed. When multiple threads try to access the same shared state they must use synchronizing mechanisms (like mutexes, cf. section 20.2) to prevent access-conflicts.
Shared states use reference counting to keep track of the number of asynchronous return objects or asynchronous providers that hold references to them. These return objects and providers may release their references to these shared states (which is called `releasing the shared state). This happens when a return object or provider holds the last reference to the shared state, and the shared state is destroyed.
On the other hand, an asynchronous provider may also abandon its shared state. In that case the provider, in sequence,
Objects of the class std::future (see the next section) are asynchronous return objects. They can be produced by the std::async (section 20.10) family of functions, and by objects of the classes std::packaged_task (section 20.11), and std::promise (section 20.12).
20.8: Asynchronous return objects: std::future
Condition variables allow threads to wait until data have obtained certain values. A thread may also have to wait until a sub-thread has finished when calling a sub-thread's join member.
Waiting may be unwelcome: instead of just waiting our thread might also be doing something useful. It might as well pick up the results produced by a sub-thread at some point in the future.
In fact, exchanging data among threads always poses some difficulties, as it requires shared variables, and the use of locks and mutexes to prevent data corruption. Rather than waiting and using locks it would be nice if some asynchronous task could be started, allowing the initiating thread (or even other threads) to pick up the result at some point in the future, when the results are needed, without having to worry about data locks or waiting times. For situations like these C++ provides the class std::future.
Before using the class std::future the <future> header file must be included.
Objects of the class template std::future harbor the results produced by asynchronously executed tasks. The class std::future is a class template. Its template type parameter specifies the type of the result returned by the asynchronously executed task. This type may be void.
On the other hand, the asynchronously executed task may throw an exception (ending the task). In that case the future object catches the exception, and rethrows it once its return value (i.e., the value returned by the asynchronously executed task) is requested.
In this section the members of the class template future are described. Future objects are commonly initialized through anonymous future objects returned by the factory function std::async or by the get_future members of the classes std::promise, and std::packaged_task (introduced in upcoming sections). Examples of the use of std::future objects are provided in those sections.
Some of future's members return a value of the strongly typed enumeration std::future_status. This enumeration defines three symbolic constants: future_status::ready, future_status::timeout, and future_status::deferred.
Error conditions are returned through std::future_error exceptions. These error conditions are represented by the values of the strongly typed enumeration std::future_errc (covered in the next section).
The class future itself provides the following constructors:
The class future does not offer a copy constructor or an overloaded assignment operator.
Here are the members of the class std::future:
The class std::future<ResultType> declares the following friends:
std::promise<ResultType>
(sf. section 20.12), and
template<typename Function, typename... Args>
std::future<typename result_of<Function(Args...)>::type>
std::async(std::launch, Function &&fun, Args &&...args);
(cf. section 20.10).
20.8.1: The std::future_error exception and the std::future_errc enum
Members of the class std::future may return errors by throwing std::future_error exceptions. These error conditions are represented by the values of the strongly typed enumeration std::future_errc which defines the following symbolic constants:
Broken_promise is thrown when a future object was received whose value was never assigned by a promise or packaged_task. For example, an object of the class promise<int> should set the value of the future<int> object returned by its get_future member (cf. section 20.12), but if it doesn't do so, then a broken_promise exception is thrown, as illustrated by the following program:
1: std::future<int> fun()
2: {
3: return std::promise<int>().get_future();
4: }
5:
6: int main()
7: try
8: {
9: fun().get();
10: }
11: catch (std::exception const &exc)
12: {
13: std::cerr << exc.what() << '\n';
14: }
At line 3 a promise object is created, but its value is never set. Consequently, it `breaks its promise' to produce a value: when main tries to retrieve its value (in line 9) a std::futue_error exception is thrown containing the future_errc::broken_promise value
Future_already_retrieved is thrown when multiple attempts are made to retrieve the future object from, e.g., a promise or packaged_task object that (eventually) should be ready. For example:
1: int main()
2: {
3: std::promise<int> promise;
4: promise.get_future();
5: promise.get_future();
6: }
Note that after defining the std::promise object in line 3 it has merely been defined: no value is ever assigned to its future. Even though no value is assigned to the future object, it is a valid object. I.e., after some time the future should be ready, and the future's get member should produce a value. Hence, line 4 succeeds, but then, in line 5, the exception is thrown as `the future has already been retrieved'.
Promise_already_satisfied is thrown when multiple attempts are made to assign a value to a promise object. Assigning a value or exception_ptr to the future of a promise object may happen only once. For example:
1: int main()
2: {
3: std::promise<int> promise;
4: promise.set_value(15);
5: promise.set_value(155);
6: }
No_state is thrown when a member function (other than valid, see below) of a future object is called when its valid member returns false. This happens, e.g., when calling members of a default constructed future object. No_state is not thrown for future objects returned by the async factory function or returned by the get_future members of promise or packaged_task type of objects. Here is an example:
1: int main()
2: {
3: std::future<int> fut;
4: fut.get();
5: }
The class std::future_error is derived from the class std::exception, and offers, in addition to the char const *what() const member also the member std::error_code const &code() const, returning an std::error_code object associated with the thrown exception.
20.9: Shared asynchronous return objects: std::shared_future
When a thread activates an asynchronous provider (e.g., a std::async) then the return value of the asynchronously called function becomes available in its activating thread through a std::future object. The future object cannot be used by another thread. If this is required (e.g., see this chapter's final section) the future object must be converted to a std::shared_future object.
Before using the class std::shared_future the <future> header file must be included.
Once a shared_future object is available, its get member (see below) can repeatedly be called to retrieve the results of the original future object. This is illustrated by the next small example:
1: int main()
2: {
3: std::promise<int> promise;
4: promise.set_value(15);
5:
6: auto fut = promise.get_future();
7: auto shared1 = fut.share();
8:
9: std::cerr << "Result: " << shared1.get() << '\n';
10: << "Result: " << shared1.get() << '\n';
11: << "Valid: " << fut.valid() << '\n';
12:
13: auto shared2 = fut.share();
14:
15: std::cerr << "Result: " << shared2.get() << '\n';
16: << "Result: " << shared2.get() << '\n';
17: }
In lines 9 and 10 the promise's results are retrieved multiple times, but having obtained the shared_future in line 7, the original future object no longer has an associated shared state. Therefore, when another attempt is made (in line 13) to obtain the shared_future, a no associated state exception is thrown and the program aborts.
However, multiple copies of shared_future objects may co-exist. When multiple copies of shared_future objects exist (e.g. in different threads), the results of the associated asynchronous task are made ready (become available) at exactly the same moment in time.
The relationship between the classes future and shared_future resembles the relationship between the classes unique_ptr and shared_ptr: there can only be one instance of a unique_pointer, pointing to data, whereas there can be many instances of a shared_pointer, each pointing to the same data.
The effect of calling any member of a shared_future object for which valid() == false other than the destructor, the move-assignment operator, or valid is undefined.
The class shared_future supports the following constructors:
an empty shared_future object is constructed that does not refer to shared results. After using this constructor the object's valid member returns false.
a shared_future object is constructed that refers to the same results as other (if any). After using this constructor the object's valid member returns the same value as other.valid().
Effects: move constructs a shared_future object that refers to the results that were originally referred to by tmp (if any). After using this constructor the object's valid member returns the same value as tmp.valid() returned prior to the constructor invocation, and tmp.valid() returns false.
Effects: move constructs a shared_future object that refers to the results that were originally referred to by tmp (if any). After using this constructor the object's valid member returns the same value as tmp.valid() returned prior to the constructor invocation, and tmp.valid() returns false.
The class's destructor destroys the shared_future object for which it is called. If the object for which the destructor is called is the last shared_future object, and no std::promise or std::packaged_task is associated with the results associated with the current object, then the results are also destroyed.
Here are the members of the class std::shared_future:
20.10: Starting a new thread: std::async
In this section the function template std::async is covered. Async is used to start asynchronous tasks, returning values (or void) to the calling thread, which is hard to realize merely using the std::thread class.
Before using the function async the <future> header file must be included.
When starting a thread using the facilities of the class std::thread the initiating thread at some point commonly calls the thread's join method. At that point the thread must have finished or execution blocks until join returns. While this often is a sensible course of action, it may not always be: maybe the function implementing the thread has a return value, or it could throw an exception.
In those cases join cannot be used: if an exception leaves a thread, then your program ends. Here is an example:
1: void thrower()
2: {
3: throw std::exception();
4: }
5:
6: int main()
7: try
8: {
9: std::thread subThread(thrower);
10: }
11: catch (...)
12: {
13: std::cerr << "Caught exception\n";
14: }
In line 3 thrower throws an exception, leaving the thread. This exception is not caught by main's try-block (as it is defined in another thread). As a consequence, the program terminates.
This scenario doesn't occur when std::async is used. Async may start a new asynchronous task, and the activating thread may retrieve the return value of the function implementing the asynchronous task or any exception leaving that function from a std::future object returned by the async function. Basically, async is called similarly to the way a thread is started using std::thread: it is passed a function and optionally arguments which are forwarded to the function.
Although the function implementing the asynchronous task may be passed as first argument, async's first argument may also be a value of the strongly typed enumeration std::launch:
enum class launch
{
async,
deferred
};
When passing launch::async the asynchronous task immediately starts; when passing launch::deferred the asynchronous task is deferred. When std::launch is not specified the default value launch::async | launch::deferred is used, giving the implementation freedom of choice, usually resulting in deferring execution of the asynchronous task.
So, here is the first example again, this time using async to start the sub-thread:
1: bool fun()
2: {
3: return std::cerr << " hello from fun\n";
4: }
5: int exceptionalFun()
6: {
7: throw std::exception();
8: }
9:
10: int main()
11: try
12: {
13: auto fut1 = std::async(std::launch::async, fun);
14: auto fut2 = std::async(std::launch::async, exceptionalFun);
15:
16: std::cerr << "fun returned " << std::boolalpha << fut1.get() << '\n';
17: std::cerr << "exceptionalFun did not return " << fut2.get() << '\n';
18: }
19: catch (...)
20: {
21: std::cerr << "caught exception thrown by exceptionalFun\n";
22: }
Now the threads immediately start, but although the results are available around line 13, the thrown exception isn't terminating the program. The first thread's return value is made available in line 16, the exception thrown by the second thread is simply caught by main's try-block (line 19).
The function template async has several overloaded versions:
template <typename Function, class ...Args>
std::future<
typename std::result_of< Function(Args ...) >::type
> std::async(Function &&fun, Args &&...args);
template <class Function, class ...Args>
std::future<typename std::result_of<Function(Args ...)>::type>
std::async(std::launch policy, Function &&fun, Args &&...args);
When calling async all arguments except for the std::launch argument must be references, pointers or move-constructible objects:
Once the thread itself starts another move construction is used to construct an object for the duration of the thread. When a pointer to an object is passed, the sub-thread uses the object referred to by the pointer, and neither copy- nor move-construction is required. However, when using a pointer to an object the programmer should make sure that the object's lifetime exceeds the duration of the thread (note that this is not automatically guaranteed, as the asynchronous task may not actually start before the future's get member is called).
Because of the default std::launch::deferred | std::launch::async argument used by the basic async call it is likely that the function which is passed to async doesn't immediately start. The launch::deferred policy allows the implementor to defer its execution until the program explicitly asks for the function's results. Consider the following program:
1: void fun()
2: {
3: std::cerr << " hello from fun\n";
4: }
5:
6: std::future<void> asyncCall(char const *label)
7: {
8: std::cerr << label << " async call starts\n";
9: auto ret = std::async(fun);
10: std::cerr << label << " async call ends\n";
11: return ret;
12: }
13:
14: int main()
15: {
16: asyncCall("First");
17: asyncCall("Second");
18: }
Although async is called in line 9, the program's output may not show fun's output line when it is run. This is a result of the (default) use of lauch::deferred: the system simply defers fun's execution until requested, which doesn't happen. But the future object that's returned by async has a member wait. Once wait returns the shred state must be available. In other words: fun must have finished. Here is what happens when after line 9 the line ret.wait() is inserted:
First async call starts
hello from fun
First async call ends
Second async call starts
hello from fun
Second async call ends
Actually, evaluation of fun can be requested at the point where we need its results, maybe even after calling asyncCall, as shown in the next example:
1: int main()
2: {
3: auto ret1 = asyncCall("First");
4: auto ret2 = asyncCall("Second");
5:
6: ret1.get();
7: ret2.get();
8: }
Here the ret1 and ret2 std::future objects are created, but their fun functions aren't evaluated yet. Evaluation occurs at lines 6 and 7, resulting in the following output:
First async call starts
First async call ends
Second async call starts
Second async call ends
hello from fun
hello from fun
The std::async function template is used to start a thread, making its results available to the calling thread. On the other hand, we may only be able to prepare (package) a task (a thread), but may have to leave the completion of the task to another thread. Scenarios like this are realized through objects of the class std::packaged_task, which is the topic of the next section.
20.11: Preparing a task for execution: std::packaged_task
The class template std::packaged_task allows a program to `package' a function or functor and pass the package to a thread for further processing. The processing thread then calls the packaged function, passing it its arguments (if any). After completing the function the packaged_task's future is ready, allowing the program to retrieve the results produced by the function. Thus, functions and the results of function calls can be transferred between threads.
Before using the class template packaged_task the <future> header file must be included.
Before describing the class's interface, let's first look at an example to get an idea about how a packaged_task can be used. Remember that the essence of packaged_task is that part of your program prepares (packages) a task for another thread to complete, and that the program at some point needs the result of the completed task.
To clarify what's happening here, let's first look at a real-life analogon. Every now and then I make an appointment with my garage to have my car serviced. The `package' in this case are the details about my car: its make and type determine the kind of actions my garage performs when servicing it. My neighbor also has a car, which also needs to be serviced every now and then. This also results in a `package' for the garage. At the appropriate time me and my neighbor take our cars to the garage (i.e., the packages are passed to another thread). The garage services the cars (i.e., calls the functions stored in the packaged_tasks [note that the tasks differ, depending on the types of the cars]), and performs some actions that are associated with it (e.g., registering that my or my neighbor's car has been serviced, or order replacement parts). In the meantime my neighbor and I perform our own businesses (the program continues while a separate thread runs as well). But by the end of the day we'd like to use our cars again (i.e., get the results associated with the packaged_task). A common result in this example is the garage's bill, which we have to pay (the program obtains the packaged_task's results).
Here is a little C++ program illustrating the use of a packaged_task (assuming the required headers and using namespace std have been specified):
1: mutex carDetailsMutex;
2: condition_variable condition;
3: string carDetails;
4: packaged_task<size_t (std::string const &)> serviceTask;
5:
6: size_t volkswagen(string const &type)
7: {
8: cout << "performing maintenance by the book for a " << type << '\n';
9: return type.size() * 75; // the size of the bill
10: }
11:
12: size_t peugeot(string const &type)
13: {
14: cout << "performing quick and dirty maintenance for a " << type << '\n';
15: return type.size() * 50; // the size of the bill
16: }
17:
18: void garage()
19: {
20: while (true)
21: {
22: unique_lock<mutex> lk(carDetailsMutex);
23: while (carDetails.empty())
24: condition.wait(lk);
25:
26: cout << "servicing a " << carDetails << '\n';
27: serviceTask(carDetails);
28: carDetails.clear();
29: }
30: }
31:
32: int main()
33: {
34: thread(garage).detach();
35:
36: while (true)
37: {
38: string car;
39: if (not getline(cin, car) || car.empty())
40: break;
41: {
42: lock_guard<mutex> lk(carDetailsMutex);
43: carDetails = car;
44: }
45: serviceTask = packaged_task<size_t (string const &)>(
46: car[0] == 'v' ? volkswagen : peugeot
47: );
48: auto bill = serviceTask.get_future();
49: condition.notify_one();
50: cout << "Bill for servicing a " << car <<
51: ": EUR " << bill.get() << '\n';
52: }
53: }
Now that we've seen an example of a program using a packaged_task, let's have a look at its interface. Note that the class packaged_task is a class template: its template type parameter specifies the prototype of a function or function object implementing the task performed by the packaged_task object.
Constructors and destructor:
Optionally an Allocator may be specified as second template type parameter, in which case the first two arguments are std::allocator_arg_t, Allocator const &alloc. The type std::allocator_arg_t is a type introduced to disambiguate constructor selections, and can simply be specified as std::allocator_arg_t().
This constructor may throw a std::bad_alloc exception or exceptions thrown by function's copy or move constructors
Member functions:
The following non-member (free) function operating on packaged_task objects is available:
Calls lhs.swap(rhs)
20.12: The class `std::promise'
In addition to std::packaged_task and std::async the class template std::promise can be used to obtain the results from a separate thread.
Before using the class template promise the <future> header file must be included.
A promise is useful to obtain the results from another thread without further synchronization requirements. Consider the following program:
void compute(int *ret)
{
*ret = 9;
}
int main()
{
int ret = 0;
std::thread(compute, &ret).detach();
cout << ret << '\n';
}
Chances are that this program shows the value 0: the cout statement is already executed before the detached thread has had a chance to complete its work. In this example that problem can easily be solved by using a non-detached thread, and using the thread's join member, but when multiple threads are used that requires named threads and as many join calls. Instead, using a promise might be preferred:
1: void compute(promise<int> &ref)
2: {
3: ref.set_value(9);
4: }
5:
6: int main()
7: {
8: std::promise<int> p;
9: std::thread(compute, ref(p)).detach();
10:
11: cout << p.get_future().get() << '\n';
12: }
In this example again a detached thread is used, but its results are kept for future reference in a promise object, instead of directly being assigned to a final destination variable. The promise object contains a future object holding the computed value. The future's get member blocks until the future has been made ready, at which point the result becomes available. By then the detached thread may or may not yet have been completed. If it already completed its work then get immediately returns, otherwise there will be a slight delay.
Promises can be useful when implementing a multi threaded version of some algorithm without having to use additional synchronization statements. As an example consider matrix multiplications. Each element of the resulting product matrix is computed as the inner product of two vectors: the inner product of a row of the left-hand matrix operand and a column of the right-hand matrix operand becomes element [row][column] of the resulting matrix. Since each element of the resulting matrix can independently be computed from the other elements, a multi threaded implementation is well possible. In the following example the function innerProduct (lines 4..11) leaves its result in a promise object:
1: int m1[2][2] = {{1, 2}, {3, 4}};
2: int m2[2][2] = {{3, 4}, {5, 6}};
3:
4: void innerProduct(promise<int> &ref, int row, int col)
5: {
6: int sum = 0;
7: for (int idx = 0; idx != 2; ++idx)
8: sum += m1[row][idx] * m2[idx][col];
9:
10: ref.set_value(sum);
11: }
12:
13: int main()
14: {
15: promise<int> result[2][2];
16:
17: for (int row = 0; row != 2; ++row)
18: {
19: for (int col = 0; col != 2; ++col)
20: thread(innerProduct, ref(result[row][col]), row, col).detach();
21: }
22:
23: for (int row = 0; row != 2; ++row)
24: {
25: for (int col = 0; col != 2; ++col)
26: cout << setw(3) << result[row][col].get_future().get();
27: cout << '\n';
28: }
29: }
Each inner product is computed by a separate (anonymous and detached) thread (lines 17..21), which starts as soon as the run-time system allows it to start. By the time the threads have finished the resulting inner products can be retrieved from the promises' futures. Since futures' get members block until their results are actually available, the resulting matrix can simply be displayed by calling those members in sequence (lines 23..28).
So, a promise allows us to use a thread to compute a value (or exception, see below), which value may then be collected by another thread at some future point in time. The promise remains available, and as a consequence further synchronization of the threads and the program starting the threads is not necessary. When the promise object contains an exception, rather than a value, its future's get member rethrows the stored exception.
Here is the class promise's interface. Note that the class promise is a class template: its template type parameter ReturnType specifies the template type parameter of the std::future that can be retrieved from it.
Constructors and destructor:
Member functions:
The following non-member (free) function operating on promise objects is available:
20.12.1: Exception propagation: std::exception_ptr
Std::promise's member set_exception does not expect a std::exception argument, but an object of the class std::exception_ptr. In this section we take a closer look at the class exception_ptr.
Before using the class exception_ptr the <future> header file must be included.
The class exception_ptr's default constructor initializes it to a null-pointer. In the following code snippet the variable isNull is set to true:
std::exception_ptr obj;
bool isNull = obj == nullptr && obj == 0;
The class exception_ptr provides copy and move constructors as well as copy and move assignment operators.
Two exception_ptr objects can be compared for equality. They are equal if they refer to the same exception. Move assignment transfers the exception referred to by the right-hand side operand to the left-hand side operand, and turns the right-hand side operand into a null pointer.
There is no published method directly retrieving the exception to which an exception_ptr object refers. However, there are some free functions constructing or handling exception_ptr objects:
...
catch (...)
{
obj.set_exception(std::current_exception());
}
The exception referred to by current_exception does not have to be an object of the class std::exception. Any type of object or value thrown as an exception is retrieved as an exception_ptr by current_exception. The exception referred to by an exception_ptr object remains valid for at least as long as there exists an exception_ptr object that refers to it. Calling current_exception twice in a row then the two returned exception_ptr objects may or may not refer to the same exception object.
auto ptr = make_exception_ptr(exception());
ptr = make_exception("hello world"s);
ptr = make_exception(12);
obj.set_exception(make_exception_ptr(ptr));
20.13: An example: multi-threaded compilations
In this section another program is developed. This section's example program illustrates the use of packaged_tasks.
Like the multi-threaded quicksort example a worker pool is used. However, in this example the workers in fact do not know what their task is. In the current example the tasks happens to be identical, but different tasks might as well have been used, without having to update the workers.
The program uses a class Task containing a command-specification (d_command), and a task specification (d_task) (cf. Figure 26), the sources of the program are found in the yo/threading/examples/multicompile directory of the C++ Annotations.
Figure 26: Data structure used for the multi-threading compilation
Like before main first starts its workforce as detached threads. Following this, the compilation jobs are performed by yet another detached thread. Eventually, the results of the compilation jobs are handled by results:
int main()
{
workforce(); // start the worker threads
thread(jobs).detach(); // start working on the jobs
results(); // handle the results.
}
The jobs-thread reads the names of the files to compile from the standard input stream, and passes them on to dispatch for further handling by the workers. Lines 7 and 8 are executed at the end, and are a safeguard against empty input. The safeguard is discussed below, at newResult's description.
1: void jobs()
2: {
3: string line;
4: while (getline(cin, line) && dispatch(line))
5: ;
6:
7: g_ready = true;
8: g_resultCond.notify_one();
9: }
Next the dispatcher. It ignores empty lines. Also, if a compilation has failed by the time the dispatcher is called, processing stops (lines 6-7). Otherwise, the dispatcher waits for an available worker, prepares a new task, and notifies a worker to handle it:
1: bool dispatch(string const &line)
2: {
3: if (line.empty())
4: return true;
5:
6: if (g_done.load())
7: return false;
8:
9: g_workforce.wait();
10: newTask(line);
11: g_worker.notify_all();
12: return true;
13: }
The function newTask prepares the program for the next task. First a Task object is created. Task contains the name of the file to compile, and a packaged_task. It encapsulates all activities that are associated with a packaged_task. Here is its (in-class) definition:
1: typedef packaged_task<Result (string const &fname)> PackagedTask;
2:
3: class Task
4: {
5: string d_command;
6: PackagedTask d_task;
7:
8: public:
9: Task() = default;
10:
11: Task(string const &command, PackagedTask &&tmp)
12: :
13: d_command(command),
14: d_task(move(tmp))
15: {}
16:
17: void operator()()
18: {
19: d_task(d_command);
20: }
21:
22: shared_future<Result> result()
23: {
24: return d_task.get_future().share();
25: }
26: };
Note (lines 22-25) that result returns a shared_future. Since the dispatcher runs in a different thread than the one processing the results, the futures created by the dispatcher must be shared with the futures required by the function processing the results. Hence the shared_futures returned by Task::result.
Once a Task object has been constructed its shared_future is pushed on the result queue. Although the actual results aren't available by this time, the result function (see below) is notified that something has been pushed on its queue. Additionally, the Task itself is pushed on the task queue, where a worker may retrieve it:
class Task
{
string d_command;
PackagedTask d_task;
public:
Task() = default;
Task(string const &command, PackagedTask &&tmp);
void operator()();
shared_future<Result> result();
};
void pushResultQ(shared_future<Result> const &sharedResult)
{
lock_guard<mutex> lk(g_resultQMutex);
g_resultQ.push(sharedResult);
g_ready = true;
g_resultCond.notify_one();
}
The workers have a simple task: retrieve the next task from the task queue's front, then perform that task. Whatever happens inside the tasks themselves is of no concern: the worker thread eventually ends when the program ends:
void worker()
{
Task task;
while (true)
{
g_worker.wait();
g_taskQ.popFront(task);
task();
g_workforce.notify_all();
}
}
This completes the description of how tasks are handled. The task itself remains to be described. In the current example program source files are being compiled. The compilation command is passed to the constructor of a CmdFork object, which starts the compiler as a child process. The result of the compilation is retrieved via its childExit (returning the compiler's exit code) and childOutput (returning any textual output produced by the compiler) members. If compilation fails, the exit value won't be zero. In this case no further compilation tasks will be initiated (lines 11 and 12; the implementation of the class CmdFork is available from the C++ Annotations' yo/threading/examples/cmdfork directory). Here is the function compile:
1: Result compile(string const &line)
2: {
3: string command("/usr/bin/g++ -Wall --std=c++11 -c " + line);
4:
5: CmdFork cmdFork(command);
6: cmdFork.fork();
7:
8: Result ret {cmdFork.childExit() == 0,
9: line + "\n" + cmdFork.childOutput()};
10:
11: if (not ret.ok)
12: g_done = true;
13:
14: return ret;
15: }
The results function continues for as long as there are results. Once results are available they are displayed. Whenever a compilation has failed the Result's d_ok member is false and results ends:
void results()
{
while (newResult())
{
Result const &result = g_resultQ.front().get();
cerr << result.display;
if (not result.ok)
return;
g_resultQ.pop();
}
}
The function newResult controls results' while-loop. It returns true when there are some results available in the result queue. When no filenames are presented at the standard input stream or when no result has as yet been pushed on the result queue newResult waits. It also waits when there are no results available in the results queue, but at least one worker thread is busy. Whenever a result is pushed on the result queue, and also once the input stream has been processed newResult is notified. Following the notification newResult returns, and results either ends or shows the results appearing at te result queue's front:
bool newResult()
{
unique_lock<mutex> lk(g_resultQMutex);
while
(
(
g_resultQ.empty()
&&
g_workforce.size() != g_sizeofWorkforce
)
||
not g_ready.load()
)
g_resultCond.wait(lk);
return not g_resultQ.empty();
}
20.14: Transactional Memory
Transactional memory is used to simplify shared data access in multithreaded programs. The benefits of transactional memory is best illustrated by a small program. Consider a situation where threads need to write information to a file. A plain example of such a program would be:
void fun(int value)
{
for (size_t rept = 0; rept != 10; ++rept)
{
this_thread::sleep_for(chrono::seconds(1));
cout << "fun " << value << '\n';
}
};
int main()
{
thread thr{ fun, 1 };
fun(2);
thr.join();
}
When this program is run the fun 1 and fun 2 messages are intermixed. To prevent this we traditionally define a mutex, lock it, write the message, and release the lock:
void fun(int value)
{
static mutex guard;
for (size_t rept = 0; rept != 10; ++rept)
{
this_thread::sleep_for(chrono::seconds(1));
guard.lock();
cout << "fun " << value << '\n';
guard.unlock();
}
};
Transactional memory handles the locking for us. Transactional memory is used when statements are embedded in a synchronized block. The function fun, using transactional memory, looks like this:
void fun(int value)
{
for (size_t rept = 0; rept != 10; ++rept)
{
this_thread::sleep_for(chrono::seconds(1));
synchronized
{
cout << "fun " << value << '\n';
}
}
};
To compile source files using transactional memory the g++ compiler option -fgnu-tm must be specified.
The code inside a synchronized block is executed as a single, as if the block was protected by a mutex. Different from using mutexes transactional memory is implemented in software instead of using hardware-facilities.
Considering how easy it is to use transactional memory compared to using the mutex-based locking mechanism using transactional memory appears too good to be true. And in a sense it is. When encountering a synchronized block the thread unconditionally executes the block's statements. At the same time it keeps a detailed log of all its actions. Once the statements have been completed the thread checks whether another thread didn't start executing the block just before it. If so, it reverses its actions, using the synchronized block's log. The implication of this should be clear: there's at least the overhead of maintaining the log, and if another thread started executing the synchronized block before the current thread then there's the additional overhead of reverting its actions and to try again.
The advantages of transactional memory should also be clear: the programmers no longer is responsible for correctly controlling access to shared memory; risks of encountering deadlocks have disappeared as has all adminstrative overhead of defining mutexes, locking and unlocking. Especially for inherently slow operations like writing to files transactional memory can greatly simplify parts of your code. Consider a std::stack. Its top-element can be inspected but its pop member does not return the topmost element. To retrieve the top element and then maybe remove it traditionally requires a mutex lock surrounding determining the stack's size, and if empty, release the lock and wait. If not empty then retrieve its topmost element, followed by removing it from the stack. Using a transactional memory we get something as simple as:
bool retrieve(stack<Item> &itemStack, Item &item)
{
synchronized
{
if (itemStack.empty())
return false;
item = std::move(itemStack.top());
itemStack.pop();
return true;
}
}
Variants of synchronized are:
Chapter 21: Function and Variable Templates
C++ supports syntactic constructs allowing programmers to define and use completely general (or abstract) functions or classes, based on generic types and/or (possibly inferred) constant values. In the chapters on abstract containers (chapter 12) and the STL (chapter 18) we've already used these constructs, commonly known as the template mechanism.
The template mechanism allows us to specify classes and algorithms, fairly independently of the actual types for which the templates are eventually going to be used. Whenever the template is used, the compiler generates code that is tailored to the particular data type(s) used with the template. This code is generated at compile-time from the template's definition. The piece of generated code is called an instantiation of the template.
In this chapter the syntactic peculiarities of templates are covered. The notions of template type parameter, template non-type parameter, and function template are introduced and several examples of templates are provided (both in this chapter and in chapter 24). Template classes are covered in chapter 22. For good reasons variadic functions are deprecated in C++. However, variadic templates tell us a completely different story, and variadic templates are perfectly acceptable. Both function- and class-templates can be defined as variadic templates. Both forms are covered in section 22.5.
Templates already offered by the language include the abstract containers (cf. chapter 12); the string (cf. chapter 5); streams (cf. chapter 6); and the generic algorithms (cf. chapter 19). So, templates play a central role in present-day C++, and should not be considered an esoteric feature of the language.
Templates should be approached somewhat similarly as generic algorithms: they're a way of life; a C++ software engineer should actively look for opportunities to use them. Initially, templates may appear to be rather complex and you might be tempted to turn your back on them. However, over time their strengths and benefits are more and more appreciated. Eventually you'll be able to recognize opportunities for using templates. That's the time where your efforts should no longer focus on constructing ordinary functions and classes (i.e., functions or classes that are not templates), but on constructing templates.
This chapter starts by introducing function templates. The emphasis is on the required syntax. This chapter lays the foundation upon which the other chapters about templates are built.
21.1: Defining function templates
A function template's definition is very similar to the definition of a normal function. A function template has a function head, a function body, a return type, possibly overloaded definitions, etc.. However, different from ordinary functions, function templates always use one or more formal types: types for which almost any existing (class or primitive) type could be used. Let's have a look at a simple example. The following function add expects two Type arguments and returns their sum:
Type add(Type const &lhs, Type const &rhs)
{
return lhs + rhs;
}
Note how closely the above function's definition follows its description. It receives two arguments, and returns its sum. Now consider what would happen if we defined this function for, e.g., int values. We would write:
int add(int const &lhs, int const &rhs)
{
return lhs + rhs;
}
So far, so good. However, were we to add two doubles, we would overload this function:
double add(double const &lhs, double const &rhs)
{
return lhs + rhs;
}
There is no end to the number of overloaded versions we might be forced to construct: an overloaded version for string, for size_t, for .... In general, we would need an overloaded version for every type supporting operator+ and a copy constructor. All these overloaded versions of basically the same function are required because of the strongly typed nature of C++. Because of this, a truly generic function cannot be constructed without resorting to the template mechanism.
Fortunately, we've already seen an important part of a template function. Our initial function add actually is an implementation of such a function although it isn't a full template definition yet. If we gave the first add function to the compiler, it would produce an error message like:
error: `Type' was not declared in this scope
error: parse error before `const'
And rightly so, as we failed to define Type. The error is prevented when we change add into a full template definition. To do this, we look at the function's implementation and decide that Type is actually a formal typename. Comparing it to the alternate implementations, it is clear that we could have changed Type into int to get the first implementation, and into double to get the second.
The full template definition allows for this formal nature of the Type typename. Using the keyword template, we prefix one line to our initial definition, obtaining the following function template definition:
template <typename Type>
Type add(Type const &lhs, Type const &rhs)
{
return lhs + rhs;
}
In this definition we distinguish:
typename Type1, typename Type2
Other texts on C++ sometimes use the keyword class where we use typename. So, in other texts template definitions might start with a line like:
template <class Type>
In the C++ Annotations the use of typename over class is preferred, reasoning that a template type parameter is, after all, a type name (some authors prefer class over typename; in the end it's a matter of taste).
Normal scope rules and identifier visibility rules apply to templates. Within the template definition's scope formal type names overrule identically named identifiers of broader scopes.
21.1.1: Considerations regarding template parameters
We've managed to design our first function template:
template <typename Type>
Type add(Type const &lhs, Type const &rhs)
{
return lhs + rhs;
}
Look again at add's parameters. By specifying Type const & rather than Type superfluous copying is prevented, at the same time allowing values of primitive types to be passed as arguments to the function. So, when add(3, 4) is called, int{4} is assigned to Type const &rhs. In general, function parameters should be defined as Type const & to prevent unnecessary copying. The compiler is smart enough to handle `references to references' in this case, which is something the language normally does not support. For example, consider the following main function (here and in the following simple examples it is assumed that the template and the required headers and namespace declarations have been provided):
int main()
{
size_t const &var = size_t{ 4 };
cout << add(var, var) << '\n';
}
Here var is a reference to a constant size_t. It is passed as argument to add, thereby initializing lhs and rhs as Type const & to size_t const & values. The compiler interprets Type as size_t. Alternatively, the parameters might have been specified using Type &, rather than Type const &. The disadvantage of this (non-const) specification being that temporary values cannot be passed to the function anymore. The following therefore fails to compile:
int main()
{
cout << add(string{ "a" }, string{ "b" }) << '\n';
}
Here, a string const & cannot be used to initialize a string &. Had add defined Type && parameters then the above program would have compiled just fine. In addition the following example correctly compiles as the compiler decides that Type apparently is a string const:
int main()
{
string const &s = string{ "a" };
cout << add(s, s) << '\n';
}
What can we deduce from these examples?
| Provided argument: | Actually used Type: |
| size_t const | size_t |
| size_t | size_t |
| size_t * | size_t * |
| size_t const * | size_t const * |
As a second example of a function template, consider the following function template:
template <typename Type, size_t Size>
Type sum(Type const (&array)[Size])
{
Type tp{}; // note: the default constructor must exist.
for (size_t idx = 0; idx < Size; idx++)
tp += array[idx];
return tp;
}
This template definition introduces the following new concepts and features:
Type const (&array)[Size]
This parameter defines array as a reference to an array having Size elements of type Type that may not be modified.
int main()
{
int values[5];
int *ip = values;
cout << sum(values) << '\n'; // compiles OK
cout << sum(ip) << '\n'; // won't compile
}
It's interesting to note (although not directly related to the current topic) that the syntactic construction Type tp(Type()) cannot be used, even though it also looks like a proper initialization. Usually an initializing argument can be provided to an object's definition, like string s("hello"). Why, then, is Type tp = Type() accepted, whereas Type tp(Type()) isn't? When Type tp(Type()) is used it won't result in an error message. So we don't immediately detect that it's not a Type object's default initialization. Instead, the compiler starts generating error messages once tp is used. This is caused by the fact that in C++ (and in C alike) the compiler does its best to recognize a function or function pointer whenever possible: the function prevalence rule. According to this rule Type() is (because of the pair of parentheses) interpreted as a pointer to a function expecting no arguments; returning a Type. The compiler will do so unless it clearly isn't possible to do so. In the initialization Type tp = Type() it can't see a pointer to a function as a Type object cannot be given the value of a function pointer (remember: Type() is interpreted as Type (*)() whenever possible). But in Type tp(Type()) it can use the pointer interpretation: tp is now declared as a function expecting a pointer to a function returning a Type, with tp itself also returning a Type. E.g., tp could have been defined as:
Type tp(Type (*funPtr)())
{
return (*funPtr)();
}
Like class definitions, template definitions should not contain using directives or declarations: the template might be used in a situation where such a directive overrides the programmer's intentions: ambiguities or other conflicts may result from the template's author and the programmer using different using directives (E.g, a cout variable defined in the std namespace and in the programmer's own namespace). Instead, within template definitions only fully qualified names, including all required namespace specifications should be used.
21.1.2: Auto and decltype
In section 3.3.7 the auto keyword was introduced. The keyword decltype, related to auto, shows somewhat different behavior. This section concentrates on decltype. Different from auto, which requires no further specifications, decltype is always followed by an expression between parentheses (e.g., decltype(variable)).
As an initial illustration, assume we have a function defining a parameter std::string const &text. Inside the function we may encounter the following two definitions:
auto scratch1{text};
decltype(text) scratch2 = text;
With auto the compiler deduces a plain type, so scratch1 is a string, and copy construction is used to initialize it from `text'.
Now consider decltype: decltype determines text's type: string const &, which is thereupon used as scratch2's type: string const &scratch2, referring to whatever string text refers to. This is decltype's standard behavior: when provided with a variable's name, it is replaced by that variable's type.
Alternatively, an expression can be specified when using decltype. Of course, a variable is an expression by itself, but in the context of decltype we define an `expression' as any expression that is more complex than just a plain variable specification. But it may be as simple as (variable): the name of a variable between parentheses.
When an expression is used, the compiler determines whether a reference could be appended to the expression's type. If so, decltype(expression) is replaced by the type of such an lvalue reference (so you get expression-type &). If not, decltype(expression) is replaced by the expression's plain type.
Here are some examples:
int *ptr;
decltype(ptr) ref = ptr;
// decltype's argument is a plain variable, and so
// ptr's type is used: int *ref = ptr.
// decltype(ptr) is replaced by int *.
// (resulting in two warnings about not-initialized/used variables).
int *ptr;
decltype( (ptr) ) ref = ptr;
// decltype's argument is an expression, and so
// int *&ref = ptr is used.
// decltype( (ptr) ) is replaced by int *&.
int value;
decltype(value + value) var = value + value;
// decltype's argument is an expression, and so the compiler tries
// to replace decltype(...) by int & (int &var = value + value)
// since value + value is a temporary, var's type cannot be int &
// and so decltype(...) is replaced by int
// (i.e., value + value's type)
string lines[20];
decltype(lines[0]) ref = lines[6];
// decltype's argument is an expression, so
// string &ref = lines[6] is used.
// decltype(...) is replaced by string &
string &&strRef = string{};
decltype(strRef) ref = std::move(strRef);
// decltype's argument is a plain variable so the variable's
// type is used: string &&ref = std::move(strRef).
// decltype(...) is replaced by string &&
string &&strRef2 = string{}
decltype((strRef2)) ref2 = strRef2;
// decltype's argument is an expression, so
// string && &ref = strRef is used. This automatically becomes
// string &ref = strRef which is OK
// decltype is replaced by string &.
In addition to this, decltype(auto) specifications can be used, in which case decltype's rules are applied to auto. So, auto is used to determine the type of the initializing expression. Then, if the initializing expression is a mere variable, then the expression's type is used. Otherwise, if a reference can be added to the expression's type then decltype(auto) is replaced by a reference to the expression's type. Here are some examples:
int *ptr;
decltype(auto) ptr2 = ptr;
// auto produces ptr's type: int *, ptr is a plain variable, so
// decltype(auto) is replaced by int *
int value;
decltype(auto) ret = value + value;
// auto produces int, value + value is an expression, so int & is
// attempted. However, value + value cannot be assigned to a
// reference so the expression's type is used:
// decltype(auto) is replaced by int
string lines[20];
decltype(auto) line = lines[0];
// auto produces string, lines[0] is an expression, so string & is
// attempted. string &line = lines[0] is OK, so
// decltype(auto) is replaced by string &
decltype(auto) ref = string{}
// auto produces string, string{} is an expression, so string & is
// attempted. However, string &ref = string{} is not a valid
// initialization, so string itself is used:
// decltype(auto) is replaced by string
In practice, the decltype(auto) form is most often encountered with function templates to define return types. Have a look at the following struct definition (not using function templates, but illustrating the workings of decltype(auto)):
struct Data
{
vector<string> d_vs;
string *d_val = new string[10];
Data()
:
d_vs(1)
{}
auto autoFun() const
{
return d_val[0];
}
decltype(auto) declArr() const
{
return d_val[0];
}
decltype(auto) declVect() const
{
return d_vs[0];
}
};
If you're wondering why there's no const in declArr's return type while there is one in declVect's return type then have a look at d_vs and d_val: both are constant in the context of their functions, but d_val, so a const *, points to non-const string objects. So, declArr does not have to return a string const &, whereas declVect should return a string const &.
21.1.2.1: declval
The keyword decltype is a tool for determining the type of an expression. To use it an expression to which decltype is applied must be available. But what if a function template defines a typename Class template parameter and the function template should use the return type of the function Class::fun()? Since two classes may define members fun having different return types, the return type to use is not immediately available.
These kinds of problems are solved by using the function template std::declval, defined in the <utility> header file. This function template defines one template type parameter, and returns an rvalue reference to an object of the template type parameter's class, without actually creating a temporary object. But since an rvalue reference is available, its fun function can be called, and the return type of that function can then be produced by decltype. There are no specific requirements for the constructors of the class type that's passed to declval. Specifically: it doesn't have to have a default or public constructor (but access rights are used). Consider this function template:
template <typename Type>
decltype(std::declval<Type>().fun()) value()
{
return 12.5;
}
The function value's return type is defined as the as yet unknown Type::fun's return type.
By defining two structs, both having fun member functions value's actual return type can now be returned. This is used in main where respectively an int and a double is returned, resulting in the output 12 12.5:
struct Integral
{
int fun() const; // implementation not required
};
struct Real
{
double fun() const; // same.
};
int main()
{
std::cout << value<Integral>() << ' ' << value<Real>() << '\n';
}
21.1.3: Late-specified return type
Traditional C++ requires function templates to specify their return type or to specify the return type as a template type parameter. Consider the following function:
int add(int lhs, int rhs)
{
return lhs + rhs;
}
The above function may be converted to a function template:
template <typename Lhs, typename Rhs>
Lhs add(Lhs lhs, Rhs rhs)
{
return lhs + rhs;
}
Unfortunately, when the function template is called as
add(3, 3.4)
the intended return type is probably a double rather than an int. This can be solved by adding an additional template type parameter specifying the return type but then that type must explicitly be specified:
add<double>(3, 3.4);
Using decltype (cf. section 3.3.7) to define the return type won't work as lhs and rhs aren't known to the compiler by the time decltype is used. Thus the next attempt to get rid of the additional template type parameter fails to compile:
template <typename Lhs, typename Rhs>
decltype(lhs + rhs) add(Lhs lhs, Rhs rhs)
{
return lhs + rhs;
}
The decltype-based definition of a function's return type may become fairly complex. This complexity can be reduced by using the late-specified return type syntax that does allow the use of decltype to define a function's return type. It is primarily used with function templates but it may also be used for ordinary (non-template) functions:
template <typename Lhs, typename Rhs>
auto add(Lhs lhs, Rhs rhs) -> decltype(lhs + rhs)
{
return lhs + rhs;
}
When this function is used in a statement like cout << add(3, 3.4) the resulting value will be 6.4, which is most likely the intended result, rather than 6. As an example how a late-specified return type may reduce the complexity of a function's return type definition consider the following:
template <typename T, typename U>
decltype((*(T*)0)+(*(U*)0)) add(T t, U u);
Kind of hard to read? A term like (*(T*)0) defines 0, using a C cast, as a pointer to type T and then dereferences the pointer, producing a value of type T (even though that value itself doesn't exist as a variable). Likewise for the second term that's used in the decltype expression. The resulting type is thereupon used as add's return type. Using a late-specified return type we get the equivalent:
template <typename T, typename U>
auto add(T t, U u) -> decltype(t+u);
which most people consider easier to understand.
The expression specified with decltype does not necessarily use the parameters lhs and rhs themselves. In the next function definition lhs.length is used instead of lhs itself:
template <typename Class, typename Rhs>
auto add(Class lhs, Rhs rhs) -> decltype(lhs.length() + rhs)
{
return lhs.length() + rhs;
}
Any variable visible at the time decltype is compiled can be used in the decltype expression. It is also possible to handle member selection through pointers to members. The following code aims at specifying the address of a member function as add's first argument and then use its return value type to determine the function template's return type. Here is an example:
std::string global{"hello world"};
template <typename MEMBER, typename RHS>
auto add(MEMBER mem, RHS rhs) -> decltype((global.*mem)() + rhs)
{
return (global.*mem)() + rhs;
}
int main()
{
std::cout << add(&std::string::length, 3.4) << '\n'; // shows: 14.4
}
21.2: Passing arguments by reference (reference wrappers)
Before using the reference wrappers discussed in this section the <functional> header file must be included.
Situations exist where the compiler is unable to infer that a reference rather than a value is passed to a function template. In the following example the function template outer receives int x as its argument and the compiler dutifully infers that Type is int:
template <typename Type>
void outer(Type t)
{
t.x();
}
void useInt()
{
int arg;
outer(arg);
}
Compilation will of course fail (as int values don't have x members) and the compiler nicely reports the inferred type, e.g.:
In function 'void outer(Type) [with Type = int]': ...
Another type of error results from using call in the next example. Here, call is a function template expecting a function-type argument. The function that's passed to call is sqrtArg, defining a reference to a double: the variable that's passed to sqrtArg is modified by sqrtArg.
void sqrtArg(double &arg)
{
arg = sqrt(arg);
}
template<typename Fun, typename Arg>
void call(Fun fun, Arg arg)
{
fun(arg);
cout << "In call: arg = " << arg << '\n';
}
The first time call is used, call(sqrtArg, value) will not modify value: the compiler infers Arg to be a double value, and hence passes value by value to call, thus preventing sqrtArg to modify main's variable.
To change main's variable value the compiler must be informed that value must be passed by reference. Note that we do not want to define call's template parameter as a reference parameter, as passing arguments by value might be appropriate in other situations.
In these situations the ref(arg) and cref(arg) reference wrappers should be used. They accept an argument and return their argument as a (const) reference-typed argument. To actually change value it can be passed to call using ref(value) as shown in the following main function:
int main()
{
double value = 3;
call(sqrtArg, value);
cout << "Passed value, returns: " << value << '\n';
call(sqrtArg, ref(value));
cout << "Passed ref(value), returns: " << value << '\n';
}
/*
Displays:
In call: arg = 1.73205
Passed value, returns: 3
In call: arg = 1.73205
Passed ref(value), returns: 1.73205
*/
21.3: Using local and unnamed types as template arguments
Usually, types have names. But an anonymous type may also be defined:
enum
{
V1,
V2,
V3
};
Here, the enum defines an unnamed or anonymous type.
When defining a function template, the compiler normally deduces the types of its template type parameters from its arguments:
template <typename T>
void fun(T &&t);
fun(3); // T is int
fun('c'); // T is char
The following, however, can also be used:
fun(V1); // T is a value of the above enum type
Within fun a T variable may be defined, even if it's an anonymous type:
template <typename T>
void fun(T &&t)
{
T var(t);
}
Values or objects of locally defined types may also be passed as arguments to function templates. E.g.,
void definer()
{
struct Local
{
double dVar;
int iVar;
};
Local local; // using a local type
fun(local); // OK: T is 'Local'
}
21.4: Template parameter deduction
In this section we concentrate on the process by which the compiler deduces the actual types of the template type parameters. These types are deduced when a function template is called using a process called template parameter deduction. As we've already seen, the compiler is able to substitute a wide range of actual types for a single formal template type parameter. Even so, not every thinkable conversion is possible. In particular when a function has multiple parameters of the same template type parameter, the compiler is very restrictive when determining what argument types are actually accepted.
When the compiler deduces the actual types for template type parameters it only considers the types of the arguments that are actually used. Neither local variables nor the function's return value is considered in this process. This is understandable. When a function is called the compiler is only certain about the types of the function template's arguments. At the point of the call it definitely does not see the types of the function's local variables. Also, the function's return value might not actually be used or may be assigned to a variable of a subrange (or super-range) type of a deduced template type parameter. So, in the following example, the compiler won't ever be able to call fun(), as it won't be able to deduce the actual type for the Type template type parameter.
template <typename Type>
Type fun() // can never be called as `fun()'
{
return Type{};
}
Although the compiler won't be able to handle a call to `fun()', it is possible to call fun() using an explicit type specification. E.g., fun<int>() calls fun, instantiated for int. This is of course not the same as compiler argument deduction.
In general, when a function has multiple parameters of identical template type parameters, the actual types must be exactly the same. So, whereas
void binarg(double x, double y);
may be called using an int and a double, with the int argument silently being converted to a double, a similar function template cannot be called using an int and double argument: the compiler won't by itself promote int to double deciding that Type should be double:
template <typename Type>
void binarg(Type const &p1, Type const &p2)
{}
int main()
{
binarg(4, 4.5); // ?? won't compile: different actual types
}
What, then, are the transformations the compiler applies when deducing the actual types of template type parameters? It performs but three types of parameter type transformations and a fourth one to function template non-type parameters. If it cannot deduce the actual types using these transformations, the function template will not be considered. The transformations performed by the compiler are:
The purpose of the various template parameter type deduction transformations is not to match function arguments to function parameters, but rather, having matched arguments to parameters, to determine the actual types of the various template type parameters.
21.4.1: Lvalue transformations
There are three types of lvalue transformations:
An lvalue-to-rvalue transformation is applied when an rvalue is required, but an lvalue is provided. This happens when a variable is used as argument to a function specifying a value parameter. For example,
template<typename Type>
Type negate(Type value)
{
return -value;
}
int main()
{
int x = 5;
x = negate(x); // lvalue (x) to rvalue (copies x)
}
An array-to-pointer transformation is applied when the name of an array is assigned to a pointer variable. This is frequently used with functions defining pointer parameters. Such functions frequently receive arrays as their arguments. The array's address is then assigned to the pointer-parameter and its type is used to deduce the corresponding template parameter's type. For example:
template<typename Type>
Type sum(Type *tp, size_t n)
{
return accumulate(tp, tp + n, Type());
}
int main()
{
int x[10];
sum(x, 10);
}
In this example, the location of the array x is passed to sum, expecting a pointer to some type. Using the array-to-pointer transformation, x's address is considered a pointer value which is assigned to tp, deducing that Type is int in the process.
This transformation is most frequently used with function templates defining a parameter which is a pointer to a function. When calling such a function the name of a function may be specified as its argument. The address of the function is then assigned to the pointer-parameter, deducing the template type parameter in the process. This is called a function-to-pointer transformation. For example:
#include <cmath>
template<typename Type>
void call(Type (*fp)(Type), Type const &value)
{
(*fp)(value);
}
int main()
{
call(sqrt, 2.0);
}
In this example, the address of the sqrt function is passed to call, expecting a pointer to a function returning a Type and expecting a Type for its argument. Using the function-to-pointer transformation, sqrt's address is assigned to fp, deducing that Type is double in the process (note that sqrt is the address of a function, not a variable that is a pointer to a function, hence the lvalue transformation).
The argument 2.0 could not have been specified as 2 as there is no int sqrt(int) prototype. Furthermore, the function's first parameter specifies Type (*fp)(Type), rather than Type (*fp)(Type const &) as might have been expected from our previous discussion about how to specify the types of function template's parameters, preferring references over values. However, fp's argument Type is not a function template parameter, but a parameter of the function fp points to. Since sqrt has prototype double sqrt(double), rather than double sqrt(double const &), call's parameter fp must be specified as Type (*fp)(Type). It's that strict.
21.4.2: Qualification transformations
A qualification transformation adds const or volatile qualifications to pointers. This transformation is applied when the function template's type parameter explicitly specifies const (or volatile) but the function's argument isn't a const or volatile entity. In that case const or volatile is provided by the compiler. Subsequently the compiler deduces the template's type parameter. For example:
template<typename Type>
Type negate(Type const &value)
{
return -value;
}
int main()
{
int x = 5;
x = negate(x);
}
Here we see the function template's Type const &value parameter: a reference to a const Type. However, the argument isn't a const int, but an int that can be modified. Applying a qualification transformation, the compiler adds const to x's type, and so it matches int const x. This is then matched against Type const &value allowing the compiler to deduce that Type must be int.
21.4.3: Transformation to a base class
Although the construction of class templates is the topic of chapter 22, we've already extensively used class templates before. For example, abstract containers (cf. chapter 12) are defined as class templates. Class templates can, like ordinary classes, participate in the construction of class hierarchies.
In section 22.11 it is shown how a class template can be derived from another class template.
As class template derivation remains to be covered, the following discussion is necessarily somewhat premature. The reader may of course skip briefly to section 22.11 returning back to this section thereafter.
In this section it should be assumed, for the sake of argument, that a class template Vector has somehow been derived from a std::vector. Furthermore, assume that the following function template has been constructed to sort a vector using some function object obj:
template <typename Type, typename Object>
void sortVector(std::vector<Type> vect, Object const &obj)
{
sort(vect.begin(), vect.end(), obj);
}
To sort std::vector<string> objects case-insensitively, a class Caseless could be constructed as follows:
class CaseLess
{
public:
bool operator()(std::string const &before,
std::string const &after) const
{
return strcasecmp(before.c_str(), after.c_str()) < 0;
}
};
Now various vectors may be sorted using sortVector():
int main()
{
std::vector<string> vs;
std::vector<int> vi;
sortVector(vs, CaseLess());
sortVector(vi, less<int>());
}
Applying the transformation transformation to a base class instantiated from a class template, the function template sortVector may now also be used to sort Vector objects. For example:
int main()
{
Vector<string> vs; // `Vector' instead of `std::vector'
Vector<int> vi;
sortVector(vs, CaseLess());
sortVector(vi, less<int>());
}
In this example, Vectors were passed as argument to sortVector. Applying the transformation to a base class instantiated from a class template, the compiler considers Vector to be a std::vector enabling it to deduce the template's type parameter. A std::string for the Vector vs, an int for Vector vi.
21.4.4: The template parameter deduction algorithm
The compiler uses the following algorithm to deduce the actual types of its template type parameters:
template <typename Type>
Type add(Type const &rhs, Type const &rhs)
{
return lhs + rhs;
}
When calling this function template, two identical types must be used (albeit that the three standard transformations are of course allowed). If the template deduction mechanism does not come up with identical actual types for identical template types, then the function template is not going to be instantiated.
21.4.5: Template type contractions
With function templates the combination of the types of template arguments and template parameters shows some interesting contractions. What happens, for example if a template type parameter is specified as an rvalue reference but an lvalue reference argument type is provided?
In such cases the compiler performs type contractions. Doubling identical reference types results in a simple contraction: the type is deduced to be a single reference type. Example: if the template parameter type is specified as a Type && and the actual parameter is an int && then Type is deduced to be an int, rather than an int &&.
This is fairly intuitive. But what happens if the actual type is int &? There is no such thing as an int & &¶m and so the compiler contracts the double reference by removing the rvalue reference, keeping the lvalue reference. Here the following rules are applied:
1. A function template parameter defined as an lvalue reference to a template's type parameter (e.g., Type &) receiving an lvalue reference argument results in a single lvalue reference.
2. A function template parameter defined as an rvalue reference to a template's type parameter (e.g., Type &&) receiving any kind of reference argument uses the reference type of the argument.
Examples:
Let's look at a concrete exampe where contraction occurs. Consider the following function template where a function parameter is defined as an rvalue references to some template type parameter:
template <typename Type>
void function(Type &¶m)
{
callee(static_cast<Type &&>(param));
}
In this situation, when function is called with an (lvalue) argument of type TP & the template type parameter Type is deduced to be Tp &. Therefore, Type &¶m is instantiated as Tp ¶m, Type becomes Tp and the rvalue reference is replaced by an lvalue reference.
Likewise, when callee is called using the static_cast the same contraction occurs, so Type &¶m operates on Tp ¶m. Therefore (using contraction) the static cast also uses type Tp ¶m. If param happened to be of type Tp && then the static cast uses type Tp &¶m.
This characteristic allows us to pass a function argument to a nested function without changing its type: lvalues remain lvalues, rvalues remain rvalues. This characteristic is therefore also known as perfect forwarding which is discussed in greater detail in section 22.5.2. Perfect forwarding prevents the template author from having to define multiply overloaded versions of a function template.
21.5: Declaring function templates
Up to now, we've only defined function templates. There are various consequences of including function template definitions in multiple source files, none of them serious, but worth knowing.
So in some contexts template definitions may not be required. Instead the software engineer may opt to declare a template rather than to include the template's definition time and again in various source files.
When templates are declared, the compiler does not have to process the template's definitions again and again; and no instantiations are created on the basis of template declarations alone. Any actually required instantiation must then be available elsewhere (of course, this holds true for declarations in general). Unlike the situation we encounter with ordinary functions, which are usually stored in libraries, it is currently not possible to store templates in libraries (although the compiler may construct precompiled header files). Consequently, using template declarations puts a burden on the shoulders of the software engineer, who has to make sure that the required instantiations exist. Below a simple way to accomplish that is introduced.
To create a function template declaration simply replace the function's body by a semicolon. Note that this is exactly identical to the way ordinary function declarations are constructed. So, the previously defined function template add can simply be declared as
template <typename Type>
Type add(Type const &lhs, Type const &rhs);
We've already encountered template declarations. The header file iosfwd may be included in sources not requiring instantiations of elements from the class ios and its derived classes. For example, to compile the declaration
std::string getCsvLine(std::istream &in, char const *delim);
it is not necessary to include the string and istream header files. Rather, a single
#include <iosfwd>
is sufficient. Processing iosfwd requires only a fraction of the time it takes to process the string and istream header files.
21.5.1: Instantiation declarations
If declaring function templates speeds up the compilation and the linking phases of a program, how can we make sure that the required instantiations of the function templates are available when the program is eventually linked together?
For this a variant of a template declaration is available, a so-called explicit instantiation declaration. An explicit instantiation declaration consists of the following elements:
Although this is a declaration, it is understood by the compiler as a request to instantiate that particular variant of the function template.
Using explicit instantiation declarations all instantiations of template functions required by a program can be collected in one file. This file, which should be a normal source file, should include the template definition header file and should subsequently specify the required explicit instantiation declarations. Since it's a source file, it is not included by other sources. So namespace using directives and declarations may safely be used once the required headers have been included. Here is an example showing the required instantiations for our earlier add function template, instantiated for double, int, and std::string types:
#include "add.h"
#include <string>
using namespace std;
template int add<int>(int const &lhs, int const &rhs);
template double add<double>(double const &lhs, double const &rhs);
template string add<string>(string const &lhs, string const &rhs);
If we're sloppy and forget to mention an instantiation required by our program then the repair is easily made by adding the missing instantiation declaration to the above list. After recompiling the file and relinking the program we're done.
21.6: Instantiating function templates
Different from an ordinary function that results in code once the compiler reads its definition a template is not instantiated when its definition is read. A template is merely a recipe telling the compiler how to create particular code once it's time to do so. It's indeed very much like a recipe in a cooking book. You reading how to bake a cake doesn't mean you have actually baked that cake by the time you've read the recipe.
So, when is a function template actually instantiated? There are two situations where the compiler decides to instantiate templates:
char (*addptr)(char const &, char const &) = add;
The location of statements causing the compiler to instantiate a template is called the template's point of instantiation. The point of instantiation has serious implications for the function template's code. These implications are discussed in section 21.13.
The compiler is not always able to deduce the template's type parameters unambiguously. When the compiler reports an ambiguity it must be solved by the software engineer. Consider the following code:
#include <iostream>
#include "add.h"
size_t fun(int (*f)(int *p, size_t n));
double fun(double (*f)(double *p, size_t n));
int main()
{
std::cout << fun(add);
}
When this little program is compiled, the compiler reports an ambiguity it cannot resolve. It has two candidate functions as for each overloaded version of fun an add function can be instantiated:
error: call of overloaded 'fun(<unknown type>)' is ambiguous
note: candidates are: int fun(size_t (*)(int*, size_t))
note: double fun(double (*)(double*, size_t))
Such situations should of course be avoided. Function templates can only be instantiated if there's no ambiguity. Ambiguities arise when multiple functions emerge from the compiler's function selection mechanism (see section 21.14). It is up to us to resolve the ambiguities. They could be resolved using a blunt static_cast (by which we select among alternatives, all of them possible and available):
#include <iostream>
#include "add.h"
int fun(int (*f)(int const &lhs, int const &rhs));
double fun(double (*f)(double const &lhs, double const &rhs));
int main()
{
std::cout << fun(
static_cast<int (*)(int const &, int const &)>(add)
);
}
But it's good practice to avoid type casts wherever possible. How to do this is explained in the next section (21.7).
21.6.1: Instantiations: no `code bloat'
As mentioned in section 21.5, the linker removes identical instantiations of a template from the final program, leaving only one instantiation for each unique set of actual template type parameters. To illustrate the linker's behavior we do as follows:
union PointerUnion
{
int (*fp)(int const &, int const &);
void *vp;
};
Here is a program using PointerUnion:
#include <iostream>
#include "add.h"
#include "pointerunion.h"
void fun()
{
PointerUnion pu = { add };
std::cout << pu.vp << '\n';
}
#include <iostream>
#include "pointerunion.h"
template<typename Type>
Type add(Type const &, Type const &);
void fun()
{
PointerUnion pu = { add };
std::cout << pu.vp << '\n';
}
#include <iostream>
#include "add.h"
#include "pointerunion.h"
void fun();
int main()
{
PointerUnion pu = { add };
fun();
std::cout << pu.vp << '\n';
}
0x80486d8
0x80486d8
Furthermore, the size of the resulting program is 6352 bytes.
From our little experiment we conclude that the linker indeed removes identical template instantiations from a final program. Furthermore we conclude that using mere template declarations does not result in template instantiations.
21.7: Using explicit template types
In the previous section we saw that the compiler may encounter ambiguities when attempting to instantiate a template. In an example overloaded versions of a function (fun) existed, expecting different types of arguments. The ambiguity resulted from the fact that both arguments could have been provided by an instantiation of a function template. The intuitive way to solve such an ambiguity is to use a static_cast. But casts should be avoided wherever possible.
With function templates static casts may indeed be avoided using explicit template type arguments. Explicit template type arguments can be used to inform the compiler about the actual types it should use when instantiating a template. To use explicit type arguments the function's name is followed by an actual template type argument list which may again be followed by the function's argument list. The actual types mentioned in the actual template argument list are used by the compiler to `deduce' what types to use when instantiating the template. Here is the example from the previous section, now using explicit template type arguments:
#include <iostream>
#include "add.h"
int fun(int (*f)(int const &lhs, int const &rhs));
double fun(double (*f)(double const &lhs, double const &rhs));
int main()
{
std::cout << fun(add<int>) << '\n';
}
Explicit template type arguments can be used in situations where the compiler has no way to detect which types should actually be used. E.g., in section 21.4 the function template Type fun() was defined. To instantiate this function for the double type, we can call fun<double>().
21.8: Overloading function templates
Let's once again look at our add template. That template was designed to return the sum of two entities. If we would want to compute the sum of three entities, we could write:
int main()
{
add(add(2, 3), 4);
}
This is an acceptable solution for the occasional situation. However, if we would have to add three entities regularly, an overloaded version of the add function expecting three arguments might be a useful function to have. There's a simple solution to this problem: function templates may be overloaded.
To define an overloaded function template, merely put multiple definitions of the template in its header file. For the add function this would boil down to:
template <typename Type>
Type add(Type const &lhs, Type const &rhs)
{
return lhs + rhs;
}
template <typename Type>
Type add(Type const &lhs, Type const &mid, Type const &rhs)
{
return lhs + mid + rhs;
}
The overloaded function does not have to be defined in terms of simple values. Like all overloaded functions, a unique set of function parameters is enough to define an overloaded function template. For example, here's an overloaded version that can be used to compute the sum of the elements of a vector:
template <typename Type>
Type add(std::vector<Type> const &vect)
{
return accumulate(vect.begin(), vect.end(), Type());
}
When overloading function templates we do not have to restrict ourselves to the function's parameter list. The template's type parameter list itself may also be overloaded. The last definition of the add template allows us to specify a vector as its first argument, but no deque or map. Overloaded versions for those types of containers could of course be constructed, but how far should we go? A better approach seems to be to look for common characteristics of these containers. If found we may be able to define an overloaded function template based on these common characteristics. One common characteristic of the mentioned containers is that they all support begin and end members, returning iterators. Using this, we could define a template type parameter representing containers that must support these members. But mentioning a plain `container type' doesn't tell us for what type of data it was instantiated. So we need a second template type parameter representing the container's data type, thus overloading the template's type parameter list. Here is the resulting overloaded version of the add template:
template <typename Container, typename Type>
Type add(Container const &cont, Type const &init)
{
return std::accumulate(cont.begin(), cont.end(), init);
}
One may wonder whether the init parameter could not be left out of the parameter list as init often has a default initialization value. The answer is `yes', but there are complications. It is possible to define the add function as follows:
template <typename Type, typename Container>
Type add(Container const &cont)
{
return std::accumulate(cont.begin(), cont.end(), Type());
}
Note, however, that the template's type parameters were reordered, which is necessary because the compiler won't be able to determine Type in a call like:
int x = add(vectorOfInts);
After reordering the template type parameters, putting Type first, an explicit template type argument can be provided for the first template type parameter:
int x = add<int>(vectorOfInts);
In this example we provided a vector<int> argument. One might wonder why we have to specify int explicitly to allow the compiler to determine the template type parameter Type. In fact, we don't. A third kind of template parameter exists, a template template parameter, allowing the compiler to determine Type directly from the actual container argument. Template template parameters are discussed in section 23.4.
21.8.1: An example using overloaded function templates
With all these overloaded versions in place, we may now start the compiler to compile the following function:
using namespace std;
int main()
{
vector<int> v;
add(3, 4); // 1 (see text)
add(v); // 2
add(v, 0); // 3
}
add<int>(std::vector<int> const &)
add<std::vector<int>, int>(std::vector<int> const &, int const &)
Having defined the add function template for two equal and two different template type parameters we've exhausted the possibilities for using an add function template having two template type parameters.
21.8.2: Ambiguities when overloading function templates
Although it is possible to define another function template add this introduces an ambiguity as the compiler won't be able to choose which of the two overloaded versions defining two differently typed function parameters should be used. For example when defining:
#include "add.h"
template <typename T1, typename T2>
T1 add(T1 const &lhs, T2 const &rhs)
{
return lhs + rhs;
}
int main()
{
add(3, 4.5);
}
the compiler reports an ambiguity like the following:
error: call of overloaded `add(int, double)' is ambiguous
error: candidates are: Type add(const Container&, const Type&)
[with Container = int, Type = double]
error: T1 add(const T1&, const T2&)
[with T1 = int, T2 = double]
Now recall the overloaded function template accepting three arguments:
template <typename Type>
Type add(Type const &lhs, Type const &mvalue, Type const &rhs)
{
return lhs + mvalue + rhs;
}
It may be considered as a disadvantage that only equally typed arguments are accepted by this function (three ints, three doubles, etc.). To remedy this we define yet another overloaded function template, this time accepting arguments of any type. This function template can only be used if operator+ is defined between the function's actually used types, but apart from that there appears to be no problem. Here is the overloaded version accepting arguments of any type:
template <typename Type1, typename Type2, typename Type3>
Type1 add(Type1 const &lhs, Type2 const &mid, Type3 const &rhs)
{
return lhs + mid + rhs;
}
Now that we've defined the above two overloaded function templates expecting three arguments let's call add as follows:
add(1, 2, 3);
Should we expect an ambiguity here? After all, the compiler might select the former function, deducing that Type == int, but it might also select the latter function, deducing that Type1 == int, Type2 == int and Type3 == int. Remarkably, the compiler reports no ambiguity.
No ambiguity is reported because of the following. If overloaded template functions are defined using less and more specialized template type parameters (e.g., less specialized: all types different vs. more specialized: all types equal) then the compiler selects the more specialized function whenever possible.
As a rule of thumb: overloaded function templates must allow a unique combination of template type arguments to be specified to prevent ambiguities when selecting which overloaded function template to instantiate. The ordering of template type parameters in the function template's type parameter list is not important. E.g., trying to instantiate one of the following function templates results in an ambiguity:
template <typename T1, typename T2>
void binarg(T1 const &first, T2 const &second)
{}
template <typename T1, typename T2>
void binarg(T2 const &first, T1 const &second)
{}
This should not come as a surprise. After all, template type parameters are just formal names. Their names (T1, T2 or Whatever) have no concrete meanings.
21.8.3: Declaring overloaded function templates
Like any function, overloaded functions may be declared, either using plain declarations or instantiation declarations. Explicit template argument types may also be used. Example:
template <typename Container, typename Type>
Type add(Container const &container, Type const &init);
template int add<std::vector<int>, int>
(std::vector<int> const &vect, int const &init);
std::vector<int> vi;
int sum = add<std::vector<int>, int>(vi, 0);
21.9: Specializing templates for deviating types
The initial add template, defining two identically typed parameters works fine for all types supporting operator+ and a copy constructor. However, these assumptions are not always met. For example, with char *s, using operator+ or a `copy constructor' does not make sense. The compiler tries to instantiate the function template, but compilation fails as operator+ is not defined for pointers.
In such situations the compiler may be able to resolve the template type parameters but it (or we ...) may then detect that the standard implementation is pointless or produces errors.
To solve this problem a template explicit specialization may be defined. A template explicit specialization defines the function template for which a generic definition already exists using specific actual template type parameters. As we saw in the previous section the compiler always prefers a more specialized function over a less specialized one. So the template explicit specialization is selected whenever possible.
A template explicit specialization offers a specialization for its template type parameter(s). The special type is consistently substituted for the template type parameter in the function template's code. For example if the explicitly specialized type is char const * then in the template definition
template <typename Type>
Type add(Type const &lhs, Type const &rhs)
{
return lhs + rhs;
}
Type must be replaced by char const *, resulting in a function having prototype
char const *add(char const *const &lhs, char const *const &rhs);
Now we try to use this function:
int main(int argc, char **argv)
{
add(argv[0], argv[1]);
}
However, the compiler ignores our specialization and tries to instantiate the initial function template. This fails, leaving us wondering why it didn't select the explicit specialization....
To see what happened here we replay, step by step, the compiler's actions:
If our add function template should also be able to handle char * template type arguments another explicit specialization for char * may be required, resulting in the prototype
char *add(char *const &lhs, char *const &rhs);
Instead of defining another explicit specialization an overloaded function template could be designed expecting pointers. The following function template definition expects two pointers to constant Type values and returns a pointer to a non-constant Type:
template <typename Type>
Type *add(Type const *t1, Type const *t2)
{
std::cout << "Pointers\n";
return new Type;
}
What actual types may be bound to the above function parameters? In this case only a Type const *, allowing char const *'s to be passed as arguments. There's no opportunity for a qualification transformation here. The qualification transformation allows the compiler to add a const to a non-const argument if the parameter itself (and not Type) is specified in terms of a const or const &. Looking at, e.g., t1 we see that it's defined as a Type const *. There's nothing const here that's referring to the parameter (in which case it would have been Type const *const t1 or Type const *const &t1). Consequently a qualification transformation cannot be applied here.
As the above overloaded function template only accepts char const * arguments, it will not accept (without a reinterpret cast) char * arguments. So main's argv elements cannot be passed to our overloaded function template.
21.9.1: Avoiding too many specializations
So do we have to define yet another overloaded function template, this time expecting Type * arguments? It is possible, but at some point it should become clear that our approach doesn't scale. Like ordinary functions and classes, function templates should have one conceptually clear purpose. Trying to add overloaded function templates to overloaded function templates quickly turns the template into a kludge. Don't use this approach. A better approach is to construct the template so that it fits its original purpose, to make allowances for the occasional specific case and to describe its purpose clearly in its documentation.
In some situations constructing template explicit specializations may of course be defensible. Two specializations for const and non-const pointers to characters might be appropriate for our add function template. Here's how they are constructed:
error: template-id `add<char*>' for `char* add(char* const&, char*
const&)' does not match any template declaration
Here are two explicit specializations for the function template add, expecting char * and char const * arguments:
template <> char *add<char *>(char *const &p1,
char *const &p2)
{
std::string str(p1);
str += p2;
return strcpy(new char[str.length() + 1], str.c_str());
}
template <> char const *add<char const *>(char const *const &p1,
char const *const &p2)
{
static std::string str;
str = p1;
str += p2;
return str.c_str();
}
Template explicit specializations are normally included in the file containing the other function template's implementations.
21.9.2: Declaring specializations
Template explicit specializations can be declared in the usual way. I.e., by replacing its body with a semicolon.
When declaring a template explicit specialization the pair of angle brackets following the template keyword are essential. If omitted, we would have constructed a template instantiation declaration. The compiler would silently process it, at the expense of a somewhat longer compilation time.
When declaring a template explicit specialization (or when using an instantiation declaration) the explicit specification of the template type parameters can be omitted if the compiler is able to deduce these types from the function's arguments. As this is the case with the char (const) * specializations, they could also be declared as follows:
template <> char *add(char *const &p1, char *const &p2)
template <> char const *add(char const *const &p1,
char const *const &p2);
If in addition template <> could be omitted the template character would be removed from the declaration. The resulting declaration is now a mere function declaration. This is not an error: function templates and ordinary (non-template) functions may mutually overload each other. Ordinary functions are not as restrictive as function templates with respect to allowed type conversions. This could be a reason to overload a template with an ordinary function every once in a while.
A function template explicit specialization is not just another overloaded version of the function template. Whereas an overloaded version may define a completely different set of template parameters, a specialization must use the same set of template parameters as its non-specialized variant. The compiler uses the specialization in situations where the actual template arguments match the types defined by the specialization (following the rule that the most specialized set of parameters matching a set of arguments will be used). For different sets of parameters overloaded versions of functions (or function templates) must be used.
21.9.3: Complications when using the insertion operator
Now that we've covered explicit specializations and overloading let's consider what happens when a class defines a std::string conversion operator (cf. section 11.3).
A conversion operator is guaranteed to be used as an rvalue. This means that objects of a class defining a string conversion operator can be assigned to, e.g., string objects. But when trying to insert objects defining string conversion operators into streams then the compiler complains that we're attempting to insert an inappropriate type into an ostream.
On the other hand, when this class defines an int conversion operator insertion is performed flawlessly.
The reason for this distinction is that operator<< is defined as a plain (free) function when inserting a basic type (like int) but it is defined as a function template when inserting a string. Hence, when trying to insert an object of our class defining a string conversion operator the compiler visits all overloaded versions of insertion operators inserting into ostream objects.
Since no basic type conversion is available the basic type insertion operators can't be used. Since the available conversions for template arguments do not allow the compiler to look for conversion operators our class defining the string conversion operator cannot be inserted into an ostream.
If it should be possible to insert objects of such a class into ostream objects the class must define its own overloaded insertion operator (in addition to the string conversion operator that was required to use the class's objects as rvalue in string assignments).
21.10: Static assertions
The
static_assert(constant expression, error message)
utility is available to allow assertions to be made from inside template definitions. Here are two examples of its use:
static_assert(BUFSIZE1 == BUFSIZE2,
"BUFSIZE1 and BUFSIZE2 must be equal");
template <typename Type1, typename Type2>
void rawswap(Type1 &type1, Type2 &type2)
{
static_assert(sizeof(Type1) == sizeof(Type2),
"rawswap: Type1 and Type2 must have equal sizes");
// ...
}
The first example shows how to avoid yet another preprocessor directive (in this case the #error directive).
The second example shows how static_assert can be used to ensure that a template operates under the right condition(s).
The string defined in static_assert's second argument is displayed and compilation stops if the condition specified in static_assert's first argument is false.
Like the #error preprocessor directive static_assert is a compile-time matter that doesn't have any effect on the run-time efficiency of the code in which it is used.
21.11: Numeric limits
The header file <climits> defines constants for various types, e.g., INT_MAX defines the maximum value that can be stored in an int.
The disadvantage of the limits defined in climits is that they are fixed limits. Let's assume you write a function template that receives an argument of a certain type. E.g,
template<typename Type>
Type operation(Type &&type);
Assume this function should return the largest negative value for Type if type is a negative value and the largest positive value if type is a positive value. However, 0 should be returned if the type is not an integral value.
How to proceed?
Since the constants in climits can only be used if the type to use is already known, the only approach seems to be to create function template specializations for the various integral types, like:
template<>
int operation<int>(int &&type)
{
return type < 0 ? INT_MIN : INT_MAX;
}
The facilities provided by numeric_limits provide an alternative. To use these facilities the header file <limits> header file must be included.
The class template numeric_limits offers various members answering all kinds of questions that could be asked of numeric types. Before introducing these members, let's have a look at how we could implement the operation function template as just one single function template:
template<typename Type>
Type operation(Type &&type)
{
return
not numeric_limits<Type>::is_integer ? 0 :
type < 0 ? numeric_limits<Type>::min() :
numeric_limits<Type>::max();
}
Now operation can be used for all the language's primitive types.
Here is an overview of the facilities offered by numeric_limits. Note that the member functions defined by numeric_limits return constexpr values. A member `member' defined by numeric_limits for type Type can be used as follows:
numeric_limits<Type>::member // data members
numeric_limits<Type>::member() // member functions
21.12: Polymorphous wrappers for function objects
In C++ pointers to (member) functions have fairly strict rvalues. They can only point to functions matching their types. This becomes a problem when defining templates where the type of a function pointer may depend on the template's parameters.
To solve this problem polymorphous (function object) wrappers can be used. Polymorphous wrappers refer to function pointers, member functions or function objects, as long as their parameters match in type and number.
Before using polymorphic function wrappers the <functional> header file must be included.
Polymorphic function wrappers are made available through the std::function class template. Its template argument is the prototype of the function to create a wrapper for. Here is an example of the definition of a polymorphic function wrapper that can be used to point to a function expecting two int values and returning an int:
std::function<int (int, int)> ptr2fun;
Here, the template's parameter is int (int, int), indicating a function expecting two int arguments, and returning and int. Other prototypes return other, matching, function wrappers.
Such a function wrapper can now be used to point to any function the wrapper was created for. E.g., `plus<int> add' creates a functor defining an int operator()(int, int) function call member. As this qualifies as a function having prototype int (int, int), our ptr2fun may point to add:
ptr2fun = add;
If ptr2fun does not yet point to a function (e.g., it is merely defined) and an attempt is made to call a function through it a `std::bad_function_call' exception is thrown. Also, a polymorphic function wrapper that hasn't been assigned to a function's address represents the value false in logical expressions (as if it had been a pointer having value zero):
std::function<int(int)> ptr2int;
if (not ptr2int)
cout << "ptr2int is not yet pointing to a function\n";
Polymorphous function wrappers can also be used to refer to functions, functors or other polymorphous function wrappers having prototypes for which standard conversions exist for either parameters or return values. E.g.,
bool predicate(long long value);
void demo()
{
std::function<int(int)> ptr2int;
ptr2int = predicate; // OK, convertible param. and return type
struct Local
{
short operator()(char ch);
};
Local object;
std::function<short(char)> ptr2char(object);
ptr2int = object; // OK, object is a functor whose function
// operator has a convertible param. and
// return type.
ptr2int = ptr2char; // OK, now using a polym. funct. wrapper
}
21.13: Compiling template definitions and instantiations
Consider this definition of the add function template:
template <typename Container, typename Type>
Type add(Container const &container, Type init)
{
return std::accumulate(container.begin(), container.end(), init);
}
Here std::accumulate is called using container's begin and end members.
The calls container.begin() and container.end() are said to depend on template type parameters. The compiler, not having seen container's interface, cannot check whether container actually has members begin and end returning input iterators.
On the other hand, std::accumulate itself is independent of any template type parameter. Its arguments depend on template parameters, but the function call itself isn't. Statements in a template's body that are independent of template type parameters are said not to depend on template type parameters.
When the compiler encounters a template definition, it verifies the syntactic correctness of all statements not depending on template parameters. I.e., it must have seen all class definitions, all type definitions, all function declarations etc. that are used in those statements. If the compiler hasn't seen the required definitions and declarations then it will reject the template's definition. Therefore, when submitting the above template to the compiler the numeric header file must first have been included as this header file declares std::accumulate.
With statements depending on template parameters the compiler cannot perform those extensive syntactic checks. It has no way to verify the existence of a member begin for the as yet unspecified type Container. In these cases the compiler performs superficial checks, assuming that the required members, operators and types eventually become available.
The location in the program's source where the template is instantiated is called its point of instantiation. At the point of instantiation the compiler deduces the actual types of the template's parameters. At that point it checks the syntactic correctness of the template's statements that depend on template type parameters. This implies that the compiler must have seen the required declarations only at the point of instantiation. As a rule of thumb, you should make sure that all required declarations (usually: header files) have been read by the compiler at every point of instantiation of the template. For the template's definition itself a more relaxed requirement can be formulated. When the definition is read only the declarations required for statements not depending on the template's type parameters must have been provided.
21.14: The function selection mechanism
When the compiler encounters a function call, it must decide which function to call when overloaded functions are available. Earlier we've encountered principles like `the most specific function is selected'. This is a fairly intuitive description of the compiler's function selection mechanism. In this section we'll have a closer look at this mechanism.
Assume we ask the compiler to compile the following main function:
int main()
{
process(3, 3);
}
Furthermore assume that the compiler has encountered the following function declarations when it's about to compile main:
template <typename T>
void process(T &t1, int i); // 1
template <typename T1, typename T2>
void process(T1 const &t1, T2 const &t2); // 2
template <typename T>
void process(T const &t, double d); // 3
template <typename T>
void process(T const &t, int i); // 4
template <>
void process<int, int>(int i1, int i2); // 5
void process(int i1, int i2); // 6
void process(int i, double d); // 7
void process(double d, int i); // 8
void process(double d1, double d2); // 9
void process(std::string s, int i) // 10
int add(int, int); // 11
The compiler, having read main's statement, must now decide which function must actually be called. It proceeds as follows:
This implies that at least the number of arguments must match the number of parameters of the viable functions. Function 10's first argument is a string. As a string cannot be initialized by an int value no appropriate conversion exists and function 10 is removed from the list of candidate functions. double parameters can be retained. Standard conversions do exists for ints to doubles, so all functions having ordinary double parameters can be retained. Therefore, the set of viable functions consists of functions 1 through 9.
At this point the compiler tries to determine the types of the template type parameters. This step is outlined in the following subsection.
21.14.1: Determining the template type parameters
Having determined the set of candidate functions and from that set the set of viable functions the compiler must now determine the actual types of the template type parameters.
It may use any of the three standard template parameter transformation procedures (cf. section 21.4) when trying to match actual types to template type parameters. In this process it concludes that no type can be determined for the T in function 1's T &t1 parameter as the argument 3 is a constant int value. Thus function 1 is removed from the list of viable functions. The compiler is now confronted with the following set of potentially instantiated function templates and ordinary functions:
void process(T1 [= int] const &t1, T2 [= int] const &t2); // 2
void process(T [= int] const &t, double d); // 3
void process(T [= int] const &t, int i); // 4
void process<int, int>(int i1, int i2); // 5
void process(int i1, int i2); // 6
void process(int i, double d); // 7
void process(double d, int i); // 8
void process(double d1, double d2); // 9
The compiler associates a direct match count value to each of the viable functions. The direct match count counts the number of arguments that can be matched to function parameters without an (automatic) type conversion. E.g., for function 2 this count equals 2, for function 7 it is 1 and for function 9 it is 0. The functions are now (decrementally) sorted by their direct match count values:
match
count
void process(T1 [= int] const &t1, T2 [= int] const &t2); 2 // 2
void process(T [= int] const &t, int i); 2 // 4
void process<int, int>(int i1, int i2); 2 // 5
void process(int i1, int i2); 2 // 6
void process(T [= int] const &t, double d); 1 // 3
void process(int i, double d); 1 // 7
void process(double d, int i); 1 // 8
void process(double d1, double d2); 0 // 9
If there is no draw for the top value the corresponding function is selected and the function selection process is completed.
When multiple functions appear at the top the compiler verifies that no ambiguity has been encountered. An ambiguity is encountered if the sequences of parameters for which type conversions were (not) required differ. As an example consider functions 3 and 8. Using D for `direct match' and C for `conversion' the arguments match function 3 as D,C and function 8 as C,D. Assuming that 2, 4, 5 and 6 were not available, then the compiler would have reported an ambiguity as the sequences of argument/parameter matching procedures differ for functions 3 and 8. The same difference is encountered comparing functions 7 and 8, but no such difference is encountered comparing functions 3 and 7.
At this point there is a draw for the top value and the compiler proceeds with the subset of associated functions (functions 2, 4, 5 and 6). With each of these functions an `ordinary parameter count' is associated counting the number of non-template parameters of the functions. The functions are decrementally sorted by this count, resulting in:
ordin. param.
count
void process(int i1, int i2); 2 // 6
void process(T [= int] const &t, int i); 1 // 4
void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2
void process<int, int>(int i1, int i2); 0 // 5
Now there is no draw for the top value. The corresponding function (process(int, int), function 6) is selected and the function selection process is completed. Function 6 is used in main's function call statement.
Had function 6 not been defined, function 4 would have been used. Assuming that neither function 4 nor function 6 had been defined, the selection process would continue with functions 2 and 5:
ordin. param.
count
void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2
void process<int, int>(int i1, int i2); 0 // 5
In this situation a draw is encountered once again and the selection process continues. A `type of function' value is associated with each of the functions having the highest ordinary parameter count and these functions are decrementally sorted by their type of function values. Value 2 is associated to ordinary functions, value 1 to template explicit specializations and value 0 to plain function templates.
If there is no draw for the top value the corresponding function is selected and the function selection process is completed. If there is a draw the compiler reports an ambiguity and cannot determine which function to call. Assuming only functions 2 and 5 existed then this selection step would have resulted in the following ordering:
function
type
void process<int, int>(int i1, int i2); 1 // 5
void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2
Function 5, the template explicit specialization, would have been selected.
Figure 27: The function template selection mechanism
Here is a summary of the function template selection mechanism (cf. figure Figure 27):
21.15: SFINAE: Substitution Failure Is Not An Error
Consider the following struct definition:
struct Int
{
typedef int type;
};
Although at this point it may seem strange to embed a typedef in a struct, in chapter 23 we will encounter situations where this is actually very useful. It allows us to define a variable of a type that is required by the template. E.g., (ignore the use of typename in the following function parameter list, but see section 22.2.1 for details):
template <typename Type>
void func(typename Type::type value)
{
}
When calling func(10) Int has to be specified explicitly since there may be many structs that define type: the compiler needs some assistance. The correct call is func<Int>(10). Now that it's clear that Int is meant, and the compiler correctly deduces that value is an int.
But templates may be overloaded and our next definition is:
template <typename Type>
void func(Type value)
{}
Now, to call this function we specify func<int>(10) and again this flawlessly compiles.
But as we've seen in the previous section when the compiler determines which template to instantiate it creates a list of viable functions and selects the function to instantiate by matching the parameter types of viable functions with the provided actual argument types. To do so it has to determine the types of the parameters and herein lies a problem.
When evaluating Type = int the compiler encounters the prototypes func(int::type) (first template definition) and func(int) (second template definition). But there is no int::type, and so in a way this generates an error. The error results from matching the provided template type argument with the types used in the various template definitions.
A type-problem caused by substituting a type in a template definition is, however, not considered an error, but merely an indication that that particular type cannot be used in that particular template. The template is therefore removed from the list of candidate functions.
This principle is known as substitution failure is not an error (SFINAE) and it is often used by the compiler to select not only a simple overloaded function (as shown here) but also to choose among available template specializations (see also sections 23.6.1 and 23.9.3).
21.16: Conditional function definitions using `if constexpr'
In addition to the common if (cond) selection statement the if constexpr (cond) syntax is supported by the language. Although it can be used in all situations where a standard if selection statement are used, its specific use is encountered inside function templates: if constexpr allows the compiler to (conditionally) instantiate elements of a template function, depending on the compile-time evaluation of the if constexpr's (cond) clause.
Here is an example:
1: void positive();
2: void negative();
3:
4: template <int value>
5: void fun()
6: {
7: if constexpr (value > 0)
8: positive();
9: else if constexpr (value < 0)
10: negative();
11: }
12:
13: int main()
14: {
15: fun<4>();
16: }
void fun<4>()
{
positive();
}
Note that the if constexpr statements themselves do not result in executable code: it is used by the compiler to select which part (or parts) it should instantiate. In this case only positive, which must be available before the program's linking phase can properly complete.
21.17: Summary of the template declaration syntax
In this section the basic syntactic constructions for declaring templates are summarized. When defining templates, the terminating semicolon should be replaced by a function body.
Not every template declaration may be converted into a template definition. If a definition may be provided it is explicitly mentioned.
template <typename Type1, typename Type2>
void function(Type1 const &t1, Type2 const &t2);
template
void function<int, double>(int const &t1, double const &t2);
void (*fp)(double, double) = function<double, double>;
void (*fp)(int, int) = function<int, int>;
template <>
void function<char *, char *>(char *const &t1, char *const &t2);
friend void function<Type1, Type2>(parameters);
21.18: Variables as templates (template variables)
In addition to function templates and class templates (cf. chapter 22) C++ supports variable templates. Variable templates might come in handy when defining (function or class) templates defining variables of types specified by template type parameters.
A variable template starts with a familiar template header, followed by the definition of the variable itself. The template header specifies a type, for which a default type may also be specified. E.g.,
template<typename T = long double>
constexpr T pi = T(3.1415926535897932385);
To use this variable a type must be specified, and as long as the initialized value can be converted to the specified type the conversion is silently performed by the compiler:
cout << pi<> << ' ' << pi<int>;
At the second insertion the long double initialization value is converted to int, and 3 is displayed.
Specializations are also supported. E.g., to show the text `pi' a specialization for a char const * type can be defined:
template<>
constexpr char const *pi<char const *> = "pi";
With this specialization we can do cout << pi<char const *> to show pi.
Chapter 22: Class Templates
Templates can not only be constructed for functions but also for complete classes. Consider constructing a class template when a class should be able to handle different types of data. Class templates are frequently used in C++: chapter 12 discusses data structures like vector, stack and queue, that are implemented as class templates. With class templates, the algorithms and the data on which the algorithms operate are completely separated from each other. To use a particular data structure in combination with a particular data type only the data type needs to be specified when defining or declaring a class template object (as in stack<int> iStack).
In this chapter constructing and using class templates is discussed. In a sense, class templates compete with object oriented programming (cf. chapter 14), that uses a mechanism resembling that of templates. Polymorphism allows the programmer to postpone the implementation of algorithms by deriving classes from base classes in which algorithms are only partially implemented. The actual definition and processing of the data upon which the algorithms operate may be postponed until derived classes are defined. Likewise, templates allow the programmer to postpone the specification of the data upon which the algorithms operate. This is most clearly seen with abstract containers, which completely specify the algorithms and at the same time leave the data type on which the algorithms operate completely unspecified.
There exists an intriguing correspondence between the kind of polymorphism we've encountered in chapter 14 and certain uses of class templates. In their book C++ Coding Standards (Addison-Wesley, 2005) Sutter and Alexandrescu refer to static polymorphism and dynamic polymorphism. Dynamic polymorphism is what we use when overriding virtual members. Using vtables the function that is actually called depends on the type of object a (base) class pointer points at. Static polymorphism is encountered in the context of templates, and is discussed and compared to dynamic polymorphism in section 22.12.
Generally, class templates are easier to use than polymorphism. It is certainly easier to write stack<int> istack to create a stack of ints than to derive a new class Istack: public stack and to implement all necessary member functions defining a similar stack of ints using object oriented programming. On the other hand, for each different type for which an object of a class template is defined another, possibly complete class must be reinstantiated. This is not required in the context of object oriented programming where derived classes use, rather than copy, the functions that are already available in their base classes (but see also section 22.11).
Previously we've already used class templates. Objects like vector<int> vi and vector<string> vs are commonly used. The data types for which these templates are defined and instantiated are an inherent part of such container types. It is stressed that it is the combination of a class template type and its template parameter(s), rather than the mere class template's type that defines or generates a type. So vector<int> is a type as is vector<string>. Such types could very well be represented by typedefs:
typedef std::vector<int> IntVector;
typedef std::vector<std::string> StringVector;
IntVector vi;
StringVector vs;
22.0.1: Template Argument Deduction
One important difference between function templates and class templates is that the template arguments of function templates can normally be deduced by the compiler, whereas template arguments of class templates may have to be specified by the user. That's not always required, but since the template types of class templates are an inherent part of the class template's type it must be completely clear to the compiler what the class template's types are.
So, in case we have a
template <typename T>
void fun(T const ¶m);
we can do
vector<int> vi;
fun(vi)
and the compiler deduces T == vector<int>.
On the other hand, if we have
template <typename T>
struct Fun
{
T d_data;
Fun();
};
we cannot do
Fun fun;
since Fun is not a type, and the compiler cannot deduce what the intended type is.
Sometimes the compiler can deduce the intended types. Consider this:
vector vi{ 1, 2, 3, 4 };
In this case the compiler deduces int from the provided values. The compiler is smart enought to select the most general type, as in this example, where double is deduced:
vector vi{ 1, 2.5 };
The compiler is doing its utmost to deduce types when they're not explicitly specified, and it will stay on the safe side. So the vector is a vector<int> in the first example and a vector<double> in the second.
Although it's nice that the compiler is willing and able to deduce types in many situations it's at the same time a potential source of confusion. In the first example only non-negative values are used, so why not define a vector<unsigned> or a vector<size_t>? In the second example the compiler deduces vector<double>, but vector<float> could very well also have been used.
To avoid confusion, as a rule of thumb, it might be a good idea to specify the types of class templates when defining class type objects. It requires hardly any effort and it completely clarifies what you want and mean. So prefer
vector<int> vi{ 1, 2, 3 };
vector<double> vd{ 1, 2.5 };
over the definitions implicitly using types.
22.0.1.1: Simple Definitions
Here are some examples of how simple definitions where the compiler deduces template arguments can (and cannot) be specified.
Starting point:
template <class ...Types> // any set of types
class Deduce
{
public:
Deduce(Types ...params); // constructors
void fun(); // a member function
};
Some definitions:
// deduce: full definition:
// --------------------------------
Deduce first{1}; // 1: int -> Deduce<int> first{1}
Deduce second; // no Types -> Deduce<> second;
Deduce &&ref = Deduce<int>{ 1 };// int -> Deduce<int> &&ref
template <class Type>
Deduce third{ static_cast<Type *>(0) };
The template third is a recipe for constructing Deduce objects from a type that's specified for third. The pointer's type simply is a pointer to the specified type (so, specifying third<int> implies an int *). Now that the type of third's argument is available (i.e., an int *) the compiler deduces that third{0} is a Deduce<int *>.
This Deduce<int *> object could, e.g., be used to initialize a named Deduce<int *> object:
auto x = third<int>; // x's full definition: Deduce<int *> x{0}
Deduce's member functions can be used by anonymous and named objects:
x.fun(); // OK: fun called by named object
third<int>.fun(); // OK: fun called by anonymous object
Here are some examples that won't compile:
extern Deduce object; // not an object definition
Deduce *pointer = 0; // any set of types could be intended
Deduce function(); // same.
When defining objects, either using function-type or curly-brace definitions template argument deduction is realized as follows:
template <class ...Types>
Deduce<Types ...> imaginary(Types ...params);
is formed.
Let's apply this process to the class Deduce. The set of imaginary functions matching Deduce looks like this:
// already encountered: matching
template <class ...Types> // Deduce(Types ...params)
Deduce<Types ...> imaginary(Types ...params);
// the copy constructor: matching
template <class ...Types> // Deduce(Deduce<Types ...> const &)
Deduce<Types ...> imaginary(Deduce<Types ...> const &other);
// the move constructor, matching
template <class ...Types> // Deduce(Deduce<Types ...> &&)
Deduce<Types ...> imaginary(Deduce<Types ...> &&tmp);
For the construction Deduce first{1} the first imaginary function wins the overload contest, resulting in the template argument deduction int for class ...Types, and hence Deduce<int> first{1} is defined.
Note that when a class template is nested under a class template, the nested class template's name depends on the outer class type. The outer class then provides the name qualifier for the inner class template. In such cases template argument deduction is used for the nested class, but (as it is not used for name qualifiers) is not used for the outer class. Here is an example: adding a nested class template to Deduce:
template <class OuterType>
class Outer
{
public:
template <class InnerType>
struct Inner
{
Inner(OuterType);
Inner(OuterType, InnerType);
template <typename ExtraType>
Inner(ExtraType, InnerType);
};
};
// defining:
Outer<int>::Inner inner{2.0, 1};
In this case, the compiler uses these imaginary functions:
template <typename InnerType>
Outer<int>::Inner<InnerType> // copy constructor
imaginary(Outer<int>::Inner<InnerType> const &);
template <typename InnerType>
Outer<int>::Inner<InnerType> // move constructor
imaginary(Outer<int>::Inner<InnerType> &&);
template <typename InnerType> // first declared constructor
Outer<int>::Inner<InnerType> imaginary(int);
template <typename InnerType> // second declared constructor
Outer<int>::Inner<InnerType> imaginary(int, InnerType);
template <typename InnerType> // third declared constructor
template <typename ExtraType>
Outer<int>::Inner<InnerType> imaginary(ExtraType, InnerType);
Template argument deduction for calling imaginary(2.0, 1) results in double for its first argument and int for its second. Overload resolution then favors the last imaginary function, and so ExtraType: double and InnerType: int. Consequently,
Outer<int>::Inner inner{ 2.0, 1 };
is defined as:
Outer<int>::Inner<int> Inner{ 2.0, 1 };
22.0.1.2: Explicit Conversions
Have a look at the following class interface:
template <class T>
struct Class
{
std::vector<T> d_data;
struct Iterator
{
typedef T type;
bool operator!=(Iterator const &rhs);
Iterator operator++(int);
type const &operator*() const;
// ...
};
Class();
Class(T t);
Class(Iterator begin, Iterator end);
template <class Tp>
Class(Tp first, Tp second)
{}
Iterator begin();
Iterator end();
};
The implementation of the Class constructor expecting two Class::Iterator arguments would probably be somewhat similar to the following:
template <class T>
Class<T>::Class(Iterator begin, Iterator end)
{
while (begin != end)
d_data.push_back(*begin++);
}
where d_data is some container storing T values. A Class object can now constructed from a pair of Class::Iterators:
Class<int> source;
...
Class<int> dest{source.begin(), source.end()};
Here, the simple template argument deduction procedure fails to deduce the int template argument. This fails:
Class dest{source.begin(), source.end()};
When attempting to instantiate a Class object by passing it Class::Iterators the compiler cannot directly deduce from the provided arguments that a Class<Class::Iterator::type> is to be used: type isn't directly available. Compare this to Class's third constructor, where
Class intObject{12};
allows the compiler to create an imaginary function
template <class Type>
Class <Type> imaginary(Type param)
in which case Type clearly is an int, and so a Class<int> object is constructed.
When we try to do this for Class(Iterator, Iterator) we get
template <class Iterator>
Class<???> imaginary(Iterator, Iterator);
and here Class's template argument isn't directly related to Iterator: the compiler cannot deduce its type and consequently compilation fails.
A similar argument applies to the fourth constructor, which receives two Tp arguments, which are both independent from Class's template type.
In cases like these simple type template argument deduction procedure fails. Still, not everything is lost: explicit conversions, defined as explicitly specified deduction rules which are added (below) to the class's interface can be used.
An explicitly specified deduction rule connects a class template constructor signature to a class template type. It specifies the template arguments for the class template object that is constructed using the constructor whose signature is specified. The generic syntactical form of an explicitly specified deduction rule looks like this:
class template constructor signature -> resulting class type ;
Let's apply this to Class(Iterator begin, Iterator end). Its signature is
template <class Iterator>
Class(Iterator begin, Iterator end)
Requiring that Iterator defines a typename type, we can now formulate a resulting class type:
Class<typename Iterator::type>
Now we can combine both in an explicitly specified deduction rule (which is added as a separate line below Class's interface):
template <class Iterator>
Class(Iterator begin, Iterator end) -> Class<typename Iterator::type>;
After adding this deduction rule to Class's interface the following constructor calls successfully compile:
Class src{12}; // already OK
Class dest1{src.begin(), src.end()};
// begin() and end() return Class<int>::Iterator
// objects. Typename Class<int>::Iterator::type
// is defined as int, so Class<int> dest1 is
// defined.
struct Double // used at the next construction
{
typedef double type;
// ... members ...
};
Class dest2{Double{}, Double{}};
// Here the struct Double defines
// typename double type, so
// Class<double> dest2 is defined.
Within classes the compiler uses (as before) the class itself when merely referring to the class name: when referring to Class in the class Class, the compiler considers Class to be Class<T>. So the headers of the declaration and definition of Class's copy constructor look like this:
Class(Class const &other); // declaration
template <class T> // definition
Class<T>::Class(Class const &other)
{
// ...
}
Sometimes the default type is not what you want, in which case the required type must explicitly be specified. Consider what happens if add a member dup to Class:
template <typename T>
template <typename Tp>
auto Class<T>::dup(Tp first, Tp second)
{
return Class{ first, second }; // probably not what you want
} // (see the following text)
Here, because we're inside Class the compiler deduces that Class<T> must be returned. But in the previous section we decided that, when initializing Class from iterators, Class<typename Tp::type> should be constructed and returned. To accomplish that, the required type is explicitly specified:
template <typename T>
template <typename Tp>
auto Class<T>::dup(Tp first, Tp second)
{ // OK: explicitly specified Class tyoe.
return Class<typename Tp::type>{ first, second };
}
As shown in this example, simple (implicit) or explicit deduction rules do not have to be used: they can be used in many standard situations where explicitly specifying the class's template arguments appears to be superfluous. Template argument deduction was added to the language to simplify object construction when using class templates. But in the end you don't have to use these deduction rules: it's always still possible to explicitly specify template arguments.
22.1: Defining class templates
Having covered the construction of function templates, we're now ready for the next step: constructing class templates. Many useful class templates already exist. Rather than illustrating the construction of a class template by looking at an already existing class template the construction of another potentially useful new class template will be undertaken.
The new class implements a circular queue. A circular queue has a fixed number of max_size elements. New elements are inserted at its back and only its head and tail elements can be accessed. Only the head element can be removed from a circular queue. Once n elements have been appended the next element is inserted again at the queue's (physical) first position. The circular queue allows insertions until it holds max_size elements. As long as a circular queue contains at least one element elements may be removed from it. Trying to remove an element from an empty circular queue or to add another element to a full circular queue results in exceptions being thrown. In addition to other constructors a circular queue must offer a constructor initializing its objects for max_size elements. This constructor must make available the memory for the max_size elements but must not call those elements default constructors (hinting at the use of the placement new operator). A circular queue should offer value semantics as well as a move constructor.
Please note that in the above description the actual data type that is used for the circular queue is nowhere mentioned. This is a clear indication that our class could very well be defined as a class template. Alternatively, the class could be defined for some concrete data type which is then abstracted when converting the class to a class template.
The actual construction of a class template is provided in the next section, where the class template CirQue (circular queue) is developed.
22.1.1: Constructing the circular queue: CirQue
The construction of a class template is illustrated in this section. Here, we'll develop the class template CirQue (circular queue). This class template has one template type parameter, Data, representing the data type that is stored in the circular queue. The outline of the interface of this class template looks like this:
template<typename Data>
class CirQue
{
// member declarations
};
A class template's definition starts like a function template's definition:
typename Type1, typename Type2, typename Type3
When a class template defines multiple template type parameters they are matched in sequence with the list of template type arguments provided when defining objects of such a class template. Example:
template <typename Type1, typename Type2, typename Type3>
class MultiTypes
{
...
};
MultiTypes<int, double, std::string> multiType;
// Type1 is int, Type2 is double, Type3 is std::string
Once the CirQue class template has been defined it can be used to create all kinds of circular queues. As one of its constructors expects a size_t argument defining the maximum number of elements that can be stored in the circular queue, circular queues could be defined like this:
CirQue<int> cqi(10); // max 10 ints
CirQue<std::string> cqstr(30); // max 30 strings
As noted in the introductory section of this chapter the combination of name of the class template and the data type for which it is instantiated defines a data type. Also note the similarity between defining a std::vector (of some data type) and a CirQue (of some data type).
Like std::map containers class templates may be defined with multiple template type parameters.
Back to CirQue. A CirQue must be capable of storing max_size Data elements. These elements are eventually stored in memory pointed at by a pointer Data *d_data, initially pointing to raw memory. New elements are added at the backside of the CirQue. A pointer Data *d_back is used to point to the location where the next element is going to be stored. Likewise, Data *d_front points to the location of the CirQue's first element. Two size_t data members are used to monitor the filling state of the CirQue: d_size represents the number of elements currently stored in the CirQue, d_maxSize represents the maximum number of elements that the CirQue can contain. Thus, the CirQue's data members are:
size_t d_size;
size_t d_maxSize;
Data *d_data;
Data *d_front;
Data *d_back;
22.1.2: Non-type parameters
Function template parameters are either template type parameters or template non-type parameters (actually, a third type of template parameter exists, the template template parameter, which is discussed in chapter 23 (section 23.4)).
Class templates may also define non-type parameters. Like the function template non-type parameters they must be (integral) constants whose values must be known at object instantiation time.
Different from function template non-type parameters the values of class template non-type parameters are not deduced by the compiler using arguments passed to class template members.
Assume we extend our design of the class template CirQue so that it defines a second (non-type) parameter size_t Size. Our intent is to use this Size parameter in the constructor defining an array parameter of Size elements of type Data.
The CirQue class template now becomes (only showing the relevant constructor):
template <typename Data, size_t Size>
class CirQue
{
// ... data members
public:
CirQue(Data const (&arr)[Size]);
...
};
template <typename Data, size_t Size>
CirQue<Data, Size>::CirQue(Data const (&arr)[Size])
:
d_maxSize(Size),
d_size(0),
d_data(operator new(Size * sizeof(Data))),
d_front(d_data),
d_back(d_data),
{
std::copy(arr, arr + Size, back_inserter(*this));
}
Unfortunately, this setup doesn't satisfy our needs as the values of template non-type parameters are not deduced by the compiler. When the compiler is asked to compile the following main function it reports a mismatch between the required and actual number of template parameters:
int main()
{
int arr[30];
CirQue<int> ap{ arr };
}
/*
Error reported by the compiler:
In function `int main()':
error: wrong number of template arguments (1, should be 2)
error: provided for `template<class Data, size_t Size>
class CirQue'
*/
Defining Size as a non-type parameter having a default value doesn't work either. The compiler always uses the default unless its value is explicitly specified. Reasoning that Size can be 0 unless we need another value, we might be tempted to specify size_t Size = 0 in the template's parameter type list. Doing so we create a mismatch between the default value 0 and the actual size of the array arr as defined in the above main function. The compiler, using the default value, reports:
In instantiation of `CirQue<int, 0>':
...
error: creating array with size zero (`0')
So, although class templates may use non-type parameters they must always be specified like type parameters when an object of that class is defined. Default values can be specified for those non-type parameters causing the compiler to use the default when the non-type parameter is left unspecified.
Default template parameter values (either type or non-type template parameters) may not be specified when defining template member functions. In general: function template definitions (and thus: class template member functions) may not be given default template (non) type arguments. If default template arguments are to be used for class template members, they have to be specified by the class interface.
Similar to non-type parameters of function templates default argument values for non-type class template parameters may only be specified as constants:
Although our attempts to define a constructor of the class CirQue accepting an array as its argument has failed so far, we're not yet out of options. In the next section a method is described that does allow us to reach our goal.
22.1.3: Member templates
Our previous attempt to define a template non-type parameter that is initialized by the compiler to the number of elements of an array failed because the template's parameters are not implicitly deduced when a constructor is called. Instead, they must explicitly be specified when an object of the class template is defined. As the template arguments are specified just before the template's constructor is called the compiler doesn't have to deduce anything and it can simply use the explicitly specified template arguments.
In contrast, when function templates are used, the actual template parameters are deduced from the arguments used when calling the function. This opens up an alley leading to the solution of our problem. If the constructor itself is turned into a function template (having its own template header), then the compiler will be able to deduce the non-type parameter's value and there is no need anymore to specify it explicitly using a class template non-type parameter.
Members (functions or nested classes) of class templates that are themselves templates are called member templates.
Member templates are defined as any other template, including its own template header.
When converting our earlier CirQue(Data const (&array)[Size]) constructor into a member template the class template's Data type parameter can still be used, but we must provide the member template with a non-type parameter of its own. Its declaration in the (partially shown) class interface looks like this:
template <typename Data>
class CirQue
{
public:
template <size_t Size>
explicit CirQue(Data const (&arr)[Size]);
};
Its implementation becomes:
template <typename Data>
template <size_t Size>
CirQue<Data>::CirQue(Data const (&arr)[Size])
:
d_size(0),
d_maxSize(Size),
d_data(static_cast<Data *>(operator new(sizeof(arr)))),
d_front(d_data),
d_back(d_data)
{
std::copy(arr, arr + Size, std::back_inserter(*this));
}
The implementation uses the STL's copy algorithm and a back_inserter adapter to insert the array's elements into the CirQue. To use the back_inserter CirQue must define two (public) typedefs (cf. section 18.2.2):
typedef Data value_type;
typedef value_type const &const_reference;
Member templates have the following characteristics:
CirQue<int> object(array);
namespace SomeName
{
template <typename Type, ...> // class template definition
class ClassName
{
...
};
template <typename Type, ...> // non-inline member definition(s)
ClassName<Type, ...>::member(...)
{
...
}
} // namespace closes
A potentially occurring problem remains. Assume that in addition to the above member template a CirQue<Data>::CirQue(Data const *data) has been defined. Some (here not further elaborated) protocol could be defined allowing the constructor to determine the number of elements that should be stored in the CirQue object. When we now define
CirQue<int> object{ array };
it is this latter constructor, rather than the member template, that the compiler will use.
The compiler selects this latter constructor as it is a more specialized version of a constructor of the class CirQue than the member template (cf. section 21.14). Problems like these can be solved by defining the constructor CirQue(Data const *data) into a member template as well or by defining a constructor using two parameters, the second parameter defining the number of elements to copy.
When using the former constructor (i.e., the member template) it must define a template type parameter Data2. Here `Data' cannot be used as template parameters of a member template may not shadow template parameters of its class. Using Data2 instead of Data takes care of this subtlety. The following declaration of the constructor CirQue(Data2 const *) could appear in CirQue's header file:
template <typename Data>
class CirQue
{
template <typename Data2>
explicit CirQue(Data2 const *data);
}
Here is how the two constructors are selected in code defining two CirQue objects:
int main()
{
int array[30];
int *iPtr = array;
CirQue<int> ac{ array }; // calls CirQue(Data const (&arr)[Size])
CirQue<int> acPtr{ iPtr }; // calls CirQue(Data2 const *)
}
22.1.4: CirQue's constructors and member functions
It's time to return to Cirque's design and construction again.
The class CirQue offers various member functions. Normal design principles should be adhered to when constructing class template members. Class template type parameters should preferably be defined as Type const &, rather than Type, to prevent unnecessary copying of large data structures. Template class constructors should use member initializers rather than member assignment within the body of the constructors. Member function definitions should preferably not be provided in-class but below the class interface. Since class template member functions are function templates their definitions should be provided in the header file offering the class interface. They may be given the inline attribute.
CirQue declares several constructors and (public) members (their definitions are provided as well; all definitions are provided below the class interface).
Here are the constructors and the destructor:
template<typename Data>
CirQue<Data>::CirQue(size_t maxSize)
:
d_size(0),
d_maxSize(maxSize),
d_data(
maxSize == 0 ?
0
:
static_cast<Data *>(
operator new(maxSize * sizeof(Data)))
),
d_front(d_data),
d_back(d_data)
{}
template<typename Data>
CirQue<Data>::CirQue(CirQue<Data> const &other)
:
d_size(other.d_size),
d_maxSize(other.d_maxSize),
d_data(
d_maxSize == 0 ?
0
:
static_cast<Data *>(
operator new(d_maxSize * sizeof(Data)))
),
d_front(d_data + (other.d_front - other.d_data))
{
Data const *src = other.d_front;
d_back = d_front;
for (size_t count = 0; count != d_size; ++count)
{
new(d_back) Data(*src);
d_back = inc(d_back);
if (++src == other.d_data + d_maxSize)
src = other.d_data;
}
}
template<typename Data>
CirQue<Data>::CirQue(CirQue<Data> &&tmp)
:
d_data(0)
{
swap(tmp);
}
template <typename Data>
template <size_t Size>
CirQue<Data>::CirQue(Data const (&arr)[Size])
:
d_size(0),
d_maxSize(Size),
d_data(static_cast<Data *>(operator new(sizeof(arr)))),
d_front(d_data),
d_back(d_data)
{
std::copy(arr, arr + Size, std::back_inserter(*this));
}
template<typename Data>
CirQue<Data>::~CirQue()
{
if (d_data == 0)
return;
for (; d_size--; )
{
d_front->~Data();
d_front = inc(d_front);
}
operator delete(d_data);
}
Here are Cirque's members:
template<typename Data>
CirQue<Data> &CirQue<Data>::operator=(CirQue<Data> const &rhs)
{
CirQue<Data> tmp(rhs);
swap(tmp);
return *this;
}
template<typename Data>
inline CirQue<Data> &CirQue<Data>::operator=(CirQue<Data> &&tmp)
{
swap(tmp);
return *this;
}
template<typename Data>
void CirQue<Data>::pop_front()
{
if (d_size == 0)
throw EMPTY;
d_front->~Data();
d_front = inc(d_front);
--d_size;
}
enum ExceptionA copy of object is installed in the CirQue's raw memory using placement new and its d_size is incremented.
{
EMPTY,
FULL
};
template<typename Data>
void CirQue<Data>::push_back(Data const &object)
{
if (d_size == d_maxSize)
throw FULL;
new (d_back) Data(object);
d_back = inc(d_back);
++d_size;
}
template<typename Data>
void CirQue<Data>::swap(CirQue<Data> &other)
{
static size_t const size = sizeof(CirQue<Data>);
char tmp[size];
memcpy(tmp, &other, size);
memcpy(reinterpret_cast<char *>(&other), this, size);
memcpy(reinterpret_cast<char *>(this), tmp, size);
}
The remaining public members all consist of one-liners and were implemented as inline function templates:
template<typename Data>
inline Data &CirQue<Data>::back()
{
return d_back == d_data ? d_data[d_maxSize - 1] : d_back[-1];
}
template<typename Data>
inline Data &CirQue<Data>::front()
{
return *d_front;
}
template<typename Data>
inline bool CirQue<Data>::empty() const
{
return d_size == 0;
}
template<typename Data>
inline bool CirQue<Data>::full() const
{
return d_size == d_maxSize;
}
template<typename Data>
inline size_t CirQue<Data>::size() const
{
return d_size;
}
template<typename Data>
inline size_t CirQue<Data>::maxSize() const
{
return d_maxSize;
}
Finally, the class has one private member, inc, returning a cyclically incremented pointer into CirQue's raw memory:
template<typename Data>
Data *CirQue<Data>::inc(Data *ptr)
{
++ptr;
return ptr == d_data + d_maxSize ? d_data : ptr;
}
22.1.5: Using CirQue objects
When objects of a class template are instantiated, only the definitions of all the template's member functions that are actually used must have been seen by the compiler.
That characteristic of templates could be refined to the point where each definition is stored in a separate function template definition file. In that case only the definitions of the function templates that are actually needed would have to be included. However, it is hardly ever done that way. Instead, the usual way to define class templates is to define the interface and to define the remaining function templates immediately below the class template's interface (defining some functions inline).
Now that the class CirQue has been defined, it can be used. To use the class its object must be instantiated for a particular data type. In the following example it is initialized for data type std::string:
#include "cirque.h"
#include <iostream>
#include <string>
using namespace std;
int main()
{
CirQue<string> ci(4);
ci.push_back("1");
ci.push_back("2");
cout << ci.size() << ' ' << ci.front() << ' ' << ci.back() << '\n';
ci.push_back("3");
ci.pop_front();
ci.push_back("4");
ci.pop_front();
ci.push_back("5");
cout << ci.size() << ' ' << ci.front() << ' ' << ci.back() << '\n';
CirQue<string> copy(ci);
copy.pop_front();
cout << copy.size() << ' ' << copy.front() << ' ' << copy.back() << '\n';
int arr[] = {1, 3, 5, 7, 9};
CirQue<int> ca(arr);
cout << ca.size() << ' ' << ca.front() << ' ' << ca.back() << '\n';
// int *ap = arr;
// CirQue<int> cap(ap);
}
This program produces the following output:
2 1 2
3 3 5
2 4 5
5 1 9
22.1.6: Default class template parameters
Different from function templates, template parameters of template classes may be given default argument values. This holds true for both template type- and template non-type parameters. If default template arguments were defined and if a class template object is instantiated without specifying arguments for its template parameters then the template parameter's defaults are used.
When defining defaults keep in mind that they should be suitable for the majority of instantiations of the class. E.g., for the class template CirQue the template's type parameter list could have been altered by specifying int as its default type:
template <typename Data = int>
Even though default arguments can be specified, the compiler must still be informed that object definitions refer to templates. When instantiating class template objects using default template arguments the type specifications may be omitted but the angle brackets must be retained. Assuming a default type for the CirQue class, an object of that class may be defined as:
CirQue<> intCirQue(10);
Default template arguments cannot be specified when defining template members. So, the definition of, e.g., the push_back member must always begin with the same template specification:
template <typename Data>
When a class template uses multiple template parameters, all may be given default values. Like default function arguments, once a default value is used all remaining template parameters must also use their default values. A template type specification list may not start with a comma, nor may it contain multiple consecutive commas.
22.1.7: Declaring class templates
Class templates may also be declared. This may be useful in situations where forward class declarations are required. To declare a class template, simply remove its interface (the part between the curly braces):
template <typename Data>
class CirQue;
Default template arguments may also be specified when declaring class templates. However, default template arguments cannot be specified for both the declaration and the definition of a class template. As a rule of thumb default template arguments should be omitted from declarations, as class template declarations are never used when instantiating objects but are only occasionally used as forward references. Note that this differs from default parameter value specifications for member functions in ordinary classes. Such defaults are always specified when declaring the member functions in the class interface.
22.1.8: Preventing template instantiations
In C++ templates are instantiated when the address of a function template or class template object is taken or when a function template or class template is used. As described in section 22.1.7 it is possible to (forward) declare a class template to allow the definition of a pointer or reference to that template class or to allow it being used as a return type.
In other situations templates are instantiated when they are being used. If this happens many times (i.e., in many different source files) then this may slow down the compilation process considerably. Fortunately, C++ allows programmers to prevent templates from being instantiated, using the extern template syntax. Example:
extern template class std::vector<int>;
Having declared the class template it can be used in its translation unit. E.g., the following function properly compiles:
#include <vector>
#include <iostream>
using namespace std;
extern template class vector<int>;
void vectorUser()
{
vector<int> vi;
cout << vi.size() << '\n';
}
But be careful:
In a stand-alone program one might postpone defining the required members and wait for the linker to complain about unresolved external references. These may then be used to create a series of instantiation declarations which are then linked to the program to satisfy the linker. Not a very simple task, though, as the declarations must strictly match the way the members are declared in the class interface. An easier approach is to define an instantiation source file in which all facilities that are used by the program are actually instantiated in a function that is never called by the program. By adding this instantiation function to the source file containing main we can be sure that all required members are instantiated as well. Here is an example of how this can be done:
#include <vector>
#include <iostream>
extern void vectorUser();
int main()
{
vectorUser();
}
// this part is never called. It is added to make sure all required
// features of declared templates will also be instantiated.
namespace
{
void instantiator()
{
std::vector<int> vi;
vi.size();
}
}
template class std::vector<int>;
Adding this to a source file, however, will instantiate the full class, i.e., all its members are now instantiated. This may not what you want, as it might needlessly inflate your final executable.
// the compiler assumes that required members of
// vector<int> have already been instantiated elsewhere
extern template class std::vector<int>;
int main()
{
std::vector<int> vi(5); // constructor and operator[]
++vi[0]; // are NOT instantiated
}
22.1.9: Generic lambda expressions
Generic lambda expressions may use auto to define their parameters. When used, a lambda expression is instantiated by looking at the actual types of arguments. Since auto is generic, different parameters defined using auto can be instantiated to different types. Here is an example (assuming all required headers and namespace declaration were specified):
1: int main()
2: {
3: auto lambda = [](auto lhs, auto rhs)
4: {
5: return lhs + rhs;
6: };
7:
8: vector<int> values {1, 2, 3, 4, 5};
9: vector<string> text {"a", "b", "c", "d", "e"};
10:
11: cout <<
12: accumulate(values.begin(), values.end(), 0, lambda) << '\n' <<
13: accumulate(text.begin(), text.end(), string{}, lambda) << '\n';
14: }
The generic lambda function is defined in lines 3 through 6, and is assigned to the lambda identifier. Then, lambda is passed to accumulate in lines 12 and 13. In line 12 it is instantiated to add int values, in line 13 to add std::string values: the same lambda is instantiated to two completely different functors, which are only locally available in main.
Generic lambda expressions are in fact class templates. To illustrate: the above example of a generic lambda expression could also have been implemented using the following class template:
struct Lambda
{
template <typename LHS, typename RHS>
auto operator()(LHS const &lhs, RHS const &rhs) const
{
return lhs + rhs;
}
};
auto lambda = Lambda{};
This identity implies that using auto in the lambda expression's parameter list obeys the rules of template argument deduction (cf. section 21.4), which are somewhat different from the way auto normally operates.
Another extension is the way generic lambda expressions capture outer scope variables. Previously variables could only be captured by value or by reference. As a consequence an outer scope variable of a type that only supports move construction could not be passed by value to a lambda function. This restriction was dropped, allowing variables to be initialized from arbitrary expressions. This not only allows move-initialization of variables in the lambda introducer, but with generic lambdas variables may also be initialized if they do not have a correspondingly named variable in the lambda expression's outer scope. In this case initializer expressions can be used as follows:
auto fun = [value = 1]
{
return value;
};
This lambda function (of course) returns 1: the declared capture deduces the type from the initializer expression as if auto had been used.
To use move-initialization std::move should be used. E.g., a unique_ptr only supports move-assignment. Here it is used to return one of its values via a lambda function:
std::unique_ptr<int> ptr(new int(10));
auto fun = [value = std::move(ptr)]
{
return *value;
};
In generic lambda expressions the keyword auto indicates that the compiler determines which types to use when the lambda function is instantiated. A generic lambda expression therefore is a class template, even though it doesn't look like one. As an example, the following lambda expression defines a generic class template, which can be used as shown:
char const *target = "hello";
auto lambda =
[target](auto const &str)
{
return str == target;
};
vector<string> vs{stringVectorFactory()};
find_if(vs.begin(), vs.end(), lambda);
This works fine, but if you define lambda this way then you should be prepared for complex error messages if the types of the derefenced iterators and lambda's (silently assumed) str type don't match.
Here is a little program illustrating how generic lambda expressions can be used in other generic lambda expressions: class templates could also have been used. In lines 1 through 9 a generic lambda expression accumulate is defined, defining a second paramater which is used as a function: its argument therefore should be usable as a function. A functor definitely is, an the second generic lambda expression lambda, defined in lines 11 through 14 provides it. In line 21 accumulate and lambda are instantiated so that they operate on (a vector of) ints, in line 22 they are instantiated for processing (a vector of) strings:
1: auto accumulate(auto const &container, auto function)
2: {
3: auto accu = decltype(container[0]){};
4:
5: for (auto &value: container)
6: accu = function(accu, value);
7:
8: return accu;
9: }
10:
11: auto lambda = [](auto lhs, auto rhs)
12: {
13: return lhs + rhs;
14: };
15:
16: int main()
17: {
18: vector<int> values = {1, 2, 3, 4, 5};
19: vector<string> text = {"a", "b", "c", "d", "e"};
20:
21: cout << accumulate(values, lambda) << '\n' <<
22: accumulate(text, lambda) << '\n';
23: }
In some situations generic lambdas are a bit too generic, resulting in verbose implementations which are not required by templates in general. Consider a generic lambda that specifies an auto &it parameter, but in addition it should specify a parameter value of type ValueType that should be defined by it's class. Such a parameter requires the use of a decltype (and maybe also the use of std::decay_t) to retrieve it's actual type. Inside the lambda's body a using declaration can be specified to make the type available, but that again requires a verbose specification using std::decay_t and decltype. Here is an example:
auto generic =
[](auto &it,
typename std::decay_t<decltype(it)>::ValueType value)
{
using Type = std::decay_t<decltype(it)>;
typename Type::ValueType val2{ value };
Type::staticMember();
};
To avoid this kind of verbosity generic lambda functions can also be defined like ordinary tempates, in which case the template header immediately follows the lambda-introducer. Using this alternative form the definition of the generic generic lambda simply and straightforwardly becomes:
auto generic =
[]<typename Type>(Type &it, typename Type::ValueType value)
{
typename Type::ValueType val2{ value };
Type::staticMember();
};
22.2: Static data members
When static members are defined in class templates, they are defined for every new type for which the class template is instantiated. As they are static members, there will only be one member per type for which the class template is instantiated. For example, in a class like:
template <typename Type>
class TheClass
{
static int s_objectCounter;
};
There will be one TheClass<Type>::objectCounter for each different Type specification. The following object definitions result in the instantiation of just one single static variable, shared among the two objects:
TheClass<int> theClassOne;
TheClass<int> theClassTwo;
Mentioning static members in interfaces does not mean these members are actually defined. They are only declared and must be defined separately. With static members of class templates this is no different. The definitions of static members are usually provided immediately following (i.e., below) the template class interface. For example, the static member s_objectCounter's definition, positioned just below its class interface, looks like this:
template <typename Type> // definition, following
int TheClass<Type>::s_objectCounter = 0; // the interface
Here s_objectCounter is an int and is thus independent of the template type parameter Type. Multiple instantiations of s_objectCounter for identical Types cause no problem, as the linker will remove all but one instantiation from the final executable (cf. section 21.5).
In list-like constructions, where a pointer to objects of the class itself is required, the template type parameter Type must be used when defining the static variable. Example:
template <typename Type>
class TheClass
{
static TheClass *s_objectPtr;
};
template <typename Type>
TheClass<Type> *TheClass<Type>::s_objectPtr = 0;
As usual, the definition can be read from the variable name back to the beginning of the definition: s_objectPtr of the class TheClass<Type> is a pointer to an object of TheClass<Type>.
When a static variable of a template's type parameter's type is defined, it should of course not be given the initial value 0. The default constructor (e.g., Type()) is usually more appropriate. Example:
template <typename Type> // s_type's definition
Type TheClass<Type>::s_type = Type();
22.2.1: Extended use of the keyword `typename'
Until now the keyword typename has been used to indicate a template type parameter. However, it is also used to disambiguate code inside templates. Consider the following function template:
template <typename Type>
Type function(Type t)
{
Type::Ambiguous *ptr;
return t + *ptr;
}
When this code is processed by the compiler, it complains with an -at first sight puzzling- error message like:
4: error: 'ptr' was not declared in this scope
The error message is puzzling as it was the programmer's intention to declare a pointer to a type Ambiguous defined within the class template Type. But the compiler, confronted with Type::Ambiguous may interpret the statement in various ways. Clearly it cannot inspect Type itself trying to uncover Type's true nature as Type is a template type. Because of this Type's actual definition isn't available yet.
The compiler is confronted with two possibilities: either Type::Ambiguous is a static member of the as yet mysterious template Type, or it is a subtype of Type. As the standard specifies that the compiler must assume the former, the statement
Type::Ambiguous *ptr;
is interpreted as a multiplication of the static member Type::Ambiguous and the (now undeclared) entity ptr. The reason for the error message should now be clear: in this context ptr is unknown.
To disambiguate code in which an identifier refers to a subtype of a template type parameter the keyword typename must be used. Accordingly, the above code is altered into:
template <typename Type>
Type function(Type t)
{
typename Type::Ambiguous *ptr;
return t + *ptr;
}
Classes fairly often define subtypes. When such subtypes appear inside template definitions as subtypes of template type parameters the typename keyword must be used to identify them as subtypes. Example: a class template Handler defines a typename Container as its template type parameter. It also defines a data member storing the iterator returned by the container's begin member. In addition Handler offers a constructor accepting any container supporting a begin member. Handler's class interface could then look like this:
template <typename Container>
class Handler
{
Container::const_iterator d_it;
public:
Handler(Container const &container)
:
d_it(container.begin())
{}
};
What did we have in mind when designing this class?
The final consideration is an indication that typename is required. If this is omitted and a Handler is instantiated the compiler produces a peculiar compilation error:
#include "handler.h"
#include <vector>
using namespace std;
int main()
{
vector<int> vi;
Handler<vector<int> > ph{ vi };
}
/*
Reported error:
handler.h:4: error: syntax error before `;' token
*/
Clearly the line
Container::const_iterator d_it;
in the class Handler causes a problem. It is interpreted by the compiler as a static member instead of a subtype. The problem is solved using typename:
template <typename Container>
class Handler
{
typename Container::const_iterator d_it;
...
};
An interesting illustration that the compiler indeed assumes X::a to be a member a of the class X is provided by the error message we get when we try to compile main using the following implementation of Handler's constructor:
Handler(Container const &container)
:
d_it(container.begin())
{
size_t x = Container::ios_end;
}
/*
Reported error:
error: `ios_end' is not a member of type `std::vector<int,
std::allocator<int> >'
*/
Now consider what happens if the function template introduced at the beginning of this section doesn't return a Type value, but a Type::Ambiguous value. Again, a subtype of a template type is referred to, and typename must be used:
template <typename Type>
typename Type::Ambiguous function(Type t)
{
return t.ambiguous();
}
Using typename in the specification of a return type is further discussed in section 23.1.1.
Typenames can be embedded in typedefs. As is often the case, this reduces the complexities of declarations and definitions appearing elsewhere. In the next example the type Iterator is defined as a subtype of the template type Container. Iterator may now be used without requiring the use of the keyword typename:
template <typename Container>
class Handler
{
typedef typename Container::const_iterator Iterator;
Iterator d_it;
...
};
22.3: Specializing class templates for deviating types
The class CirQue can be used for many different types. Their common characteristic is that they can simply be pointed at by the class's d_data member. But this is not always as simple as it looks. What if Data turns out to be a vector<int>? For such data types the vanilla CirQue implementation cannot be used and a specialization could be considered. When considering a specialization one should also consider inheritance. Often a class derived from the class template accepting the incompatible data structure as its argument but otherwise equal to the original class template can easily be designed. The developmental advantage of inheritance over specialization is clear: the inherited class inherits the members of its base class while the specialization inherits nothing. All members defined by the original class template must be implemented again by the class template's specialization.
The specialization considered here is a true specialization in that the data members and representation used by the specialization greatly differ from the original CirQue class template. Therefore all members defined by the orginal class template must be modified to fit the specialization's data organization.
Like function template specializations class template specializations start with a template header that may or may not have an empty template parameter list. If the template parameters are directly specialized by the specialization it remains empty (e.g., CirQue's template type parameter Data is specialized for char * data). But the template parameter list may show typename Data when specializing for a vector<Data>, i.e., a vector storing any type of data. This leads to the following principle:
A template specialization is recognized by the template argument list following a function or class template's name and not by an empty template parameter list. Class template specializations may have non-empty template parameter lists. If so, a partial class template specialization is defined.
A completely specialized class has the following characteristics:
22.3.1: Example of a class specialization
Here is an example of a completely specialized CirQue class, specialized for a vector<int>. All members of the specialized class are declared, but only non-trivial implementations of its members are provided. The specialized class uses a copy of the vector passed to the constructor and implements a circular queue using its vector data member:
#ifndef INCLUDED_CIRQUEVECTOR_H_
#define INCLUDED_CIRQUEVECTOR_H_
#include <vector>
#include "cirque.h"
template<>
class CirQue<std::vector<int>>
{
typedef std::vector<int> IntVect;
IntVect d_data;
size_t d_size;
typedef IntVect::iterator iterator;
iterator d_front;
iterator d_back;
public:
typedef int value_type;
typedef value_type const &const_reference;
enum Exception
{
EMPTY,
FULL
};
CirQue();
CirQue(IntVect const &iv);
CirQue(CirQue<IntVect> const &other);
CirQue &operator=(CirQue<IntVect> const &other);
int &back();
int &front();
bool empty() const;
bool full() const;
size_t maxSize() const;
size_t size() const;
void pop_front();
void push_back(int const &object);
void swap(CirQue<IntVect> &other);
private:
iterator inc(iterator const &iter);
};
CirQue<std::vector<int>>::CirQue()
:
d_size(0)
{}
CirQue<std::vector<int>>::CirQue(IntVect const &iv)
:
d_data(iv),
d_size(iv.size()),
d_front(d_data.begin()),
d_back(d_data.begin())
{}
CirQue<std::vector<int>>::CirQue(CirQue<IntVect> const &other)
:
d_data(other.d_data),
d_size(other.d_size),
d_front(d_data.begin() + (other.d_front - other.d_data.begin())),
d_back(d_data.begin() + (other.d_back - other.d_data.begin()))
{}
CirQue<std::vector<int>> &CirQue<std::vector<int>>::operator=(
CirQue<IntVect> const &rhs)
{
CirQue<IntVect> tmp(rhs);
swap(tmp);
}
void CirQue<std::vector<int>>::swap(CirQue<IntVect> &other)
{
char tmp[sizeof(CirQue<IntVect>)];
memcpy(tmp, &other, sizeof(CirQue<IntVect>));
memcpy(reinterpret_cast<char *>(&other), this, sizeof(CirQue<IntVect>));
memcpy(reinterpret_cast<char *>(this), tmp, sizeof(CirQue<IntVect>));
}
void CirQue<std::vector<int>>::pop_front()
{
if (d_size == 0)
throw EMPTY;
d_front = inc(d_front);
--d_size;
}
void CirQue<std::vector<int>>::push_back(int const &object)
{
if (d_size == d_data.size())
throw FULL;
*d_back = object;
d_back = inc(d_back);
++d_size;
}
inline int &CirQue<std::vector<int>>::back()
{
return d_back == d_data.begin() ? d_data.back() : d_back[-1];
}
inline int &CirQue<std::vector<int>>::front()
{
return *d_front;
}
CirQue<std::vector<int>>::iterator CirQue<std::vector<int>>::inc(
CirQue<std::vector<int>>::iterator const &iter)
{
iterator tmp(iter + 1);
tmp = tmp == d_data.end() ? d_data.begin() : tmp;
return tmp;
}
#endif
The next example shows how to use the specialized CirQue class:
static int iv[] = {1, 2, 3, 4, 5};
int main()
{
vector<int> vi(iv, iv + 5);
CirQue<vector<int>> ci(vi);
cout << ci.size() << ' ' << ci.front() << ' ' << ci.back() << '\n';
ci.pop_front();
ci.pop_front();
CirQue<vector<int>> cp;
cp = ci;
cout << cp.size() << ' ' << cp.front() << ' ' << cp.back() << '\n';
cp.push_back(6);
cout << cp.size() << ' ' << cp.front() << ' ' << cp.back() << '\n';
}
/*
Displays:
5 1 5
3 3 5
4 3 6
*/
22.4: Partial specializations
In the previous section class template specializations were introduced. In this section we'll introduce a variant of this specialization, both in number and type of template parameters that are specialized. Partial specializations may be defined for class templates having multiple template parameters.
Function templates cannot be partially specialized: there is no need for that, as a `partially specialized function template' merely is a function template that is tailored to particular types of some of its parameters. Since function templates can be overloaded, `partially specializing' a function template simply means that overloads have to be defined for those specialized parameter types.
With partial specializations a subset (any subset) of template type parameters are given specific values. It is also possible to use a class template partial specialization when the intent is to specialize the class template, but to parameterize the data type that is processed by the specialization.
To start our discussion with an example of the latter use of a partial class template specialization consider the class CirQue<vector<int>> developed in the previous section. When designing CirQue<vector<int>> you may have asked yourself how many specializations you'd have to implement. One for vector<int>, one for vector<string>, one for vector<double>? As long as the data types handled by the vector used by the class CirQue<vector<...>> behaves like an int (i.e., is a value-type of class) the answer is: zero. Instead of defining full specializations for each new data type the data type itself can be parameterized, resulting in a partial specialization:
template <typename Data>
class CirQue<std::vector<Data>>
{
...
};
The above class is a specialization as a template argument list is appended to the CirQue class name. But as the class template itself has a non-empty template parameter list it is in fact recognized as a partial specialization. There is one characteristic that distinguishes the implementation (subsequent to the class template's interface) of a class template member function of a partial specialization from the implementation of a member function of a full specialization. Implementations of partially specialized class template member functions receive a template header. No template headers are used when implementing fully specialized class template members.
Implementing the partial specialization for CirQue is not difficult and is left as an exercise for the reader (hints: simply change int into Data in the CirQue<vector<int>> specialization of the previous section). Remember to prefix the type iterator by typename (as in typedef typename DataVect::iterator iterator) (as discussed in section 22.2.1).
In the next subsections we'll concentrate on specializing class template non-type template parameters. These partial specializations are now illustrated using some simple concepts defined in matrix algebra, a branch of linear algebra.
22.4.1: Intermezzo: some simple matrix algebraic concepts
In this section some simple matrix algebraic terms are introduced. These terms are used in the next sections to illustrate and discuss partial specializations of class templates. Readers proficient in matrix algebra may skip this section without loss of continuity.
A matrix is commonly thought of as a table of some rows and columns, filled with numbers. Immediately we recognize an opening for using templates: the numbers might be plain double values, but they could also be complex numbers, for which our complex container (cf. section 12.5) might prove useful. Our class template is therefore provided with a DataType template type parameter. It is specified when a matrix is constructed. Some simple matrices using double values, are:
1 0 0 An identity matrix,
0 1 0 (a 3 x 3 matrix).
0 0 1
1.2 0 0 0 A rectangular matrix,
0.5 3.5 18 23 (a 2 x 4 matrix).
1 2 4 8 A matrix of one row
(a 1 x 4 matrix), also known as a
`row vector' of 4 elements.
(column vectors are analogously defined)
Various operations are defined on matrices. They may, for example be added, subtracted or multiplied. Here we will not focus on these operations. Rather, we concentrate on some simple operations: computing marginals and sums.
Marginals are the sums of row elements or the sums of column elements of a matrix. These two kinds of marginals are also known as, respectively, row marginals and column marginals.
The following example shows a matrix, its marginals, and the sum of its values:
-------------------------------------
row
matrix marginals
---------
1 2 3 6
4 5 6 15
---------
column 5 7 9 21 (sum)
marginals
-------------------------------------
22.4.2: The Matrix class template
We'll start out by introducing a class template defining a matrix. Having defined this class template we'll continue with defining several specializations.
Since matrices consist of well defined numbers of rows and columns (the dimensions of the matrix), that normally do not change when matrices are used, we might consider specifying their values as template non-type parameters. The DataType = double will be used in the majority of cases. Therefore, double can be selected as the template's default type argument. Since it's a sensible default, the DataType template type parameter is used last in the template type parameter list.
Our template class Matrix begins its life as:
template <size_t Rows, size_t Columns, typename DataType = double>
class Matrix
...
What do we want our class template to offer?
typedef Matrix<1, Columns, DataType> MatrixRow;
typedef Matrix<Rows, 1, DataType> MatrixColumn;
MatrixRow d_matrix[Rows];
template <size_t Rows, size_t Columns, typename DataType>
Matrix<Rows, Columns, DataType>::Matrix()
{
std::fill(d_matrix, d_matrix + Rows, MatrixRow());
}
template <size_t Rows, size_t Columns, typename DataType>
Matrix<Rows, Columns, DataType>::Matrix(std::istream &str)
{
for (size_t row = 0; row < Rows; row++)
for (size_t col = 0; col < Columns; col++)
str >> d_matrix[row][col];
}
template <size_t Rows, size_t Columns, typename DataType>
Matrix<1, Columns, DataType>
&Matrix<Rows, Columns, DataType>::operator[](size_t idx)
{
return d_matrix[idx];
}
There is also the sum of all the elements of a matrix. This sum of all the elements of a matrix is a number that itself can be thought of as a 1 x 1 matrix.
Marginals can be considered as special forms of matrices. To represent these marginals we can construct partial specializations defining the class templates MatrixRow and MatrixColumn objects; and we construct a partial specialization handling 1 x 1 matrices. These partial specializations are used to compute marginals and the sum of all the elements of a matrix.
Before concentrating on these partial specializations themselves we'll use them here to implement the members computing the marginals and the sum of all elements of a matrix:
template <size_t Rows, size_t Columns, typename DataType>
Matrix<1, Columns, DataType>
Matrix<Rows, Columns, DataType>::columnMarginals() const
{
return MatrixRow(*this);
}
template <size_t Rows, size_t Columns, typename DataType>
Matrix<Rows, 1, DataType>
Matrix<Rows, Columns, DataType>::rowMarginals() const
{
return MatrixColumn(*this);
}
template <size_t Rows, size_t Columns, typename DataType>
DataType Matrix<Rows, Columns, DataType>::sum() const
{
return rowMarginals().sum();
}
22.4.3: The MatrixRow partial specialization
Class template partial specializations can be defined for any (subset) of template parameters. They can be defined for template type parameters and for template non-type parameters alike. Our first partial specialization defines a row of a generic Matrix, mainly (but not only) used for the construction of column marginals. Here is how such a partial specialization is designed:
template <size_t Columns, typename DataType> // no default allowed
class Matrix<1, Columns, DataType>
DataType d_column[Columns];
template <size_t Columns, typename DataType>Another constructor is needed initializing a MatrixRow object with the column marginals of a generic Matrix object. This requires us to provide the constructor with a non-specialized Matrix parameter.
Matrix<1, Columns, DataType>::Matrix()
{
std::fill(d_column, d_column + Columns, DataType());
}
The rule of thumb here is to define a member template that allows us to keep the general nature of the parameter. The generic Matrix template requires three template parameters. Two of these were already provided by the template specialization. The third parameter is mentioned in the member template's template header. Since this parameter refers to the number of rows of the generic matrix it is simply called Rows.
Here then is the implementation of the second constructor, initializing the MatrixRow's data with the column marginals of a generic Matrix object:
template <size_t Columns, typename DataType>The constructor's parameter is a reference to a Matrix template using the additional Row template parameter as well as the template parameters of the partial specialization.
template <size_t Rows>
Matrix<1, Columns, DataType>::Matrix(
Matrix<Rows, Columns, DataType> const &matrix)
{
std::fill(d_column, d_column + Columns, DataType());
for (size_t col = 0; col < Columns; col++)
for (size_t row = 0; row < Rows; row++)
d_column[col] += matrix[row][col];
}
template <size_t Columns, typename DataType>
DataType &Matrix<1, Columns, DataType>::operator[](size_t idx)
{
return d_column[idx];
}
Now that we have defined the generic Matrix class and the partial specialization defining a single row the compiler selects the row's specialization whenever a Matrix is defined using Row = 1. For example:
Matrix<4, 6> matrix; // generic Matrix template is used
Matrix<1, 6> row; // partial specialization is used
22.4.4: The MatrixColumn partial specialization
The partial specialization for a MatrixColumn is constructed similarly. Let's present its highlights (the full Matrix class template definition as well as all its specializations are provided in the cplusplus.yo.zip archive (that can be obtained from the C++ Annotations' Gitlab website) in the file yo/classtemplates/examples/matrix.h):
template <size_t Rows, typename DataType>
class Matrix<Rows, 1, DataType>
template <size_t Rows, typename DataType>
DataType Matrix<Rows, 1, DataType>::sum()
{
return std::accumulate(d_row, d_row + Rows, DataType());
}
22.4.5: The 1x1 matrix: avoid ambiguity
The reader might wonder what happens if we define the following matrix:
Matrix<1, 1> cell;
Is this a MatrixRow or a MatrixColumn specialization? The answer is: neither.
It's ambiguous, precisely because both the columns and the rows could be used with a (different) template partial specialization. If such a Matrix is actually required, yet another specialized template must be designed.
Since this template specialization can be useful to obtain the sum of the elements of a Matrix, it's covered here as well.
template <typename DataType>
class Matrix<1, 1, DataType>
template <typename DataType>
template <size_t Rows, size_t Columns>
Matrix<1, 1, DataType>::Matrix(
Matrix<Rows, Columns, DataType> const &matrix)
:
d_cell(matrix.rowMarginals().sum())
{}
template <typename DataType>
template <size_t Rows>
Matrix<1, 1, DataType>::Matrix(Matrix<Rows, 1, DataType> const &matrix)
:
d_cell(matrix.sum())
{}
template <typename DataType>
Matrix<1, 1, DataType>::operator DataType &()
{
return d_cell;
}
template <typename DataType>
DataType &Matrix<1, 1, DataType>::get()
{
return d_cell;
}
Finally, the main function shown below illustrates how the Matrix class template and its partial specializations can be used:
#include <iostream>
#include "matrix.h"
using namespace std;
int main(int argc, char **argv)
{
Matrix<3, 2> matrix(cin);
Matrix<1, 2> colMargins(matrix);
cout << "Column marginals:\n";
cout << colMargins[0] << " " << colMargins[1] << '\n';
Matrix<3, 1> rowMargins(matrix);
cout << "Row marginals:\n";
for (size_t idx = 0; idx < 3; idx++)
cout << rowMargins[idx] << '\n';
cout << "Sum total: " << Matrix<1, 1>(matrix) << '\n';
}
/*
Generated output from input: 1 2 3 4 5 6
Column marginals:
9 12
Row marginals:
3
7
11
Sum total: 21
*/
22.5: Variadic templates
Up to this point we've encountered templates defining a fixed number of template parameters. However, templates may also defined as variadic templates, allowing any number of arguments to be passed to their instantiations.
Variadic templates are defined for function templates and for class templates. Variadic templates allow us to specify an arbitrary number of template arguments of any type.
Variadic templates were added to the language to prevent us from having to define many overloaded templates and to be able to create type safe variadic functions.
Although C (and C++) support variadic functions, their use has always been deprecated in C++ as those functions are notoriously type-unsafe. Variadic function templates can be used to process objects that until now couldn't be processed properly by C-style variadic functions.
Template headers of variadic templates use the phrase typename ...Params (Params being a formal name). A variadic class template Variadic could be declared as follows:
template<typename ...Params> class Variadic;
Assuming the class template's definition is available then this template can be instantiated using any number of template arguments. Example:
class Variadic<
int,
std::vector<int>,
std::map<std::string, std::vector<int>>
> v1;
The template argument list of a variadic template can also be empty. Example:
class Variadic<> empty;
If this is considered undesirable using an empty template argument list can be prevented by providing one or more fixed parameters. Example:
template<typename First, typename ...Rest>
class tuple;
C's function printf is a well-known example of a type-unsafe function. It is turned into a type-safe function when it is implemented as a variadic function template. Not only does this turn the function into a type-safe function but it is also automatically extended to accept any type that can be defined by C++. Here is a possible declaration of a variadic function template printcpp:
template<typename ...Params>
void printcpp(std::string const &strFormat, Params ...parameters);
The ellipsis (...) used in the declaration serves two purposes:
C++ offers no syntax to access the individual template arguments directly. However, the arguments can be visited recursively. An example is provided in the next section. The number of arguments is determined using a new invocation of the sizeof operator:
template<typename ...Params>
struct StructName
{
enum: size_t { s_size = sizeof ...(Params) };
};
// StructName<int, char>::s_size -- initialized to 2
22.5.1: Defining and using variadic templates
The arguments associated with a variadic template parameter are not directly available to the implementation of a function or class template. We have to resort to other means to obtain them.
By defining a partial specialization of a variadic template, explicitly defining an additional template type parameter, we can associate the first template argument of a parameter pack with this additional (first) type parameter. The setup of such a variadic function template (e.g., printcpp, see the previous section) is as follows:
The overloaded non-template function prints the remainder of the format string, en passant checking for any left-over format specifications:
void printcpp(string const &format)
{
size_t left = 0;
size_t right = 0;
while (true)
{
if ((right = format.find('%', right)) == string::npos)
break;
if (format.find("%%", right) != right)
throw std::runtime_error(
"printcpp: missing arguments");
++right;
cout << format.substr(left, right - left);
left = ++right;
}
cout << format.substr(left);
}
Here is the variadic function template's implementation:
template<typename First, typename ...Params>
void printcpp(std::string const &format, First value, Params ...params)
{
size_t left = 0;
size_t right = 0;
while (true)
{
if ((right = format.find('%', right)) == string::npos) // 1
throw std::runtime_error("printcpp: too many arguments");
if (format.find("%%", right) != right) // 2
break;
++right;
cout << format.substr(left, right - left);
left = ++right;
}
cout << format.substr(left, right - left) << value;
printcpp(format.substr(right + 1), params...);
}
Make sure that the overloaded function is at least declared before the compiler processes the function template's definition or it won't call the overloaded function printcpp when compiling the function template.
Different from C's printf function printcpp only recognizes % and %% as format specifiers. The above implementation does not recognize, e.g., field widths. Type specifiers like %c and %x are of course not needed as ostream's insertion operator is aware of the types of the arguments that are inserted into the ostream. Extending the format specifiers so that field widths etc. are recognized by this printcpp implementation is left as an exercise to the reader. Here is an example showing how printcpp can be called:
printcpp("Hello % with %%main%% called with % args"
" and a string showing %\n",
"world", argc, "A String"s);
22.5.2: Perfect forwarding
Consider string's member insert. String::insert has several overloaded implementations. It can be used to insert text (completely or partially) provided by a string or by a char const * argument; to insert single characters a specified number of times; iterators can be used to specify the range of characters to be inserted; etc., etc.. All in all, string offers as many as five overloaded insert members.
Assume the existence of a class Inserter that is used to insert information into all kinds of objects. Such a class could have a string data member into which information can be inserted. Inserter's interface only partially has to copy string's interface to realize this: only string::insert's interfaces must be duplicated. The members duplicating interfaces often contain one statement (calling the appropriate member function of the object's data member) and are for this reason often implemented in-line. Such wrapper functions merely forward their parameters to the matching member functions of the object's data member.
Another example is found in factory functions that also frequently forward their parameters to the constructors of objects that they return.
C++ simplifies and generalizes forwarding of parameters by offering perfect forwarding, implemented through rvalue references and variadic templates. With perfect forwarding the arguments passed to functions are `perfectly forwarded' to nested functions. Forwarding is called perfect as the arguments are forwarded in a type-safe way. To use perfect forwarding nested functions must define parameter lists matching the forwarding parameters both in types and number.
Perfect forwarding is easily implemented:
In the next example perfect forwarding is used to implement one member Inserter::insert that can be used to call any of the five overloaded string::insert members. The insert function that's actually called now simply depends on the types and number of arguments that are passed to Inserter::insert:
class Inserter
{
std::string d_str; // somehow initialized
public:
// constructors not implemented,
// but see below
Inserter();
Inserter(std::string const &str);
Inserter(Inserter const &other);
Inserter(Inserter &&other);
template<typename ...Params>
void insert(Params &&...params)
{
d_str.insert(std::forward<Params>(params)...);
}
};
A factory function returning an Inserter can also easily be implemented using perfect forwarding. Rather than defining four overloaded factory functions a single one now suffices. By providing the factory function with an additional template type parameter specifying the class of the object to construct the factory function is turned into a completely general factory function:
template <typename Class, typename ...Params>
Class factory(Params &&...params)
{
return Class(std::forward<Params>(params)...);
}
Here are some examples showing its use:
Inserter inserter(factory<Inserter>("hello"));
string delimiter(factory<string>(10, '='));
Inserter copy(factory<Inserter>(inserter));
The function std::forward is provided by the standard library. It performs no magic, but merely returns params as a nameless object. That way it acts like std::move that also removes the name from an object, returning it as a nameless object. The unpack operator has nothing to do with the use of forward but merely tells the compiler to apply forward to each of the arguments in turn. Thus it behaves similarly to C's ellipsis operator used by variadic functions.
Perfect forwarding was introduced in section 21.4.5: a template function defining a Type &¶m, with Type being a template type parameter converts Type && to Tp & if the function is called with an argument of type Tp &. Otherwise it binds Type to Tp, with param being defined as Tp &¶m. As a result an lvalue argument binds to an lvalue-type (Tp &), while an rvalue argument binds to an rvalue-type (Tp &&).
The function std::forward merely passes the argument (and its type) on to the called function or object. Here is its simplified implementation:
typedef <type T>
T &&forward(T &&a)
{
return a;
}
Since T && turns into an lvalue reference when forward is called with an lvalue (or lvalue reference) and remains an rvalue reference if forward is called with an rvalue reference, and since forward (like std::move) anonymizes the variable passed as argument to forward, the argument value is forwarded while passing its type from the function's parameter to the called function's argument.
This is called perfect forwarding as the nested function can only be called if the types of the arguments that were used when calling the `outer' function (e.g., factory) exactly match the types of the parameters of the nested function (e.g., Class's constructor). Perfect forwarding therefore is a tool to realize type safety.
A cosmetic improvement to forward requires users of forward to specify the type to use rather than to have the compiler deduce the type as a result of the function template parameter type deduction's process. This is realized by a small support struct template:
template <typename T>
struct identity
{
typedef T type;
};
This struct merely defines identity::type as T, but as it is a struct it must be specified explicitly. It cannot be determined from the function's argument itself. The subtle modification to the above implementation of forward thus becomes (cf. section 22.2.1 for an explanation of the use of typename):
typedef <type T>
T &&forward(typename identity<T>::type &&arg)
{
return arg;
}
Now forward must explicitly state arg's type, as in:
std::forward<Params>(params)
Using the std::forward function and the rvalue reference specification is not restricted to the context of parameter packs. Because of the special way rvalue references to template type parameters are treated (cf. section 21.4.5) they can profitably be used to forward individual function parameters as well. Here is an example showing how an argument to a function can be forwarded from a template to a function that is itself passed to the template as a pointer to an (unspecified) function:
template<typename Fun, typename ArgType>
void caller(Fun fun, ArgType &&arg)
{
fun(std::forward<ArgType>(arg));
}
A function display(ostream &out) and increment(int &x) may now both be called through caller. Example:
caller(display, cout);
int x = 0;
caller(increment, x);
22.5.3: The unpack operator
The unpack operator is used to obtain template arguments in many situations. No mechanism other than recursion (as shown in section 22.5.1) is available to obtain the individual types and values of a variadic template.
The unpack operator can also be used to define template classes that are derived from any number of base classes. Here is how it's done:
template <typename ...BaseClasses>
class Combi: public BaseClasses... // derive from base classes
{
public:
// specify base class objects
// to its constructor using
// perfect forwarding
Combi(BaseClasses &&...baseClasses)
:
BaseClasses(baseClasses)... // use base class initializers
{} // for each of the base
}; // classes
This allows us to define classes that combine the features of any number of other classes. If the class Combi is derived of classes A, B, and C then Combi is-an A, B, and C. It should of course be given a virtual destructor. A Combi object can be passed to functions expecting pointers or references to any of its base class type objects. Here is an example defining Combi as a class derived from a vector of complex numbers, a string and a pair of ints and doubles (using uniform intializers in a sequence matching the sequence of the types specified for the used Combi type):
typedef Combi<
vector<complex<double>>, string, pair<int, double>
> MultiTypes;
MultiTypes mt = { {3.5, 4}, "mt", {1950, 1.72} };
The same construction can also be used to define template data members supporting variadic type lists such as tuples (cf. section 22.6). Such a class could be designed along these lines:
template <typename ...Types>
struct Multi
{
std::tuple<Types...> d_tup; // define tuple for Types types
Multi(Types ...types)
: // initialize d_tup from Multi's
d_tup(std::forward<Types>(types)...) // arguments
{}
};
The ellipses that are used when forwarding parameter packs are essential. The compiler considers their omission an error. In the following struct definition it was the intent of the programmer to pass a parameter pack on to a nested object construction but ellipses were omitted while specifying the template parameters, resulting in a parameter packs not expanded with `...' error message:
template <int size, typename ...List>
struct Call
{
Call(List &&...list)
{
Call<size - 1, List &&> call(std::forward<List>(list)...);
}
};
Instead of the above definition of the call object the programmer should have used:
Call<size - 1, List &&...> call(std::forward<List>(list)...);
22.5.4: Non-type variadic templates
Variadic templates not necessarily define template types. Non-types can also be used with variadic templates. The following function template accepts any series of int values, forwarding these values to a class template. The class template defines an enum value result which is returned by the function, unless no int values were specified, in which case 0 is returned.
template <int ... Ints>
int forwarder()
{
return computer<Ints ...>::result; // forwarding the Ints
}
template <> // specialization if no ints are provided
int forwarder<>()
{
return 0;
}
// use as:
cout << forwarder<1, 2, 3>() << ' ' << forwarder<>() << '\n';
The sizeof operator can be used for variadic non-type parameters as well: sizeof...(Ints) would return 3 when used in the first function template for forwarder<1, 2, 3>().
Variadic non-type parameters are used to define variadic literal operators, introduced in section 23.3.
22.5.5: Folding expressions
Functions accepting variable numbers of arguments (of possibly varying types) are commonly handled using variadic templates. Implementations usually process the first argument, passing the remaining arguments to an overloaded function, which is defined by the compiler for these remaining argument types. One of the overloaded versions, accepting zero or one argument, ends the compiler's recursive implementations.
Sometimes the arguments must be combined using binary operators (like arg1 + arg2 + ...). In those cases a folding expression can be used instead of combining the arguments using a traditional variadic template.
All binary operators (including the assignment, compound assignment and comma operators) can be used in folding expressions.
(... op expr)
where op is the binary operator that is used in the fold expression, and expr is an expression formulated in terms of the function parameter representing the variadic arguments. Here is an example:
template <typename ReturnType, typename ...Params>
ReturnType sum(Params ...params)
{
return (... + params);
}
If a more elaborate expression than just the designator of the variadic arguments is used then the expression must be clearly demarcated, e.g., by surrounding in with parentheses:
return (... + (2 * params));
In a unary fold expression all the function's arguments matching the types of the parameter pack are combined using specified operator. E.g.,
sum<int>(1, 2, 3);
returns 6.
There are no special restrictions that apply to function templates using fold expressions. Directly returning the result of the fold expression is OK, but the result could also be used in another expression (maybe inserting its value into an ostream), or when initializing a variable or object. Also, the types of the arguments do not have to be identical: the only requirement is that the fully expanded expression (in the example: 1 + 2 + 3 is a valid expression).
(expr op ...)
Together, unary left folds and unary right folds are called unary folds.
(expr1 op ... op expr2)
Here, either expr1 is the identifier representing the variable arguments or expr2 must be that identifier. The other one can be any other valid expression (as with unary folds, both expressions must be clearly demarcated). In addition, both operators must be identical.
If a binary operator has been overloaded, it will be used where applicable. A well-known example is of course operator<< as defined for std::ostream objects. A binary fold defined for operator<< will not only do shifts, but can also be used to insert a series of arguments into cout:
template <class ...Pack>
ostream &out2(ostream &out, Pack &&...args)
{
return (out << ... << args);
};
Here is another interesting example: a fold expression for the comma operator:
verb(
template <class ...Pack>
void call(Pack &&...args)
{
... , args());
};
This unary fold calls each of its arguments in sequence. Arguments could be function addresses, function object or lambda functions. Note the use of the rvalue reference when defining the variadic parameter list which prevents copying of function objects that might be passed to call. Assuming that struct Functor defines a functor, and that void function() has been defined, then call could be called this way:
Functor functor;
call(functor, function, functor,
[]()
{
// ...
}
);
Finally: don't forget the parentheses surrounding fold expressions: they are required!
22.6: Tuples
C++ offers a generalized pair container: the tuple, covered in this section. Before tuples can be used the header file <tuple> must be included.
Whereas std::pair containers have limited functionality and only support two members, tuples have slightly more functionality and may contain an unlimited number of different data types. In that respect a tuple can be considered the `template's answer to C's struct'.
A tuple's generic declaration (and definition) uses the variadic template notation:
template <class ...Types>
class tuple;
Here is an example of its use:
typedef std::tuple<int, double &, std::string, char const *> tuple_idsc;
double pi = 3.14;
tuple_idsc idsc(59, pi, "hello", "fixed");
// access a field:
std::get<2>(idsc) = "hello world";
The std::get<idx>(tupleObject) function template returns a reference to the idxth (zero based) field of the tuple tupleObject. The index is specified as the function template's non-type template argument.
Type-based tuple addressing () can be used for tuple types used once in a tuple definition (if the same type is used repeatedly referring to that type introduces an ambiguity). The next example shows how to refer to the elements in the above example by type:
get<int>(idsc) // 59
get<double &>(idsc) // 3.14
get<string>(idsc) // "hello"s
get<char const *>(idsc) // "fixed"
Tuples may be constructed without specifying initial values. Primitive types are initialized to zeroes; class type fields are initialized by their default constructors. Be aware that in some situations the construction of a tuple may succeed but its use may fail. Consider:
tuple<int &> empty;
cout << get<0>(empty);
Here the tuple empty cannot be used as its int & field is an undefined reference. However, empty's construction succeeds.
Tuples may be assigned to each other if their type lists are identical; if supported by their constituent types copy constructors are available as well. Copy construction and assignment is also available if a right-hand type can be converted to its matching left-hand type or if the left-hand type can be constructed from the matching right-hand type. Tuples (matching in number and (convertible) types) can be compared using relational operators as long as their constituent types support comparisons. In this respect tuples are like pairs.
Tuples offer the following static elements (using compile-time initialization):
cout << tuple_size<tuple_idsc>::value << '\n'; // displays: 4
tuple_element<2, tuple_idsc>::type text; // defines std::string text
The unpack operator can also be used to forward the arguments of a constructor to a tuple data member. Consider a class Wrapper that is defined as a variadic template:
template <typename ...Params>
class Wrapper
{
...
public:
Wrapper(Params &&...params);
};
This class may be given a tuple data member which should be initialized by the types and values that are used when initializing an object of the class Wrapper using perfect forwarding. Comparable to the way a class may inherit from its template types (cf. section 22.5.3) it may forward its types and constructor arguments to its tuple data member:
template <typename ...Params>
class Wrapper
{
std::tuple<Params...> d_tuple; // same types as used for
// Wrapper itself
public:
Wrapper(Params &&...params)
: // initialize d_tuple with
// Wrapper's arguments
d_tuple(std::forward<Params>(params)...)
{}
};
22.6.1: Tuples and structured bindings
Structured bindings were introduced in section 3.3.7.1. That section concentrated on associating structured binding declarations with data members of structs, returned as POD values.
Structured bindings, however, can also be used in a much more generic way, by associating them with tuples. By doing so structured bindings don't have to be associated with data members, but they may hold values returned by class members.
The association between structured binding declarations and tuples is very strong. In fact it is so strong that the standard explicitly allows users to define tuple specializations, even though tuple specializations live in the standard namespace, which otherwise is off-limits to programmers (except, of course, when using its features).
In order to allow structured bindings to be associated with class members the following steps must be performed:
The availability of if constexpr clauses makes it easy to combine all these specializations into a single member template.
Alternatively, a function template defined outside of the class can be defined, which allows associating structured bindings with class members even if you're not the class's author. In this case the function defines a ClassType [cv] &object parameter.
The flexibility that is achieved by being able to use structured bindings this way is enormous. As long as a class offers members returning values those members can be associated with structured binding variables. The member functions don't even have to return values that are immediately available (e.g, as data members accessors) but their return values could also be computed on the spot, by simply referring to the corresponding structured binding variable.
To illustrate the abovementioned steps for associating structured bindings with class members we use these classes:
class Euclid
{
size_t d_x;
size_t d_y;
public:
Euclid(size_t x = 0, size_t y = 0);
double distance() const; // sqrt(d_x * d_x + d_y * d_y)
};
class Data
{
std::string d_text{ "hello from Data" };
Euclid d_euclid;
public:
void setXY(size_t x, size_t y);
Euclid factory() const;
double distance() const;
std::string const &text() const;
};
The first step towards allowing structured bindings for Data consists of defining a (member) termplate get. If Data is our own class we can add a member template get. Alternatively, if we're only interested in accessing Data's public members we could derive a class DataGet from Data, and provide that class with the get mmber template. Yet another possibility is to define a free get function template. The get function must return whatever we're interested in. To make the appropriate selection we use an integral type (int, size_t, ...) selector value, and the function template thus only has a non-type template parameter. Rather than defining several specializations using the if constexpr clause is advised, as it greatly simplifies the function's definition.
Our get function defines selector 0 for factory, selector 1 for distance and selector 2 for text. The distance member simply returns d_euclid.distance(), and Euclid::distance is run-time evaluated using its d_x and d_y values. Thus, distance is an example of a function that will be run-time evaluated when we're referring, later on, to the third structured bindings variable.
Here's the definition of the member template get:
template <size_t Nr>
auto get() const
{
if constexpr (Nr == 0)
return factory();
if constexpr (Nr == 1)
return distance();
if constexpr (Nr == 2)
return text();
static_assert(Nr >= 0 and Nr < 3);
}
This function is still suboptimal. Consider its specialization for value 2: it returns Data::text(). As auto merely inspects the returned data type, get<2>() returns a std::string, rather than (text's) return type, which is a std::string const &. To use the return types that are actually returned by Data's member functions, get's return type should be defined as decltype(auto) rather than just auto:
template <size_t Nr>
decltype(auto) get() const
...
When defining get as a free function template it must be provided with a parameter Data const &data (or Data &data if members are used that may modify data's data members), returning the parameter's member functions. E.g.,
// get as a free function template:
template <size_t Nr>
decltype(auto) get(Data const &data)
{
if constexpr (Nr == 0)
return data.factory();
if constexpr (Nr == 1)
return data.distance();
... // (etc)
}
Now that step 1 has been completed, we turn our attention to the std::tuple specializations. These specializations are defined inside the std namespace (using namespace std { ... } or std::tuple...).
The specialization of std::tuple_size for Data defines static size_t const value as the number of index values that can be specified with the get<idx> function:
template<>
struct std::tuple_size<Data>
{
static size_t const value = 3;
};
The specialization of std::tuple_element for Data returns the types matching the various return types of the get member template. Its implementation also provides a nice example where declval is used: the return type of the get<Nr> specialization must be determined. But to obtain that return type a Data object is required, which isn't available by just mentioning Data in tupe_element's specialization. However, declval<Data>() defines an rvalue reference, which can be passed to get<Nr>. But the function's return value isn't required, so the object doesn't have to be constructed. Only its return type is needed. Hence, by surrounding the get<Nr> call by decltype no object is constructed, and merely its return type is used:
template<size_t Nr>
struct std::tuple_element<Nr, Data>
{
using type = decltype( declval<Data>().get<Nr>() );
// if get<Nr> is a free function use:
// decltype( get<Nr>( declval<Data>() ) );
};
As tuple_size and tuple_element are directly associated with the class Data their definitions should be provided in Data's header file, below Data's class interface.
Here's how this could be used in a main function, showing single object access and access using a range-based for-loop:
int main()
{
Data data;
auto &[ ef, dist, txt ] = data;
// or maybe:
// auto &&[ ef, dist, txt ] = Data{};
cout << dist << ' ' << txt << '\n';
Data array[5];
for (auto &[ ef, dist, txt]: array)
cout << "for: " << dist << ' ' << txt << '\n';
}
22.7: Computing the return type of function objects
As amply illustrated in chapter 19 function objects play an important role with generic algorithms. Like generic algorithms themselves, function objects can be generically defined as members of class templates. If the function call operators (operator()) of such classes define parameters then the types of those parameters may also be abstracted by defining the function call operators themselves as member templates. Example:
template <typename Class>
class Filter
{
Class obj;
public:
template <typename Param>
Param operator()(Param const ¶m) const
{
return obj(param);
}
};
The template class Filter is a wrapper around Class, filtering Class's function call operator through its own function call operator. In the above example the return value of Class's function call operator is simply passed on, but any other manipulation is of course also possible.
A type that is specified as Filter's template type argument may of course have multiple function call operators:
struct Math
{
int operator()(int x);
double operator()(double x);
};
Math objects can now be filtered using Filter<Math> fm using Math's first or second function call operator, depending on the actual argument type. With fm(5) the int-version is used, with fm(12.5) the double-version is used.
However, this scheme doesn't work if the function call operators have different return and argument types. Because of this the following class Convert cannot be used with Filter:
struct Convert
{
double operator()(int x); // int-to-double
std::string operator()(double x); // double-to-string
};
This problem can be tackled successfully by the class template std::result_of<Functor(Typelist)>. Before using std::result_of the header file <functional> must be included.
The result_of class template offers a typedef (type), representing the type that is returned by Functor<TypeList>. It can be used as follows to improve the implementation of Filter:
template <typename Class>
class Filter
{
Class obj;
public:
template <typename Arg>
typename std::result_of<Class(Arg)>::type
operator()(Arg const &arg) const
{
return obj(arg);
}
};
Using this definition, Filter<Convert> fc can be constructed. Now fc(5) returns a double, while fc(4.5) returns a std::string.
The class Convert must define the relationships between its function call operators and their return types. Predefined function objects (like those in the standard template library) already do so, but self-defined function objects must do this explicitly.
If a function object class defines only one function call operator it can define its return type by a typedef. If the above class Convert would only define the first of its two function call operators then the typedef (in the class's public section) should be:
typedef double type;
If multiple function call operators are defined, each with its own signature and return type, then the association between signature and return type is set up as follows (all in the class's public section):
template <typename Signature>
struct result;
template <typename Class>
struct result<Class(int)>
{
typedef double type;
};
and Convert's second function call operator to:
template <typename Class>
struct result<Class(double)>
{
typedef std::string type;
};
template <typename Class>
struct result<Class(int, double)>
{
typedef size_t type;
};
22.8: Instantiating class templates
Class templates are instantiated when an object of a class template is defined. When a class template object is defined or declared its template parameters must explicitly be specified.
Template parameters are also specified when default template parameter values are specified albeit that in that case the compiler provides the defaults (cf. section 22.4 where double is used as the default type to use for the template's DataType parameter). The actual values or types of template parameters are never deduced from arguments as is done with function template parameters. So to define a Matrix of complex-valued elements, the following syntax is used:
Matrix<3, 5, std::complex> complexMatrix;
Since the class template Matrix uses a default data type a matrix of double-valued elements can be defined like this:
Matrix<3, 5> doubleMatrix;
A class template object may be declared using the keyword extern. For example, to declare the matrix complexMatrix use:
extern Matrix<3, 5, std::complex> complexMatrix;
A class template declaration suffices to compile return values or parameters that are of class template types. Example: the following source file may be compiled, although the compiler hasn't seen the definition of the Matrix class template. Generic classes and (partial) specializations may all be declared. A function expecting or returning a class template object, reference, or parameter automatically becomes a function template itself. This is necessary to allow the compiler to tailor the function to the types of various actual arguments that may be passed to the function:
#include <cstddef>
template <size_t Rows, size_t Columns, typename DataType = double>
class Matrix;
template <size_t Columns, typename DataType>
class Matrix<1, Columns, DataType>;
Matrix<1, 12> *function(Matrix<2, 18, size_t> &mat);
When class templates are used the compiler must first have seen their implementations. So, template member functions must be known to the compiler when the template is instantiated. This does not mean that all members of a template class are instantiated or must have been seen when a class template object is defined. The compiler only instantiates those members that are actually used. This is illustrated by the following simple class Demo that has two constructors and two members. When we use one constructor and call one member in main note the sizes of the resulting object file and executable program. Next the class definition is modified in that the unused constructor and member are commented out. Again we compile and link the program. Now observe that these latter sizes are identical to the former sizes. There are other ways to illustrate that only used members are instantiated. The nm program could be used. It shows the symbolic content of object files. Using nm we'll reach the same conclusion: only template member functions that are actually used are instantiated. Here is the class template Demo that was used for our little experiment. In main only the first constructor and the first member function are called and thus only these members were instantiated:
#include <iostream>
template <typename Type>
class Demo
{
Type d_data;
public:
Demo();
Demo(Type const &value);
void member1();
void member2(Type const &value);
};
template <typename Type>
Demo<Type>::Demo()
:
d_data(Type())
{}
template <typename Type>
void Demo<Type>::member1()
{
d_data += d_data;
}
// the following members should be commented out before
// compiling for the 2nd time:
template <typename Type>
Demo<Type>::Demo(Type const &value)
:
d_data(value)
{}
template <typename Type>
void Demo<Type>::member2(Type const &value)
{
d_data += value;
}
int main()
{
Demo<int> demo;
demo.member1();
}
22.9: Processing class templates and instantiations
In section 21.13 the distinction between code depending on template parameters and code not depending on template parameters was introduced. The same distinction also holds true when class templates are defined and used.
Code not depending on template parameters is verified by the compiler when the template is defined. If a member function in a class template uses a qsort function, then qsort does not depend on a template parameter. Consequently, qsort must be known to the compiler when it encounters qsort's function call. In practice this implies that the <cstdlib> header file must have been read by the compiler before it is able to compile the class template definition.
On the other hand, if a template defines a <typename Ret> template type parameter to parameterize the return type of some template member function as in:
Ret member();
then the compiler may encounter member or the class to which member belongs in the following locations:
Ret tmp(Ret(), 15);
then this is in principle a syntactically valid statement. However, when Ret = int the statement fails to compile as int does not have a constructor expecting two int arguments. Note that this is not a problem when the compiler instantiates an object of member's class. At the point of instantiation of the object its member function `member' is not instantiated and so the invalid int construction remains undetected.
22.10: Declaring friends
Friend functions are normally constructed as support (free) functions of a class that cannot be implemented and declared as class members. The insertion operator for output streams is a well known example. Friend classes are most often seen in the context of nested classes. Here the inner class declares the outer class as its friend (or the other way around). Again we see a support mechanism: the inner class is constructed to support the outer class.
Like ordinary classes, class templates may declare other functions and classes as their friends. Conversely, ordinary classes may declare template classes as their friends. Here too, the friend is constructed as a special function or class augmenting or supporting the functionality of the declaring class. Although the friend keyword can be used by any type of class (ordinary or template) when using class templates the following cases should be distinguished:
If the actual values of the friend's template parameters must be equal to the template parameters of the class declaring the friend, the friend is said to be a bound friend class or function template. In this case the template parameters of the template specifying the friend declaration determine (bind) the values of the template parameters of the friend class or function. Bound friends result in a one-to-one correspondence between the template's parameters and the friend's template parameters.
In this case an unbound friend class or function template is declared. The template parameters of the friend class or function template remain to be specified and are not related in some predefined way to the template parameters of the class declaring the friend. If a class template has data members of various types, specified by its template parameters and another class should be allowed direct access to these data members we want to specify any of the current template arguments when specifying such a friend. Rather than specifying multiple bound friends, a single generic (unbound) friend may be declared, specifying the friend's actual template parameters only when this is required.
22.10.1: Non-templates used as friends in templates
A class template may declare an ordinary function, ordinary member function or ordinary class as its friend. Such a friend may access the class template's private members.
Concrete classes and ordinary functions can be declared as friends, but before a single member function of a class can be declared as a friend, the compiler must have seen the class interface declaring that member. Let's consider the various possibilities:
void function(std::vector<Type> &vector)
unless function itself is a template, it is not immediately clear how and why such a friend should be constructed. One reason could be to allow the function access to the class's private static members. In addition such friends could instantiate objects of classes that declare them as their friends. This would allow the friend functions direct access to such object's private members. For example:
template <typename Type>
class Storage
{
friend void basic();
static size_t s_time;
std::vector<Type> d_data;
public:
Storage();
};
template <typename Type>
size_t Storage<Type>::s_time = 0;
template <typename Type>
Storage<Type>::Storage()
{}
void basic()
{
Storage<int>::s_time = time(0);
Storage<double> storage;
std::sort(storage.d_data.begin(), storage.d_data.end());
}
template <typename Type>
class Composer
{
friend class Friend;
std::vector<Type> d_data;
public:
Composer();
};
class Friend
{
Composer<int> d_ints;
public:
Friend(std::istream &input);
};
inline::Friend::Friend(std::istream &input)
{
std::copy(std::istream_iterator<int>(input),
std::istream_iterator<int>(),
back_inserter(d_ints.d_data));
}
template <typename Type>In this example Friend::d_ints is a pointer member. It cannot be a Composer<int> object as the Composer class interface hasn't yet been seen by the compiler when it reads Friend's class interface. Disregarding this and defining a data member Composer<int> d_ints results in the compiler generating the error
class Composer;
class Friend
{
Composer<int> *d_ints;
public:
Friend(std::istream &input);
void sorter();
};
template <typename Type>
class Composer
{
friend void Friend::sorter();
std::vector<Type> d_data;
public:
Composer(std::istream &input)
{
std::copy(std::istream_iterator<int>(input),
std::istream_iterator<int>(),
back_inserter(d_data));
}
};
inline Friend::Friend(std::istream &input)
:
d_ints(new Composer<int>{ input })
{}
inline void Friend::sorter()
{
std::sort(d_ints->d_data.begin(), d_ints->d_data.end());
}
error: field `d_ints' has incomplete type
`Incomplete type', as the compiler at this points knows of the existence of the class Composer, but as it hasn't seen Composer's interface it doesn't know what size the d_ints data member has.
22.10.2: Templates instantiated for specific types as friends
With bound friend class or function templates there is a one-to-one mapping between the template arguments of the friend templates and the template arguments of the class templates declaring them as friends. In this case, the friends themselves are templates too. Here are the various possibilities:
template <typename Key, typename Value>
class Dictionary
{
friend Dictionary<Key, Value>
subset<Key, Value>(Key const &key,
Dictionary<Key, Value> const &dict);
std::map<Key, Value> d_dict;
public:
Dictionary();
};
template <typename Key, typename Value>
Dictionary<Key, Value>
subset(Key const &key, Dictionary<Key, Value> const &dict)
{
Dictionary<Key, Value> ret;
std::remove_copy_if(dict.d_dict.begin(), dict.d_dict.end(),
std::inserter(ret.d_dict, ret.d_dict.begin()),
std::bind2nd(std::equal_to<Key>(), key));
return ret;
}
template <typename Key, typename Value>
class Iterator;
template <typename Key, typename Value>
class Dictionary
{
friend class Iterator<Key, Value>;
template <typename Key, typename Value>
template <typename Key2, typename Value2>
Iterator<Key2, Value2> Dictionary<Key, Value>::begin()
{
return Iterator<Key, Value>(*this);
}
template <typename Key, typename Value>
template <typename Key2, typename Value2>
Iterator<Key2, Value2> Dictionary<Key, Value>::subset(Key const &key)
{
return Iterator<Key, Value>(*this).subset(key);
}
template <typename Key, typename Value>
class Iterator
{
std::map<Key, Value> &d_dict;
public:
Iterator(Dictionary<Key, Value> &dict)
:
d_dict(dict.d_dict)
{}
template <typename Key, typename Value>
typename std::map<Key, Value>::iterator Iterator<Key, Value>::begin()
{
return d_dict.begin();
}
template <typename Key, typename Value>In this example, Dictionary's constructor is Iterator's friend. The friend is a template member. Other members can be declared as a class's friend as well. In those cases their prototypes must be used, also specifying the types of their return values. Assuming that
class Iterator
{
friend Dictionary<Key, Value>::Dictionary();
std::map<Key, Value> &d_dict;
Iterator(Dictionary<Key, Value> &dict);
public:
std::vector<Value> sortValues()
is a member of Dictionary then the matching bound friend declaration is:
friend std::vector<Value> Dictionary<Key, Value>::sortValues();
template<typename Type>
bool operator==(ClassTemplate<Type> const &lhs,
ClassTemplate<Type> const &rhs);
must have been declared prior to ClassTemplate's interface itself. Within the class interface operator== may then be declared as a friend, specifying operator== as a specialized function template (note the <> following the function name) like this:
template <typename Type>
class ClassTemplate
{
friend bool operator==<>(ClassTemplate<Type> const &lhs,
ClassTemplate<Type> const &rhs);
...
};
Now that the class has been declared, operator=='s implementation may follow.
Finally, the following example can be used as a prototype for situations where bound friends are useful:
template <typename T> // a function template
void fun(T *t)
{
t->not_public();
};
template<typename X> // a free member function template
bool operator==(A<X> const &lhs, A<X> const &rhs);
template <typename X> // a class template
class A
{ // fun() is used as friend bound to A,
// instantiated for X, whatever X may be
friend void fun<A<X>>(A<X> *);
// operator== is a friend for A<X> only
friend bool operator==<>(A<X> const &lhs, A<X> const &rhs);
int d_data = 10;
public:
A();
private:
void not_public();
};
template <typename X>
A<X>::A()
{
fun(this);
}
template <typename X>
void A<X>::not_public()
{}
template<typename X> // may access lhs/rhs's private data
bool operator==(A<X> const &lhs, A<X> const &rhs)
{
return lhs.d_data == rhs.d_data;
}
int main()
{
A<int> a;
fun(&a); // fun instantiated for A<int>.
}
22.10.3: Unbound templates as friends
When a friend is declared as an unbound friend it merely declares an existing template to be its friend (no matter how it is instantiated). This may be useful in situations where the friend should be able to instantiate objects of class templates declaring the friend, allowing the friend to access the instantiated object's private members. Functions, classes, and member functions may all be declared as unbound friends.
Here are the syntactic conventions declaring unbound friends:
template <typename Iterator, typename Class, typename Data>
Class &ForEach(Iterator begin, Iterator end, Class &object,
void (Class::*member)(Data &));
This function template can be declared as an unbound friend in the following class template Vector2:
template <typename Type>
class Vector2: public std::vector<std::vector<Type> >
{
template <typename Iterator, typename Class, typename Data>
friend Class &ForEach(Iterator begin, Iterator end, Class &object,
void (Class::*member)(Data &));
...
};
If the function template is defined inside some namespace this namespace must be mentioned as well. Assuming that ForEach is defined in the namespace FBB its friend declaration becomes:
template <typename Iterator, typename Class, typename Data>
friend Class &FBB::ForEach(Iterator begin, Iterator end, Class &object,
void (Class::*member)(Data &));
The following example illustrates the use of an unbound friend. The class Vector2 stores vectors of elements of template type parameter Type. Its process member allows ForEach to call its private rows member. The rows member, in turn, uses another ForEach to call its private columns member. Consequently, Vector2 uses two instantiations of ForEach which is a clear hint for using an unbound friend. It is assumed that Type class objects can be inserted into ostream objects (the definition of the ForEach function template can be found in the cplusplus.yo.zip archive that can be retrieved from https://fbb-git.gitlab.io/cppannotations/). Here is the program:
template <typename Type>
class Vector2: public std::vector<std::vector<Type> >
{
typedef typename Vector2<Type>::iterator iterator;
template <typename Iterator, typename Class, typename Data>
friend Class &ForEach(Iterator begin, Iterator end, Class &object,
void (Class::*member)(Data &));
public:
void process();
private:
void rows(std::vector<Type> &row);
void columns(Type &str);
};
template <typename Type>
void Vector2<Type>::process()
{
ForEach<iterator, Vector2<Type>, std::vector<Type> >
(this->begin(), this->end(), *this, &Vector2<Type>::rows);
}
template <typename Type>
void Vector2<Type>::rows(std::vector<Type> &row)
{
ForEach(row.begin(), row.end(), *this,
&Vector2<Type>::columns);
std::cout << '\n';
}
template <typename Type>
void Vector2<Type>::columns(Type &str)
{
std::cout << str << " ";
}
using namespace std;
int main()
{
Vector2<string> c;
c.push_back(vector<string>(3, "Hello"));
c.push_back(vector<string>(2, "World"));
c.process();
}
/*
Generated output:
Hello Hello Hello
World World
*/
template <typename Type>
class PtrVector
{
template <typename Iterator, typename Class>
friend class Wrapper; // unbound friend class
};
All members of the class template Wrapper may now instantiate PtrVectors using any actual type for its Type parameter. This allows the Wrapper instantiation to access all of PtrVector's private members.
template <typename Iterator>
class Wrapper;
template <typename Type>
class PtrVector
{
template <typename Iterator> friend
PtrVector<Type> Wrapper<Iterator>::begin(Iterator const &t1);
...
};
22.10.4: Extended friend declarations
Through extended friend declarations, which are also available for class templates, template type parameters can be declared as friends. A template type argument, however, does not necessarily have to be a type for which the keyword friend makes sense, like int. In those cases the friend declaration is simply ignored.
Consider the following class template, declaring Friend as a friend:
template <typename Friend>
class Class
{
friend Friend;
void msg(); // private, displays some message
};
Now, an actual Friend class may access all of Class's members
class Concrete
{
Class<Concrete> d_class;
Class<std::string> d_string;
public:
void msg()
{
d_class.msg(); // OK: calls private Class<Concrete>::msg()
//d_string.msg(); // fails to compile: msg() is private
}
};
A declaration like Class<int> intClass is also OK, but here the friend declaration is simply ignored. After all, there are no `int members' to access Class<int>'s private members.
22.11: Class template derivation
Class templates can be used for inheritance purposes as well. When a class template is used in class derivation, the following situations should be distinguished:
These three variants of class template derivation are elaborated in this and the upcoming sections.
Consider the following base class:
template<typename T>
class Base
{
T const &t;
public:
Base(T const &t);
};
The above class is a class template that can be used as a base class for the following derived class template Derived:
template<typename T>
class Derived: public Base<T>
{
public:
Derived(T const &t);
};
template<typename T>
Derived<T>::Derived(T const &t)
:
Base(t)
{}
Other combinations are also possible. The base class may be instantiated by specifying template arguments, turning the derived class into an ordinary class (showing a class object's definition as well):
class Ordinary: public Base<int>
{
public:
Ordinary(int x);
};
inline Ordinary::Ordinary(int x)
:
Base(x)
{}
Ordinary ordinary{ 5 };
This approach allows us to add functionality to a class template, without the need for constructing a derived class template.
Class template derivation pretty much follows the same rules as ordinary class derivation, not involving class templates. Some subtleties that are specific for class template derivation may easily cause confusion like the use of this when members of a template base class are called from a derived class. The reasons for using this are discussed in section 23.1. In the upcoming sections the focus will be on the class derivation proper.
22.11.1: Deriving ordinary classes from class templates
When an existing class template is used as a base class for deriving an ordinary class, the class template parameters are specified when defining the derived class's interface. If in a certain context an existing class template lacks a particular functionality, then it may be useful to derive an ordinary class from a class template. For example, although the class map can easily be used in combination with the find_if() generic algorithm (section 19.1.17), it requires the construction of a class and at least two additional function objects of that class. If this is considered too much overhead then extending a class template with tailor-made functionality might be considered.
Example: a program executing commands entered at the keyboard might accept all unique initial abbreviations of the commands it defines. E.g., the command list might be entered as l, li, lis or list. By deriving a class Handler from
map<string, void (Handler::*)(string const &cmd)>
and by defining a member function process(string const &cmd) to do the actual command processing a program might simply execute the following main() function:
int main()
{
string line;
Handler cmd;
while (getline(cin, line))
cmd.process(line);
}
The class Handler itself is derived from a std::map, in which the map's values are pointers to Handler's member functions, expecting the command line entered by the user. Here are Handler's characteristics:
class Handler: private std::map<std::string,
void (Handler::*)(std::string const &cmd)>
static value_type s_cmds[];
static value_type *const s_cmds_end;
inline Handler::Handler()
:
std::map<std::string,
void (Handler::*)(std::string const &cmd)>
(s_cmds, s_cmds_end)
{}
void Handler::process(std::string const &line)
{
istringstream istr(line);
string cmd;
istr >> cmd;
for (iterator it = begin(); it != end(); it++)
{
if (it->first.find(cmd) == 0)
{
(this->*it->second)(line);
return;
}
}
cout << "Unknown command: " << line << '\n';
}
22.11.2: Deriving class templates from class templates
Although it's perfectly acceptable to derive an ordinary class from a class template, the resulting class of course has limited generality compared to its template base class. If generality is important, it's probably a better idea to derive a class template from a class template. This allows us to extend an existing class template with new functionality or to override the functionality of the existing class template.
The class template SortVector presented below is derived from the existing class template std::vector. It allows us to perform a hierarchic sort of its elements using any ordering of any data members its data elements may contain. To accomplish this there is but one requirement. SortVector's data type must offer dedicated member functions comparing its members.
For example, if SortVector's data type is an object of class MultiData, then MultiData should implement member functions having the following prototypes for each of its data members which can be compared:
bool (MultiData::*)(MultiData const &rhv)
So, if MultiData has two data members, int d_value and std::string d_text and both may be used by a hierarchic sort, then MultiData should offer the following two members:
bool intCmp(MultiData const &rhv); // returns d_value < rhv.d_value
bool textCmp(MultiData const &rhv); // returns d_text < rhv.d_text
Furthermore, as a convenience it is assumed that operator<< and operator>> have been defined for MultiData objects.
The class template SortVector is directly derived from the template class std::vector. Our implementation inherits all members from that base class. It also offers two simple constructors:
template <typename Type>
class SortVector: public std::vector<Type>
{
public:
SortVector()
{}
SortVector(Type const *begin, Type const *end)
:
std::vector<Type>(begin, end)
{}
Its member hierarchicSort is the true raison d'être for the class. It defines the hierarchic sort criteria. It expects a pointer to a series of pointers to member functions of the class Type as well as a size_t representing the size of the array.
The array's first element indicates Type's most significant sort criterion, the array's last element indicates the class's least significant sort criterion. Since the stable_sort generic algorithm was designed explicitly to support hierarchic sorting, the member uses this generic algorithm to sort SortVector's elements. With hierarchic sorting, the least significant criterion should be sorted first. hierarchicSort's implementation is therefore easy. It requires a support class SortWith whose objects are initialized by the addresses of the member functions passed to the hierarchicSort() member:
template <typename Type>
void SortVector<Type>::hierarchicSort(
bool (Type::**arr)(Type const &rhv) const,
size_t n)
{
while (n--)
stable_sort(this->begin(), this->end(), SortWith<Type>(arr[n]));
}
The class SortWith is a simple wrapper class around a pointer to a predicate function. Since it depends on SortVector's actual data type the class SortWith must also be a class template:
template <typename Type>
class SortWith
{
bool (Type::*d_ptr)(Type const &rhv) const;
SortWith's constructor receives a pointer to a predicate function and initializes the class's d_ptr data member:
template <typename Type>
SortWith<Type>::SortWith(bool (Type::*ptr)(Type const &rhv) const)
:
d_ptr(ptr)
{}
Its binary predicate member (operator()) must return true if its first argument should eventually be placed ahead of its second argument:
template <typename Type>
bool SortWith<Type>::operator()(Type const &lhv, Type const &rhv) const
{
return (lhv.*d_ptr)(rhv);
}
The following examples, which can be embedded in a main function, provides an illustration:
SortVector<MultiData> sv;
copy(istream_iterator<MultiData>(cin),
istream_iterator<MultiData>(),
back_inserter(sv));
bool (MultiData::*arr[])(MultiData const &rhv) const =
{
&MultiData::textCmp,
&MultiData::intCmp,
};
sv.hierarchicSort(arr, 2);
swap(arr[0], arr[1]);
sv.hierarchicSort(arr, 2);
After compiling the program the following command can be given:
echo a 1 b 2 a 2 b 1 | a.out
This results in the following output:
a 1 b 2 a 2 b 1
====
a 1 a 2 b 1 b 2
====
a 1 b 1 a 2 b 2
====
22.11.3: Deriving class templates from ordinary classes
An ordinary class may be used as the base class for deriving a template class. The advantage of such an inheritance tree is that the base class's members may all be compiled beforehand. When objects of the class template are now instantiated only the actually used members of the derived class template must be instantiated.
This approach may be used for all class templates having member functions whose implementations do not depend on template parameters. These members may be defined in a separate class which is then used as a base class of the class template derived from it.
As an illustration of this approach we'll develop such a class template below. We'll develop a class Table derived from an ordinary class TableType. The class Table displays elements of some type in a table having a configurable number of columns. The elements are either displayed horizontally (the first k elements occupy the first row) or vertically (the first r elements occupy a first column).
When displaying the table's elements they are inserted into a stream. The table is handled by a separate class (TableType), implementing the table's presentation. Since the table's elements are inserted into a stream, the conversion to text (or string) is implemented in Table, but the handling of the strings themselves is left to TableType. We'll cover some characteristics of TableType shortly, concentrating on Table's interface first:
template <typename Iterator>
class Table: public TableType
{
Table(Iterator const &begin, Iterator const &end,
size_t nColumns, FillDirection direction);
Table(Iterator const &begin, Iterator const &end,
TableSupport &tableSupport,
size_t nColumns, FillDirection direction);
template <typename Iterator>
Table<Iterator>::Table(Iterator const &begin, Iterator const &end,
TableSupport &tableSupport,
size_t nColumns, FillDirection direction)
:
TableType(tableSupport, nColumns, direction)
{
fill(begin, end);
}
template <typename Iterator>
Table<Iterator>::Table(Iterator const &begin, Iterator const &end,
size_t nColumns, FillDirection direction)
:
TableType(nColumns, direction)
{
fill(begin, end);
}
template <typename Iterator>
void Table<Iterator>::fill(Iterator it, Iterator const &end)
{
while (it != end)
{
std::ostringstream str;
str << *it++;
d_string.push_back(str.str());
}
init();
}
This completes the implementation of the class Table. Note that this class template only has three members, two of them being constructors. Therefore, in most cases only two function templates must be instantiated: a constructor and the class's fill member. For example, the following defines a table having four columns, vertically filled by strings extracted from the standard input stream:
Table<istream_iterator<string> >
table(istream_iterator<string>(cin), istream_iterator<string>(),
4, TableType::VERTICAL);
The fill-direction is specified as TableType::VERTICAL. It could also have been specified using Table, but since Table is a class template its specification would have been slightly more complex: Table<istream_iterator<string> >::VERTICAL.
Now that the Table derived class has been designed, let's turn our attention to the class TableType. Here are its essential characteristics:
TableSupport *d_tableSupportPtr;
TableSupport &d_tableSupport;
size_t d_maxWidth;
size_t d_nRows;
size_t d_nColumns;
WidthType d_widthType;
std::vector<size_t> d_colWidth;
size_t (TableType::*d_widthFun)
(size_t col) const;
std::string const &(TableType::*d_indexFun)
(size_t row, size_t col) const;
std::vector<std::string> d_string;
#include "tabletype.ih"
TableType::TableType(TableSupport &tableSupport, size_t nColumns,
FillDirection direction)
:
d_tableSupportPtr(0),
d_tableSupport(tableSupport),
d_maxWidth(0),
d_nRows(0),
d_nColumns(nColumns),
d_widthType(COLUMNWIDTH),
d_colWidth(nColumns),
d_widthFun(&TableType::columnWidth),
d_indexFun(direction == HORIZONTAL ?
&TableType::hIndex
:
&TableType::vIndex)
{}
#include "tabletype.ih"
void TableType::init()
{
if (!d_string.size()) // no elements
return; // then do nothing
d_nRows = (d_string.size() + d_nColumns - 1) / d_nColumns;
d_string.resize(d_nRows * d_nColumns); // enforce complete table
// determine max width per column,
// and max column width
for (size_t col = 0; col < d_nColumns; col++)
{
size_t width = 0;
for (size_t row = 0; row < d_nRows; row++)
{
size_t len = stringAt(row, col).length();
if (width < len)
width = len;
}
d_colWidth[col] = width;
if (d_maxWidth < width) // max. width so far.
d_maxWidth = width;
}
}
#include "tabletype.ih"
ostream &TableType::insert(ostream &ostr) const
{
if (!d_nRows)
return ostr;
d_tableSupport.setParam(ostr, d_nRows, d_colWidth,
d_widthType == EQUALWIDTH ? d_maxWidth : 0);
for (size_t row = 0; row < d_nRows; row++)
{
d_tableSupport.hline(row);
for (size_t col = 0; col < d_nColumns; col++)
{
size_t colwidth = width(col);
d_tableSupport.vline(col);
ostr << setw(colwidth) << stringAt(row, col);
}
d_tableSupport.vline();
}
d_tableSupport.hline();
return ostr;
}
inline std::string const &TableType::hIndex(size_t row, size_t col) const
{
return d_string[row * d_nColumns + col];
}
inline std::string const &TableType::vIndex(size_t row, size_t col) const
{
return d_string[col * d_nRows + row];
}
The support class TableSupport is used to display headers, footers, captions and separators. It has four virtual members to perform those tasks (and, of course, a virtual constructor):
The reader is referrred to the cplusplus.yo.zip archive for the full implementation of the classes Table, TableType and TableSupport. Here is a little program showing their use:
/*
table.cc
*/
#include <fstream>
#include <iostream>
#include <string>
#include <iterator>
#include <sstream>
#include "tablesupport/tablesupport.h"
#include "table/table.h"
using namespace std;
using namespace FBB;
int main(int argc, char **argv)
{
size_t nCols = 5;
if (argc > 1)
{
istringstream iss(argv[1]);
iss >> nCols;
}
istream_iterator<string> iter(cin); // first iterator isn't const
Table<istream_iterator<string> >
table(iter, istream_iterator<string>(), nCols,
argc == 2 ? TableType::VERTICAL : TableType::HORIZONTAL);
cout << table << '\n';
}
/*
Example of generated output:
After: echo a b c d e f g h i j | demo 3
a e i
b f j
c g
d h
After: echo a b c d e f g h i j | demo 3 h
a b c
d e f
g h i
j
*/
22.12: Static Polymorphism
Chapter 14 introduced polymorphism. Polymorphism allows us to use a base class's interface to call implementations which are defined in derived classes. Traditionally this involves defining Vtables for polymorphic classes, containing pointers to functions that can be overridden in derived classes. Objects of polymorphic classes harbor hidden pointers, pointing to their class's Vtables. This type of polymorphism is called dynamic polymorphism, and it uses late binding as the function to call is determined run-time, rather than compile-time.
In many cases, however, dynamic polymorphism isn't really required. Usually the derived class objects that are passed to functions expecting base class references are invariants: at fixed locations in programs fixed class types are used to create objects. The polymorphic nature of these objects is used inside the functions that receive these objects, expecting references to their base classes. As an example consider reading information from a network socket. A class SocketBuffer is derived from std::streambuf, and the std::stream receiving a pointer to the SocketBuffer merely uses std::streambuf's interface. However, the implementation, by using polymorphism, in fact communicates with functions defined in SocketBuffer.
The disadvantages of this scheme are that, firstly, inside the functions expecting references to polymorphic base classes execution is somewhat slowed down precisely because of late-binding. Member functions aren't directly called, but are called indirectly via the object's vpointer and their derived class's Vtable. Secondly, programs using dynamic polymorphism tend to become somewhat bloated compared to programs using static binding. The code bloat is caused by the requirement to satisfy at link-time all the references that are mentioned in all the object files comprising the final program. This requirement forces the linker to link all the functions whose addresses are stored in the Vtables of all polymorphic classes, even if these functions are never actually called.
Static polymorphism allows us to avoid these disadvantages. It can be used instead of dynamic polymorphism in cases where the abovementioned invariant holds. Static polymorphism, also called the curiously recurring template pattern (CRTP), is an example of template meta programming (see also chapter 23 for additional examples of template meta programming).
Whereas dynamic polymorphism is based on the concepts of vpointers, Vtables, and function overriding, static polymorphism capitalizes on the fact that function templates (c.q., member templates) are only compiled into executable code when they are actually called. This allows us to write code in which functions are called which are completely non-existent at the time we write our code. This, however, shouldn't worry us too much. After all, we use a comparable approach when calling a purely virtual function of an abstract base class. The function is really called, but which function is eventually called is determined later in time. With dynamic polymorphism it is determined run-time, with static polymorphism it is determined compile-time.
There's no need to consider static and dynamic polymorphism as mutually exclusive variants of polymorphism. Rather, both can be used together, combining their strengths.
This section contains several subsections.
22.12.1: An example of static polymorphism
With static polymorphism a class template takes the role of a base class in dynamic polymorphism. This class template declares several members, which are comparable to members of a polymorphic base class: they are either support members or they call members that are overridden in derived classes.
In the context of dynamic polymorphism these overridable members are the base class's virtual members. In the context of static polymorphism there are no virtual members. Instead, the statically polymorphic base class (referred to as the `base class' below) declares a template type parameter (referred to as the `derived class type' below). Next, the base class's interfacing members call members of the derived class type.
Here is a simple example: a class template acting as a base class. Its public interface consists of one member. But different from dynamic polymorphism there's no reference in the class's interface to any member showing polymorphic behavior (i.e, no `virtual' members are declared):
template <class Derived>
struct Base
{
void interface();
}
Let's have a closer look at the member `interface'. This member is called by functions receiving a reference or pointer to the base class, but it may call members that must be available in the derived class type at the point where interface is called. Before we can call members of the derived class type an object of the derived class type must be available. This object is obtained through inheritance. The derived class type is going to be derived from the base class. Thus Base's this pointer is also Derived's this pointer.
Forget about polymorphism for a second: when we have a class Derived: public Base then (because of inheritance) a static_cast<Derived *> can be used to cast a Base * to a Derived object. A dynamic_cast of course doesn't apply, as we don't use dynamic polymorphism. But a static_cast is appropriate since our Base * does in fact point to a Derived class object.
So, to call a Derived class member from inside interface we can use the following implementation (remember that Base is a base class of Derived):
template<class Derived>
void Base<Derived>::interface()
{
static_cast<Derived *>(this)->polymorphic();
}
It's remarkable that, when the compiler is given this implementation it cannot determine whether Derived is really derived from Base. Neither can it determine whether the class Derived indeed offers a member polymorphic. The compiler simply assumes this to be true. If so, then the provided implementation is syntactically correct. One of the key characteristics of using templates is that the implementation's viability is eventually determined at the function's point of instantiation (cf. section 21.6). At that point the compiler will verify that, e.g., the function polymorphic really is available.
Thus, in order to use the above scheme we must ensure that
The first requirement is satisfied by using the curiously recurring template pattern:
class First: public Base<First>
In this curious pattern the class First is derived from Base, which itself is instantiated for First. This is acceptable, as the compiler already has determined that the type First exists. At this point that is all it needs.
The second requirement is simply satisfied by defining the member polymorphic. In chapter 14 we saw that virtual and overriding members belong to the class's private interface. We can apply the same philosophy here, by placing polymorphic in First's private interface, allowing it to be accessed from the base class by declaring
friend void Base<First>::interface();
First's complete class interface can now be designed, followed by polymorphic's implementation:
class First: public Base<First>
{
friend void Base<First>::interface();
private:
void polymorphic();
};
void First::polymorphic()
{
std::cout << "polymorphic from First\n";
}
Note that the class First itself is not a class template: its members can be separately compiled and stored in, e.g., a library. Also, as is the case with dynamic polymorphism, the member polymorphic has full access to all of First's data members and member functions.
Multiple classes can now be designed like First, each offering their own implementation of polymorphic. E.g., the member Second::polymorphic of the class Second, designed like First, could be implemented like this:
void Second::polymorphic()
{
std::cout << "polymorphic from Second\n";
}
The polymorphic nature of Base becomes apparent once a function template is defined in which Base::interface is called. Again, the compiler simply assumes a member interface exists when it reads the definition of the following function template:
template <class Class>
void fun(Class &object)
{
object.interface();
}
Only where this function is actually called will the compiler verify the viability of the generated code. In the following main function a First object is passed to fun: First declares interface through its base class, and First::polymorphic is called by interface. The compiler will at this point (i.e., where fun is called) check whether first indeed has a member polymorphic. Next a Second object is passed to fun, and here again the compiler checks whether Second has a member Second::polymorphic:
int main()
{
First first;
fun(first);
Second second;
fun(second);
}
There are also downsides to using static polymorphism:
Summarizing, static polymorphism is best used in situations where a small number of different derived class types are used, where a fixed number of derived class objects are used, and where the statically polymorphic base classes themselves are lean (possibly encapsulating some of their code in ordinary base classes of their own).
22.12.2: Converting dynamic polymorphic classes to static polymorphic classes
So you've decided that you want to convert some of your dynamically polymorphic classes into statically polymorphic classes. Now what?
In chapter 14 the base class Vehicle and some derived classes were introduced. Vehicle, Car and Truck's interfaces look like this (regarding the members that are involved in their polymorphic behaviors):
class Vehicle
{
public:
int mass() const;
private:
virtual int vmass() const;
};
class Car: public Vehicle
{
private:
int vmass() const override;
};
class Truck: public Car
{
private:
int vmass() const override;
};
When converting dynamically polymorphic classes to statically polymorphic classes we must realize that polymorphic classes show two important characteristics:
With statically polymorphic classes these two characteristics should completely be separated. As we've seen in the previous section, a statically polymorphic derived class derives from its base class by using its own class type as argument to the base class's type parameter. This works fine if there's only one level of inheritance (i.e., one base class, and one or more classes that are directly derived from that base class).
With multiple levels of inheritance (e.g., Truck -> Car -> Vehicle) Truck's inheritance specification becomes a problem. Here's an intial attempt to use atatic polymorphism and multiple levels of inheritance:
template <class Derived>
class Vehicle
{
public:
void mass()
{
static_cast<Derived *>(this)->vmass();
}
};
class Car: public Vehicle<Car>
{
friend void Vehicle<Car>::mass();
void vmass();
};
class Truck: public Car
{
void vmass();
};
To solve this problem (i.e., to ensure that Truck{}.mass() calls Truck::vmass) the redefinable interface must be separated from the inheritable interface.
In derived classes the protected and public interfaces of (direct or indirect) base classes are made available using standard inheritance. This is shown in the left-hand side of figure 28.
Figure 28: Vehicle Static Polymorphic Class Design
The left-hand side classes are used as base classes for the next level of inheritance (except for TruckBase, but TruckBase could be used as base class for yet another level of class inheritance). This line of inheritance declares the inheritable interface of the classes.
Each of the classes to the left is a base class of a single class to the right: VehicleBase is a base class for Vehicle, TruckBase for Truck. The classes to the left contain all members that are completely independent of the elements that are involved in realizing the static polymorphism. As that's a mere design principle to realize multiple levels of static polymorphism the common data hiding principles are relaxed, and the left-hand side classes declare their matching right-hand side derived class templates as friend, to allow full access to all members of a left-hand side class, including the private members, from the matching derived class template to the right. E.g., VehicleBase declares Vechicle as its friend:
class VehicleBase
{
template <class Derived>
friend class Vehicle;
// all members originally in Vehicle, but not involved
// in realizing static polymorphism are declared here. E.g.,
size_t d_massFactor = 1;
};
The top level class to the left (VehicleBase) lays the foundation of static polymorphism, by defining that part of the interface that uses the statically redefinable functions. E.g, using the curiously recurring template pattern it defines a class member mass that calls the function vmass of its derived class (in addition it can use all members of its non-class template base class). E.g,:
template <class Derived>
class Vehicle: public VehicleBase
{
public:
int mass() const
{
return d_massFactor *
static_cast<Derived const *>(this)->vmass();
}
};
Which function actually is called when vmass is called depends on the implementation in the class Derived, which is handled by the remaining classes, shown below Vehicle, which are all derived from Vehicle (as well as from their own ...Base class). These classes use the curiously recurring template pattern. E.g.,
class Car: public CarBase, public Vehicle<Car>
So, if Car now implements its own vmass function, which can use any of its own (i.e., CarBase's members), then that function is called when calling a Vehicle's mass function. E.g.,
template <class Vehicle>
void fun(Vehicle &vehicle)
{
cout << vehicle.mass() << '\n';
}
int main()
{
Car car;
fun(car); // Car's vmass is called
Truck truck;
fun(truck); // Truck's vmass is called
}
Now that we've analyzed the design of statically polymorphic classes using multiple levels of inheritance let's summarize the steps that took to implement static polymorphism
This design pattern can be extended to any level of inheritance: for each new level a base class is constructed, deriving from the most deeply nested XXXBase class so far, and deriving from Vehicle<XXX>, implementing its own ideas about the redefinable interface.
Functions that are used in combination with statically polymorphic classes themselves must be function templates. E.g.,
template <class Vehicle>
void fun(Vehicle &vehicle)
{
cout << vehicle.mass() << '\n';
}
Here, Vehicle is just a formal name. When an object is passed to fun it must offer a member mass, or compilation will fail. If the object is in fact a Car or Truck, then their Vehicle<Type> static base class member mass is called, which in turn uses static polymorphism to call the member vmass as implemented by the actually passed class type. The following main function displays, respectively, 1000 and 15000:
int main()
{
Car car;
fun(car);
Truck truck;
fun(truck);
}
Note that this program implements fun twice, rather than once in the case of dynamic polymorphism. The same holds true for the Vehicle class template: two implementations, one for the Car type, and one for the Truck type. The statically polymorphic program will be slightly faster, though.
(A compilable example using static polymorphism is found in the C++ Annotations's source distribution's file yo/classtemplates/examples/staticpolymorphism/polymorph.cc.)
22.12.3: Using static polymorphism to avoid reimplementations
Static polymorphism may profitably be used to avoid reimplementing code in an otherwise dynamic polymorphic environment.
Consider the situation where we have a class containing a container of pointers to some polymorphic base class type (like the class Vehicle from chapter 14). How to copy such a container to another container? We're not hinting at using shared pointers here, but would like to make a full copy. Clearly, we'll need to duplicate the objects the pointers point at, and assign these new pointers to the copied object's container.
The prototype design patttern is commonly used to create copies of objects of polymorphic classes, given pointers to their base classes.
To apply the prototype design pattern we have to implement newCopy in all derived classes. Not by itself a big deal, but static polymorphism can nicely be used here to avoid having to reimplement this function for each derived class.
We start off with an abstract base class VehicleBase declaring a pure virtual member newCopy:
struct VehicleBase
{
virtual ~VehicleBase();
VehicleBase *clone() const; // calls newCopy
// declare any additional members defining the
// public user interface here
private:
VehicleBase *newCopy() const = 0;
};
Next we define a static polymorphic class CloningVehicle which is derived from VehicleBase (note that we thus combine dynamic and static polymorphism). This class provides the generic implementation of newCopy. This is possible because all derived classes can use this implementation. Also, CloningVehicle will be re-implemented for each concrete type of vehicle that is eventually used: a Car, a Truck, an AmphibiousVehicle, etc, etc. CloningVehicle thus isn't shared (like VehicleBase), but instantiated for each new type of vehicle.
The core characteristic of a statically polymorphic class is that it can use its class template type parameter via a static_cast of its own type. A member function like newCopy is implemented always the same way, viz., by using the derived class's copy constructor. Here is the class CloningVehicle:
template <class Derived>
class CloningVehicle: public VehicleBase
{
VehicleBase *newCopy() const
{
return new Derived(*static_cast<Derived const *>(this));
}
};
And we're done. All types of vehicles should now be derived from CloningVehicle, which automatically provides them with their own implementation of newCopy. E.g., a class Car looks like this:
class Car: public CloningVehicle<Car>
{
// Car's interface, no need to either
// declare or implement newCopy,
// but a copy constructor is required.
};
Having defined a std::vector<VehicleBase *> original we could create a copy of original like this:
for(auto pointer: original)
duplicate.push_back(pointer->clone());
Irrespective of the actual type of vehicle to which the pointers point, their clone members will return pointers to newly allocated copies of objects of their own types.
22.13: Class templates and nesting
When a class is nested within a class template, it automatically becomes a class template itself. The nested class may use the template parameters of the surrounding class, as shown by the following skeleton program. Within a class PtrVector, a class iterator is defined. The nested class receives its information from its surrounding class, a PtrVector<Type> class. Since this surrounding class should be the only class constructing its iterators, iterator's constructor is made private and the surrounding class is given access to the private members of iterator using a bound friend declaration. Here is the initial section of PtrVector's class interface:
template <typename Type>
class PtrVector: public std::vector<Type *>
This shows that the std::vector base class stores pointers to Type values, rather than the values themselves. Of course, a destructor is now required as the (externally allocated) memory for the Type objects must eventually be freed. Alternatively, the allocation might be part of PtrVector's tasks, when it stores new elements. Here it is assumed that PtrVector's clients do the required allocations and that the destructor is implemented later on.
The nested class defines its constructor as a private member, and allows PtrVector<Type> objects access to its private members. Therefore only objects of the surrounding PtrVector<Type> class type are allowed to construct their iterator objects. However, PtrVector<Type>'s clients may construct copies of the PtrVector<Type>::iterator objects they use.
Here is the nested class iterator, using a (required) friend declaration. Note the use of the typename keyword: since std::vector<Type *>::iterator depends on a template parameter, it is not yet an instantiated class. Therefore iterator becomes an implicit typename. The compiler issues a warning if typename has been omitted. Here is the class interface:
class iterator
{
friend class PtrVector<Type>;
typename std::vector<Type *>::iterator d_begin;
iterator(PtrVector<Type> &vector);
public:
Type &operator*();
};
The implementation of the members shows that the base class's begin member is called to initialize d_begin. PtrVector<Type>::begin's return type must again be preceded by typename:
template <typename Type>
PtrVector<Type>::iterator::iterator(PtrVector<Type> &vector)
:
d_begin(vector.std::vector<Type *>::begin())
{}
template <typename Type>
Type &PtrVector<Type>::iterator::operator*()
{
return **d_begin;
}
The remainder of the class is simple. Omitting all other functions that might be implemented, the function begin returns a newly constructed PtrVector<Type>::iterator object. It may call the constructor since the class iterator declared its surrounding class as its friend:
template <typename Type>
typename PtrVector<Type>::iterator PtrVector<Type>::begin()
{
return iterator(*this);
}
Here is a simple skeleton program, showing how the nested class iterator might be used:
int main()
{
PtrVector<int> vi;
vi.push_back(new int(1234));
PtrVector<int>::iterator begin = vi.begin();
std::cout << *begin << '\n';
}
Nested enumerations and nested typedefs can also be defined by class templates. The class Table, mentioned before (section 22.11.3) inherited the enumeration TableType::FillDirection. Had Table been implemented as a full class template, then this enumeration would have been defined in Table itself as:
template <typename Iterator>
class Table: public TableType
{
public:
enum FillDirection
{
HORIZONTAL,
VERTICAL
};
...
};
In this case, the actual value of the template type parameter must be specified when referring to a FillDirection value or to its type. For example (assuming iter and nCols are defined as in section 22.11.3):
Table<istream_iterator<string> >::FillDirection direction =
argc == 2 ?
Table<istream_iterator<string> >::VERTICAL
:
Table<istream_iterator<string> >::HORIZONTAL;
Table<istream_iterator<string> >
table(iter, istream_iterator<string>(), nCols, direction);
22.14: Constructing iterators
In section 18.2 the iterators used with generic algorithms were introduced. We've seen that several types of iterators were distinguished: InputIterators, ForwardIterators, OutputIterators, BidirectionalIterators and RandomAccessIterators.
To ensure that an object of a class is interpreted as a particular type of iterator, the class must be derived from the class std::iterator. Before a class can be derived from this class the <iterator> header file must be included.
In section 18.2 the characteristics of iterators were discussed. All iterators should support (using Iterator as the generic name of the designed iterator class and Type to represent the (possibly const, in which case the associated operator should be a const member as well) data type to which Iterator objects refer):
When iterators are to be used in the context of generic algorithms they must meet additional requirements. This is caused by the fact that generic algorithms perform checks on the types of the iterators they receive. Simple pointers are usually accepted, but if an iterator-object is used it must be able to specify the kind of iterator it represents.
When deriving a class from the class iterator the type of iterator is defined by the class template's first parameter, and the data type to which the iterator refers is defined by the class template's second parameter.
The type of iterator that is implemented by the derived class is specified using a so-called iterator_tag, provided as the first template argument of the class iterator. For the five basic iterator types, these tags are:
The InputIterator dereference operator should be declared as follows:
Type const &operator*() const;
Except for the standard operators there are no further requirements for InputIterators.
The OutputIterator dereference operator should allow assignment to the data its dereference operator refers to. Therefore, the OutputIterator dereference operator should be declared as follows:
Type &operator*();
Except for the standard operators there are no further requirements for OutputIterators.
The ForwardIterator dereference operator should allow assignment to the data its dereference operator refers to. Therefore, the ForwardIterator dereference operator should be declared as follows:
Type &operator*();
Except for the standard operators there are no further requirements for ForwardIterators.
The Bidirectional dereference operator should allow assignment to the data its dereference operator refers to and it should allow stepping backward. BidirectionalIterator should therefore, in addition to the standard operators required for iterators, offer the following operators:
Type &operator*();
Iterator &operator--();
RandomIterator class dereference operators should allow assignment to the data they refer to, and, in addition to the standard operators required for iterators, offer the following operators:
Each iterator tag assumes that a certain set of operators is available. The RandomAccessIterator is the most complex of iterators, as it implies all other iterators.
Note that iterators are always defined over a certain range ([begin, end)). Increment and decrement operations may result in undefined behavior of the iterator if the resulting iterator value would refer to a location outside of this range.
Often, iterators only access the elements of the series to which they refer. Internally, an iterator may use an ordinary pointer but it is hardly ever necessary for the iterator to allocate its own memory. Therefore, as the assignment operator and the copy constructor do not have to allocate any memory, their default implementations usually suffice. For the same reason iterators usually don't require destructors.
Most classes offering members returning iterators do so by having members construct the required iterators that are thereupon returned as objects by those member functions. As the caller of these member functions only has to use or sometimes copy the returned iterator objects, there is usually no need to provide any publicly available constructor, except for the copy constructor. Therefore these constructors are usually defined as private or protected members. To allow an outer class to create iterator objects, the iterator class usually declares the outer class as its friend.
In the following sections the construction of a RandomAccessIterator, the most complex of all iterators, and the construction of a reverse RandomAccessIterator is discussed. The container class for which a random access iterator must be developed may actually store its data elements in many different ways (e.g., using containers or pointers to pointers). Therefore it is difficult to construct a template iterator class which is suitable for a large variety of container classes.
In the following sections the available std::iterator class is used to construct an inner class representing a random access iterator. The reader may follow the approach illustrated there to construct iterator classes for other contexts. An example of such a template iterator class is provided in section 24.5.
The random access iterator developed in the next sections reaches data elements that are only accessible through pointers. The iterator class is designed as an inner class of a class derived from a vector of string pointers.
22.14.1: Implementing a `RandomAccessIterator'
In the chapter about containers (chapter 12) it was noted that containers own the information they contain. If they contain objects, then those objects are destroyed once the containers are destroyed. As pointers are not objects their use in containers is discouraged (STL's unique_ptr and shared_ptr type objects may be used, though). Although discouraged, we might be able to use pointer data types in specific contexts. In the following class StringPtr, an ordinary class is derived from the std::vector container that uses std::string * as its data type:
#ifndef INCLUDED_STRINGPTR_H_
#define INCLUDED_STRINGPTR_H_
#include <string>
#include <vector>
class StringPtr: public std::vector<std::string *>
{
public:
StringPtr(StringPtr const &other);
~StringPtr();
StringPtr &operator=(StringPtr const &other);
};
#endif
This class needs a destructor: as the object stores string pointers, a destructor is required to destroy the strings once the StringPtr object itself is destroyed. Similarly, a copy constructor and an overloaded assignment operator are required. Other members (in particular: constructors) are not explicitly declared here as they are not relevant to this section's topic.
Assume that we want to be able to use the sort generic algorithm with StringPtr objects. This algorithm (see section 19.1.58) requires two RandomAccessIterators. Although these iterators are available (via std::vector's begin and end members), they return iterators to std::string *s, which cannot sensibly be compared.
To remedy this, we may define an internal type StringPtr::iterator, not returning iterators to pointers, but iterators to the objects these pointers point to. Once this iterator type is available, we can add the following members to our StringPtr class interface, hiding the identically named, but useless members of its base class:
StringPtr::iterator begin(); // returns iterator to the first element
StringPtr::iterator end(); // returns iterator beyond the last
// element
Since these two members return the (proper) iterators, the elements in a StringPtr object can easily be sorted:
int main()
{
StringPtr sp; // assume sp is somehow filled
sort(sp.begin(), sp.end()); // sp is now sorted
}
To make this all work, the type StringPtr::iterator must be defined. As suggested by its type name, iterator is a nested type of StringPtr. To use a StringPtr::iterator in combination with the sort generic algorithm it must also be a RandomAccessIterator. Therefore, StringPtr::iterator itself must be derived from the existing class std::iterator.
To derive a class from std::iterator, both the iterator type and the data type the iterator points to must be specified. Caveat: our iterator takes care of the string * dereferencing; so the required data type is std::string, and not std::string *. The class iterator therefore starts its interface as:
class iterator:
public std::iterator<std::random_access_iterator_tag, std::string>
Since its base class specification is quite complex, we could consider associating this type with a shorter name using the following typedef:
typedef std::iterator<std::random_access_iterator_tag, std::string>
Iterator;
In practical situations, if the type (Iterator) is used only once or twice, the type definition only adds clutter to the interface, and is better not used.
Now we're ready to redesign StringPtr's class interface. It offers members returning (reverse) iterators, and a nested iterator class. Here is its interface:
class StringPtr: public std::vector<std::string *>
{
public:
class iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
iterator begin();
iterator end();
reverse_iterator rbegin();
reverse_iterator rend();
};
class StringPtr::iterator: public
std::iterator<std::random_access_iterator_tag, std::string>
{
friend class StringPtr;
friend bool operator==(iterator const &lhs, iterator const &rhs);
friend int operator-(iterator const &lhs, iterator const &rhs);
friend bool operator<(iterator const &lhs, iterator const &rhs);
friend iterator operator+(iterator const &lhs, int step);
friend iterator operator-(iterator const &lhs, int step);
std::vector<std::string *>::iterator d_current;
iterator(std::vector<std::string *>::iterator const ¤t);
public:
iterator &operator--();
iterator operator--(int);
iterator &operator++();
iterator operator++(int);
iterator &operator+=(int step); // increment over `n' steps
iterator &operator-=(int step); // decrement over `n' steps
std::string &operator*() const;
std::string *operator->() const;// access the fields of the
// struct an iterator points
// to. E.g., it->length()
};
As usual, the interface offers hooks for a more detailed study of the class.
First we have a look at StringPtr::iterator's characteristics:
inline StringPtr::iterator StringPtr::begin()
{
return iterator(this->std::vector<std::string *>::begin());
}
inline StringPtr::iterator StringPtr::end()
{
return iterator(this->std::vector<std::string *>::end());
}
inline StringPtr::iterator &StringPtr::iterator::operator++()
{
++d_current;
return *this;
}
inline StringPtr::iterator StringPtr::iterator::operator++(int)
{
return iterator(d_current++);
}
inline StringPtr::iterator &StringPtr::iterator::operator--()
{
--d_current;
return *this;
}
inline StringPtr::iterator StringPtr::iterator::operator--(int)
{
return iterator(d_current--);
}
inline bool operator==(StringPtr::iterator const &lhs,
StringPtr::iterator const &rhs)
{
return lhs.d_current == rhs.d_current;
}
inline bool operator!=(StringPtr::iterator const &lhs,
StringPtr::iterator const &rhs)
{
return not (lhs == rhs);
}
inline bool operator<(StringPtr::iterator const &lhs,
StringPtr::iterator const &rhs)
{
return lhs.d_current < rhs.d_current;
}
inline int operator-(StringPtr::iterator const &lhs,
StringPtr::iterator const &rhs)
{
return lhs.d_current - rhs.d_current;
}
inline std::string &StringPtr::iterator::operator*() const
{
return **d_current;
}
inline StringPtr::iterator operator+(StringPtr::iterator const &lhs,
int step)
{
StringPtr::iterator ret{ lhs };
ret.d_current += step; // avoids ambiguity
return ret;
}
inline StringPtr::iterator operator-(StringPtr::iterator const &lhs,
int step)
{
StringPtr::iterator ret{ lhs };
ret.d_current -= step; // avoids ambiguity
return ret;
}
inline std::string *StringPtr::iterator::operator->() const
{
return *d_current;
}
inline StringPtr::iterator &StringPtr::iterator::operator+=(int step)
{
d_current += step;
return *this;
}
inline StringPtr::iterator &StringPtr::iterator::operator-=(int step)
{
d_current -= step;
return *this;
}
The interfaces required for other iterator types are simpler, requiring only a subset of the interface required by a random access iterator. E.g., the forward iterator is never decremented and never incremented over arbitrary step sizes. Consequently, in that case all decrement operators and operator+(int step) can be omitted from the interface. Of course, the tag to use would then be std::forward_iterator_tag. The tags (and the set of required operators) vary accordingly for the other iterator types.
22.14.2: Implementing a `reverse_iterator'
Once we've implemented an iterator, the matching reverse iterator can be implemented in a jiffy. Comparable to the std::iterator a std::reverse_iterator exists, that nicely implements the reverse iterator for us once we have defined an iterator class. Its constructor merely requires an object of the iterator type for which we want to construct a reverse iterator.
To implement a reverse iterator for StringPtr we only need to define the reverse_iterator type in its interface. This requires us to specify only one line of code, which must be inserted after the interface of the class iterator:
typedef std::reverse_iterator<iterator> reverse_iterator;
Also, the well known members rbegin and rend are added to StringPtr's interface. Again, they can easily be implemented inline:
inline StringPtr::reverse_iterator StringPtr::rbegin()
{
return reverse_iterator(end());
}
inline StringPtr::reverse_iterator StringPtr::rend()
{
return reverse_iterator(begin());
}
Note the arguments the reverse_iterator constructors receive: the begin point of the reversed iterator is obtained by providing reverse_iterator's constructor with the value returned by the member end: the endpoint of the normal iterator range; the endpoint of the reversed iterator is obtained by providing reverse_iterator's constructor with the value returned by the member begin: the begin point of the normal iterator range.
The following small program illustrates the use of StringPtr's RandomAccessIterator:
#include <iostream>
#include <algorithm>
#include "stringptr.h"
using namespace std;
int main(int argc, char **argv)
{
StringPtr sp;
while (*argv)
sp.push_back(new string{ *argv++ });
sort(sp.begin(), sp.end());
copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));
cout << "\n======\n";
sort(sp.rbegin(), sp.rend());
copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));
cout << '\n';
}
/*
when called as:
a.out bravo mike charlie zulu quebec
generated output:
a.out bravo charlie mike quebec zulu
======
zulu quebec mike charlie bravo a.out
*/
Although it is thus possible to construct a reverse iterator from a normal iterator, the opposite does not hold true: it is not possible to initialize a normal iterator from a reverse iterator.
Assume we would like to process all lines stored in vector<string> lines up to any trailing empty lines (or lines only containing blanks) it might contain. How should we proceed? One approach is to start the processing from the first line in the vector, continuing until the first of the trailing empty lines. However, once we encounter an empty line it does of course not have to be the first line of the set of trailing empty lines. In that case, we'd better use the following algorithm:
rit = find_if(lines.rbegin(), lines.rend(), NonEmpty());
to obtain a reverse_iterator rit pointing to the last non-empty line.
for_each(lines.begin(), --rit, Process());
to process all lines up to the first empty line.
However, we can't mix iterators and reverse iterators when using generic algorithms. So how can we initialize the second iterator using the available reverse_iterator? The solution is not very difficult, as an iterator may be initialized from a pointer. Although the reverse iterator rit is not a pointer, &*(rit - 1) or &*--rit is. So we use
for_each(lines.begin(), &*--rit, Process());
to process all the lines up to the first of the set of trailing empty lines. In general, if rit is a reverse_iterator pointing to some element and we need an iterator to point to that element, we may use &*rit to initialize the iterator. Here, the dereference operator is applied to reach the element the reverse iterator refers to. Then the address operator is applied to obtain its address with which we can initialize the iterator.
When defining a const_reverse_iterator (e.g., matching a const_iterator class), then the const_iterator's operator* member should be a member returning a non-modifiable value or object. Since a const_reverse_iterator uses the iterator's operator-- member, we're running against a small conceptual conflict. On the one hand, a std::input_iterator_tag is inappropriate, since we must allow decrementing the iterator. On the other hand, a std::bidirectional_iterator is inappropriate, since we don't allow modification of the data.
Iterator tags are primarily conceptual. If const_iterators and const_reverse_iterators only allow increment operations, then an input_iterator_tag most closely matches the iterator's intended use. Hence this tag is used below.
Furthermore, in line with the nature of a input_iterator_tag our const_iterator should not offer an operator--. This, of course, causes problems: a reverse iterator must be able to use the iterator's operator-- member. This can easily be solved by stashing the iterator's operator-- in the iterator's private section, and declaring std::reverse_iterator<(const_)iterator> its friend (note that declaring a (const_)reverse_iterator that is derived from std::reverse_iterator doesn't solve the issue: it is std::reverse_iterator that calls the iterator's operator--, not a class that is derived from it).
There is, however, another issue. After deriving a const_reverse_iterator from const_iterator, and subsequently dereferencing a const_reverse_iterator, the compiler generates an error message like the following (using Type = int):
error: invalid initialization of non-const reference of type
'std::reverse_iterator<const_iterator>::reference {aka int&}' from an rvalue
of type 'int'
return *--__tmp;
This message is caused by std::reverse_iterator by default expecting that the iterator's operator* returns a reference to a modifiable Type.
To control such default expectancies, iterators can use typedefs to fine-tune these expectancies. The following typedefs are interpreted by std::reverse_iterator:
pointer - the type of the pointer to the data
(e.g., Type *)
const_pointer - the type of a pointer to immutable data
(e.g., Type const *)
reference - the type of a reference to the data
(e.g., Type &)
const_reference - the type of a reference to immmutable data
(e.g., Type const &)
difference_type - the type representing differences between
pointers (by default `ptrdiff_t')
The mentioned error can simply be prevented by declaring `typedef int const &reference' in the iterator class. Alternatively, int const may be specified as the data type for the std::iterator's base class.
To define a iterator, const_iterator, reverse_iterator and const_reverse_iterator for a class Data the following framework can be used:
#include <string>
#include <iterator>
class Data
{
std::string *d_data;
size_t d_n;
public:
class iterator;
class const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
};
class Data::iterator: public std::iterator<std::input_iterator_tag,
std::string>
{
public:
iterator() = default;
iterator &operator++();
std::string &operator*();
private:
friend class Data;
iterator(std::string *data, size_t idx);
friend class std::reverse_iterator<iterator>;
iterator &operator--();
};
bool operator==(Data::iterator const &lhs, Data::iterator const &rhs);
class Data::const_iterator: public std::iterator<std::input_iterator_tag,
std::string const>
{
public:
const_iterator() = default;
const_iterator &operator++();
std::string const &operator*() const;
private:
friend class Data;
const_iterator(std::string const *data, size_t idx);
friend class std::reverse_iterator<const_iterator>;
const_iterator &operator--();
};
bool operator==(Data::const_iterator const &lhs,
Data::const_iterator const &rhs);
int main()
{
Data::iterator iter;
Data::reverse_iterator riter(iter);
*riter;
Data::const_iterator citer;
Data::const_reverse_iterator criter(citer);
*criter;
};
Chapter 23: Advanced Template Use
The main purpose of templates is to provide a generic definition of classes and functions that may then be tailored to specific types.
But templates allow us to do more than that. If not for compiler implementation limitations, templates could be used to program, at compile-time, just about anything we use computers for. This remarkable feat, offered by no other current-day computer language, stems from the fact that templates allow us to do three things at compile-time:
Of course, asking the compiler to compute, e.g., prime numbers, is one thing. But it's a completely different thing to do so in an award winning way. Don't expect speed records to be broken when the compiler performs complex calculations for us. But that's all beside the point. In the end we can ask the compiler to compute virtually anything using C++'s template language, including prime numbers....
In this chapter these remarkable features of templates are discussed. Following a short overview of subtleties related to templates the main characteristics of template meta programming are introduced.
In addition to template type and template non-type parameters there is a third kind of template parameter, the template template parameter. This kind of template parameter is introduced shortly, laying the groundwork for the discussion of trait classes and policy classes.
This chapter ends with the discussion of several additional and interesting applications of templates: adapting compiler error messages, conversions to class types and an elaborate example discussing compile-time list processing.
Much of the inspiration for this chapter came from two highly recommended books: Andrei Alexandrescu's 2001 book Modern C++ design (Addison-Wesley) and Nicolai Josutis and David Vandevoorde's 2003 book Templates (Addison-Wesley).
23.1: Subtleties
In section 22.2.1 a special application of the keyword typename was discussed. There we learned that it is not only used to define a name for a (complex) type, but also to distinguish types defined by class templates from members defined by class templates. In this section two more applications of typename are introduced:
In addition to the special applications of typename section 23.1.3 introduces some new syntax that is related to the extended use of the keyword typename: ::template, .template and ->template are used to inform the compiler that a name used inside a template is itself a class template.
23.1.1: Returning types nested under class templates
In the following example a nested class, not depending on a template parameter, is defined inside a class template. The class template member nested returns an object of this nested class. The example uses a (deprecated) in-class member implementation. The reason for this shortly becomes clear.
template <typename T>
class Outer
{
public:
class Nested
{};
Nested nested() const
{
return Nested{};
}
};
The above example compiles flawlessly. Inside the class Outer there is no ambiguity with respect to the meaning of nested's return type.
However, following good practices inline and template members should be implemented below their class interfaces (see section 7.8.1). So we remove the implementation from the interface and put it below the interface:
template <typename T>
class Outer
{
public:
class Nested
{};
Nested nested() const;
};
template <typename T>
Outer<T>::Nested Outer<T>::nested() const
{
return Nested{};
}
Suddenly the compiler refuses to compile the nested member. Fortunately, it also suggests a solution in its error message:
error: need `typename' before `Outer<T>::Nested' because
`Outer<T>' is a dependent scope
Outer<T>::Nested Outer<T>::nested() const
~~~~~~~~
Now that the implementation has been moved out of the interface the return type (i.e., Outer<T>::Nested) refers to a type defined by Outer<T> rather than to a member of Outer<T>, and so typename must once again be used.
A general rule for using typename can be formulated: the keyword typename must be used whenever a type is referred to that is a subtype of a type that itself depends on a template type parameter. When using the inline implementation no such dependency is used as the function's return type is simply Nested. When implementing the function outside of the class interface (which should be considered `good practice') then a specification of the class defining Nested must be provided for the function's return type. So it becomes Outer<T>::Nested which clearly is a type depending on a template type parameter.
Like before, writing typename in front of Outer<T>::Nested removes the compilation error. Thus, the correct implementation of the function nested becomes:
template <typename T>
typename Outer<T>::Nested Outer<T>::nested() const
{
return Nested();
}
23.1.2: Type resolution for base class members
Below we see two class templates. Base and Derived, Base being Derived's base class:
#include <iostream>
template <typename T>
class Base
{
public:
void member();
};
template <typename T>
void Base<T>::member()
{
std::cout << "This is Base<T>::member()\n";
}
template <typename T>
class Derived: public Base<T>
{
public:
Derived();
};
template <typename T>
Derived<T>::Derived()
{
member();
}
This example won't compile, and the compiler tells us something like:
error: there are no arguments to 'member' that depend on a template
parameter, so a declaration of 'member' must be available
This error causes some confusion as ordinary (non-template) base classes readily make their public and protected members available to classes that are derived from them. This is no different for class templates, but only if the compiler can figure out what we mean. In the above example the compiler can't as it doesn't know for what type T the member function member must be initialized when called from Derived<T>::Derived.
To appreciate why this is true, consider the situation where we have defined a specialization:
template <>
Base<int>::member()
{
std::cout << "This is the int-specialization\n";
}
Since the compiler, when Derived<SomeType>::Derived is called, does not know whether a specialization of member is in effect, it can't decide (when compiling Derived<T>::Derived) for what type to instantiate member. It can't decide this when compiling Derived<T>::Derived as member's call in Derived::Derived doesn't require a template type parameter.
In cases like these, where no template type parameter is available to determine which type to use, the compiler must be told that it should postpone its decision about the template type parameter to use (and therefore about the particular (here: member) function to call) until instantiation time.
This may be implemented in two ways: either by using this or by explicitly mentioning the base class, instantiated for the derived class's template type(s). When this is used the compiler is informed that we're referring to the type T for which the template was instantiated. Any confusion about which member function to use (the derived class or base class member) is resolved in favor of the derived class member. Alternatively, the base or derived class can explicitly be mentioned (using Base<T> or Derived<T>) as shown in the next example. Note that with the int template type the int specialization is used.
#include <iostream>
template <typename T>
class Base
{
public:
void member();
};
template <typename T>
void Base<T>::member()
{
std::cout << "This is Base<T>::member()\n";
}
template <>
void Base<int>::member()
{
std::cout << "This is the int-specialization\n";
}
template <typename T>
class Derived: public Base<T>
{
public:
Derived();
virtual void member();
};
template <typename T>
void Derived<T>::member()
{
std::cout << "This is Derived<T>::member()\n";
}
template <typename T>
Derived<T>::Derived()
{
this->member(); // Using `this' implies using the
// type for which T was instantiated
Derived<T>::member(); // Same: calls the Derived member
Base<T>::member(); // Same: calls the Base member
std::cout << "Derived<T>::Derived() completed\n";
}
int main()
{
Derived<double> d;
Derived<int> i;
}
/*
Generated output:
This is Derived<T>::member()
This is Derived<T>::member()
This is Base<T>::member()
Derived<T>::Derived() completed
This is Derived<T>::member()
This is Derived<T>::member()
This is the int-specialization
Derived<T>::Derived() completed
*/
The above example also illustrates the use of virtual member templates (although virtual member templates aren't often used). In the example Base declares a virtual void member and Derived defines its overriding function member. In that case this->member() in Derived::Derived calls, due to member's virtual nature, Derived::member. The statement Base<T>::member(), however, always calls Base's member function and can be used to bypass dynamic polymorphism.
23.1.3: ::template, .template and ->template
In general, the compiler is able to determine the true nature of a name. As discussed, this is not always the case and sometimes we have to advise the compiler. The typename keyword may often be used for that purpose.
But typename cannot always come to the rescue. While parsing a source the compiler receives a series of tokens, representing meaningful units of text encountered in the program's source. A token could represent, e.g., an identifier or a number. Other tokens represent operators, like =, + or <. It is precisely the last token that may cause problems as it may have very different meanings. The correct meaning cannot always be determined from the context in which the compiler encounters <. In some situations the compiler does know that < does not represent the less than operator, as when a template parameter list follows the keyword template, e.g.,
template <typename T, int N>
Clearly, in this case < does not represent a `less than' operator.
The special meaning of < when it is preceded by template forms the basis for the syntactic constructs discussed in this section.
Assume the following class has been defined:
template <typename Type>
class Outer
{
public:
template <typename InType>
class Inner
{
public:
template <typename X>
void nested();
};
};
The class template Outer defines a nested class template Inner. Inner in turn defines a template member function.
Next a class template Usage is defined, offering a member function caller expecting an object of the above Inner type. An initial setup for Usage looks like this:
template <typename T1, typename T2>
class Usage
{
public:
void caller(Outer<T1>::Inner<T2> &obj);
...
};
The compiler won't accept this as it interprets Outer<T1>::Inner as a class type. But there is no class Outer<T1>::Inner. Here the compiler generates an error like:
error: 'class Outer<T1>::Inner' is not a type
To inform the compiler that Inner itself is a template, using the template type parameter <T2>, the ::template construction is required. It tells the compiler that the next < should not be interpreted as a `less than' token, but rather as a template type argument. So, the declaration is modified to:
void caller(Outer<T1>::template Inner<T2> &obj);
This still doesn't get us where we want to be: after all Inner<T2> is a type, nested under a class template, depending on a template type parameter. In fact, the original Outer<T1>::Inner<T2> &obj declaration results in a series of error messages, one of them looking like this:
error: expected type-name before '&' token
As is often the case this error message nicely indicates what should be done to get it right: add typename:
void caller(typename Outer<T1>::template Inner<T2> &obj);
Of course, caller itself is not only just declared, it must also be implemented. Assume that its implementation should call Inner's member nested, instantiated for yet another type X. The class template Usage should therefore receive a third template type parameter, called T3. Assume it has been defined. To implement caller, we write:
void caller(typename Outer<T1>::template Inner<T2> &obj)
{
obj.nested<T3>();
}
Once again we run into a problem. In the function's body the compiler once again interprets < as `less than', seeing a logical expression having as its right-hand side a primary expression instead of a function call specifying a template type T3.
To tell the compiler that is should interpret <T3> as a type to instantiate, the template keyword must once again be used. This time it is used in the context of the member selection operator. We write .template to inform the compiler that what follows is not a `less than' operator, but rather a type specification. The function's final implementation becomes:
void caller(typename Outer<T1>::template Inner<T2> &obj)
{
obj.template nested<T3>();
}
Instead of defining value or reference parameters functions may also define pointer parameters. Had obj been defined as a pointer parameter the implementation would have had to use the ->template construction, rather than the .template construction. E.g.,
void caller(typename Outer<T1>::template Inner<T2> *ptr)
{
ptr->template nested<T3>();
}
As we've seen class templates can be derived from base class templates. The base class template can declare a static member template, which is available to a class that is derived from this base class. Such a base class might look like this:
template <typename Type>
struct Base
{
template <typename Tp>
static void fun();
};
Normally, when a base class defines a static member we can just call that member by prefixing its name by its class name. E.g.,
int main()
{
Base<int>::fun<double>();
}
This also works fine if a class Derived is derived from Base, instantiated for a specific type:
struct Der: public Base<int>
{
static void call()
{
Base<int>::fun<int>(); // OK
fun<int>(); // also OK
};
};
However, when the derived class itself is a class template this way to call fun does not compile anymore, as it interprets Base<Type>::fun in Base<Type>::fun<int> as a type, to be instantiated for int. This interpretation can be overruled by us by indicating that fun itself is a template. For this the ::template prefix is used:
template <typename Type>
struct Der: public Base<Type>
{
//template <typename Tp> // 'call' may be a member template
//static // 'call' may be a static member
void call()
{
// fun<int>(); // won't compile
// Base<Type>::fun<int>(); // won't compile
Base<Type>::template fun<int>(); // OK
Base<Type>::template fun<Tp>(); // OK if call is a
// member template
};
};
23.2: Template Meta Programming
23.2.1: Values according to templates
In template programming values are preferably represented by enum values. Enums are preferred over, e.g., int const values since enums never require any linkage. They are pure symbolic values with no memory representation whatsoever.
Consider the situation where a programmer must use a cast, say a reinterpret_cast. A problem with a reinterpret_cast is that it is the ultimate way to turn off all compiler checks. All bets are off, and we can write extreme but absolutely pointless reinterpret_cast statements, like
int intVar = 12;
ostream &ostr = reinterpret_cast<ostream &>(intVar);
Wouldn't it be nice if the compiler would warn us against such oddities by generating an error message?
If that's what we'd like the compiler to do, there must be some way to distinguish madness from weirdness. Let's assume we agree on the following distinction: reinterpret casts are never acceptable if the target type represents a larger type than the expression (source) type, since that would immediately result in exceeding the amount of memory that's actually available to the target type. For this reason it's clearly silly to reinterpret_cast<double *>(&intVar), but reinterpret_cast<char *>(&intVar) could be defensible.
The intent is now to create a new kind of cast, let's call it reinterpret_to_smaller_cast. It should only be allowed to perform a reinterpret_to_smaller_cast if the target type occupies less memory than the source type (note that this exactly the opposite reasoning as used by Alexandrescu (2001), section 2.1).
To start, we construct the following template:
template<typename Target, typename Source>
Target &reinterpret_to_smaller_cast(Source &source)
{
// determine whether Target is smaller than source
return reinterpret_cast<Target &>(source);
}
At the comment an enum-definition is inserted defining a symbol having a suggestive name. A compile-time error results if the required condition is not met and the error message displays the name of the symbol. A division by zero is clearly not allowed, and noting that a false value represents a zero value, the condition could be:
1 / (sizeof(Target) <= sizeof(Source));
The interesting part is that this condition doesn't result in any code at all. The enum's value is a plain value that's computed by the compiler while evaluating the expression:
template<typename Target, typename Source>
Target &reinterpret_to_smaller_cast(Source &source)
{
enum
{
the_Target_size_exceeds_the_Source_size =
1 / (sizeof(Target) <= sizeof(Source))
};
return reinterpret_cast<Target &>(source);
}
When reinterpret_to_smaller_cast is used to cast from int to double an error is produced by the compiler, like this:
error: enumerator value for 'the_Target_size_exceeds_the_Source_size'
is not an integer constant
whereas no error is reported if, e.g., reinterpret_to_smaller_cast<int>(doubleVar) is requested with doubleVar defined as a double.
In the above example an enum was used to compute (at compile-time) a value that is illegal if an assumption is not met. The creative part is finding an appropriate expression.
Enum values are well suited for these situations as they do not consume any memory and their evaluation does not produce any executable code. They can be used to accumulate values too: the resulting enum value then contains a final value, computed by the compiler rather than by executable code as the next sections illustrate. In general, programs shouldn't do run-time what they can do at compile-time and performing complex calculations resulting in constant values is a clear example of this principle.
23.2.1.1: Converting integral types to types
Another use of values buried inside templates is to `templatize' simple scalar int values. This is useful in situations where a scalar value (often a bool value) is available to select a specialization but a type is required to base the selection on. This situation is shortly encountered (section 23.2.2).
Templatizing integral values is based on the fact that a class template together with its template arguments defines a type. E.g., vector<int> and vector<double> are different types.
Turning integral values into templates is easily done. Define a template (it does not have to have any content at all) and store the integral value in an enum:
template <int x>
struct IntType
{
enum { value = x };
};
As IntType does not have any members the `class IntType' can be defined as `struct IntType', saving us from having to type public:.
Defining the enum value `value' allows us to retrieve the value used at the instantiation at no cost in storage. Enum values are neither variables nor data members and thus have no address. They are mere values.
It's easy to use the struct IntType. An anonymous or named object can be defined by specifying a value for its int non-type parameter. Example:
int main()
{
IntType<1> it;
cout << "IntType<1> objects have value: " << it.value << "\n" <<
"IntType<2> objects are of a different type "
"and have values " << IntType<2>().value << '\n';
}
Actually, neither the named object nor the anonymous object is required. As the enum is defined as a plain value, associated with the struct IntType we merely have to specify the specific int for which the struct IntType is defined to retrieve its `value', like this:
int main()
{
cout << "IntType<100>, no object, defines `value': " <<
IntType<100>::value << "\n";
}
23.2.2: Selecting alternatives using templates
An essential characteristic of programming languages is that they allow the conditional execution of code. For this C++ offers the if and switch statements. If we want to be able to `program the compiler' this feature must also be offered by templates.
Like templates storing values templates making choices do not require any code to be executed at run-time. The selection is purely made by the compiler, at compile-time. The essence of template meta programming is that we are not using or relying on any executable code. The result of a template meta program often is executable code, but that code is a function of decisions merely made by the compiler.
Template (member) functions are only instantiated when they are actually used. Consequently we can define specializations of functions that are mutually exclusive. Thus it is possible to define a specialization that can be compiled in situation one, but not in situation two and to define another specialization that can be compiled in situation two, but not in situation one. Using specializations code can be generated that is tailored to the demands of a particular situation.
A feature like this cannot be implemented in run-time executable code. For example, when designing a generic storage class the software engineer may intend to store value class type objects as well as objects of polymorphic class types in the final storage class. Thus the software engineer may conclude that the storage class should contain pointers to objects, rather than the objects themselves. The initial implementation attempt could look like this:
template <typename Type>
void Storage::add(Type const &obj)
{
d_data.push_back(
d_ispolymorphic ?
obj.clone()
:
new Type{obj}
);
}
The intent is to use the clone member function of the class Type if Type is a polymorphic class and the standard copy constructor if Type is a value class.
Unfortunately, this scheme usually fails as value classes do not define clone member functions and polymorphic base classes should delete their copy constructors (cf. section 7.6). It doesn't matter to the compiler that clone is never called for value classes and that the copy constructor is only available in value classes and not in polymorphic classes. It merely has some code to compile, and can't do that because of missing members. It's as simple as that.
23.2.2.1: Defining overloading members
Template meta programming comes to the rescue. Knowing that class template member functions are only instantiated when used, our plan is to design overloaded add member functions of which only one is going to be called (and thus instantiated). Our selection will be based on an additional (in addition to Type itself) template non-type parameter that indicates whether we'll use Storage for polymorphic or non-polymorphic classes. Our class Storage starts like this:
template <typename Type, bool isPolymorphic>
class Storage
Initially two overloaded versions of our add member are defined: one used with Storage objects storing polymorphic objects (using true as its template non-type argument) and one storing value class objects (using false as its template non-type argument).
Unfortunately we run into a small problem: functions cannot be overloaded by their argument values but only by their argument types. But the small problem may be solved. Realizing that types are defined by the combination of template names and their template arguments we may convert the values true and false into types using the knowledge from section 23.2.1.1 about how to convert integral values to types.
We'll provide one (private) add member with an IntType<true> parameter (implementing the polymorphic class) and another (private) add member with an IntType<false> parameter (implementing the non-polymorphic class).
In addition to these two private members a third (public) member add is defined calling the appropriate private add member by providing an IntType argument, constructed from Storage's template non-type parameter.
Here are the implementations of the three add members:
// declared in Storage's private section:
template <typename Type, bool isPolymorphic>
void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<true>)
{
d_data.push_back(obj.clone());
}
template <typename Type, bool isPolymorphic>
void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<false>)
{
d_data.push_back(new Type(obj));
}
// declared in Storage's public section:
template <typename Type, bool isPolymorphic>
void Storage<Type, isPolymorphic>::add(Type const &obj)
{
add(obj, IntType<isPolymorphic>());
}
The appropriate add member is instantiated and called because a primitive value can be converted to a type. Each of the possible template non-type values is thus used to define an overloaded class template member function.
Since class template members are only instantiated when used only one of the overloaded private add members is instantiated. Since the other one is never called (and thus never instantiated) compilation errors are prevented.
23.2.2.2: Class structure as a function of template parameters
Some software engineers have reservations when thinking about the Storage class that uses pointers to store copies of value class objects. Their argument is that value class objects can very well be stored by value, rather than by pointer. They'd rather store value class objects by value and polymorphic class objects by pointer.
Such distinctions frequently occur in template meta programming and the following struct IfElse may be used to obtain one of two types, depending on a bool selector value.
First define the generic form of the template:
template<bool selector, typename FirstType, typename SecondType>
struct IfElse
{
typedef FirstType type;
};
Then define a partial specialization. The specialization represents a specific selector value (e.g., false) and leaves the remaining types open to further specification:
template<typename FirstType, typename SecondType>
struct IfElse<false, FirstType, SecondType>
{
typedef SecondType type;
};
The former (generic) definition associates FirstType with the IfElse::type type definition, the latter definition (partially specialized for the logical value false) associates SecondType with the IfElse::type type definition.
The IfElse template allows us to define class templates whose data organization is conditional to the template's parameters. Using IfElse the Storage class may define pointers to store copies of polymorphic class type objects and values to store value class type objects:
template <typename Type, bool isPolymorphic>
class Storage
{
typedef typename IfElse<isPolymorphic, Type *, Type>::type
DataType;
std::vector<DataType> d_data;
private:
void add(Type const &obj, IntType<true>);
void add(Type const &obj, IntType<false>);
public:
void add(Type const &obj);
}
template <typename Type, bool isPolymorphic>
void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<true>)
{
d_data.push_back(obj.clone());
}
template <typename Type, bool isPolymorphic>
void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<false>)
{
d_data.push_back(obj);
}
template <typename Type, bool isPolymorphic>
void Storage<Type, isPolymorphic>::add(Type const &obj)
{
add(obj, IntType<isPolymorphic>());
}
The above example uses IfElse's type, defined by IfElse as either FirstType or SecondType. IfElse's type defines the actual data type to use for Storage's vector data type.
The remarkable result in this example is that the data organization of the Storage class now depends on its template arguments. Since the isPolymorphic == true situation uses different data types than the isPolymorphic == false situation, the overloaded private add members can utilize this difference immediately. E.g., add(Type const &obj, IntType<false>) uses direct copy construction to store a copy of obj in d_vector.
It is also possible to make a selection from multiple types as IfElse structs can be nested. Realize that using IfElse never has any effect on the size or execution time of the final executable program. The final program simply contains the appropriate type, conditional to the type that's eventually selected.
23.2.2.3: An illustrative example
The next example, defining MapType as a map having plain types or pointers for either its key or value types, illustrates this approach:
template <typename Key, typename Value, int selector>
class Storage
{
typedef typename IfElse<
selector == 1, // if selector == 1:
map<Key, Value>, // use map<Key, Value>
typename IfElse<
selector == 2, // if selector == 2:
map<Key, Value *>, // use map<Key, Value *>
typename IfElse<
selector == 3, // if selector == 3:
map<Key *, Value>, // use map<Key *, Value>
// otherwise:
map<Key *, Value *> // use map<Key *, Value *>
>::type
>::type
>::type
MapType;
MapType d_map;
public:
void add(Key const &key, Value const &value);
private:
void add(Key const &key, Value const &value, IntType<1>);
...
};
template <typename Key, typename Value, int selector>
inline void Storage<selector, Key, Value>::add(Key const &key,
Value const &value)
{
add(key, value, IntType<selector>());
}
The principle used in the above examples is: if class templates may use data types that depend on template non-type parameters, an IfElse struct can be used to select the appropriate data types. Knowledge about the various data types may also be used to define overloaded member functions. The implementations of these overloaded members may then be optimized to the various data types. In programs only one of these alternate functions (the one that is optimized to the actually used data types) will then be instantiated.
The private add functions define the same parameters as the public add wrapper function, but add a specific IntType type, allowing the compiler to select the appropriate overloaded version based on the template's non-type selector parameter.
23.2.3: Templates: Iterations by Recursion
As there are no variables in template meta programming, there is no template equivalent to a for or while statement. However, iterations can always be rewritten as recursions. Recursions are supported by templates and so iterations can always be implemented as (tail) recursions.
To implement iterations by (tail) recursion do as follows:
The compiler selects a more specialized template implementation over a more generic one. By the time the compiler reaches the end-condition the recursion stops since the specialization does not use recursion.
Most readers are probably familiar with the recursive implementation of the mathematical `factorial' operator, commonly represented by the exclamation mark (!): n factorial (so: n!) returns the successive products n * (n - 1) * (n - 2) * ... * 1, representing the number of ways n objects can be permuted. Interestingly, the factorial operator is itself usually defined by a recursive definition:
n! = (n == 0) ?
1
:
n * (n - 1)!
To compute n! from a template, a template Factorial can be defined using an int n template non-type parameter. A specialization is defined for the case n == 0. The generic implementation uses recursion according to the factorial definition. Furthermore, the Factorial template defines an enum value `value' containing its factorial value. Here is the generic definition:
template <int n>
struct Factorial
{
enum { value = n * Factorial<n - 1>::value };
};
Note how the expression assigning a value to `value' uses constant values that can be determined by the compiler. The value n is provided, and Factorial<n - 1> is computed using template meta programming. Factorial<n-1> in turn results in value that can be determined by the compiler (viz. Factorial<n-1>::value). Factorial<n-1>::value represents the value defined by the type Factorial<n - 1>. It is not the value returned by an object of that type. There are no objects here but merely values defined by types.
The recursion ends in a specialization. The compiler selects the specialization (provided for the terminating value 0) instead of the generic implementation whenever possible. Here is the specialization's implementation:
template <>
struct Factorial<0>
{
enum { value = 1 };
};
The Factorial template can be used to determine, compile time, the number of permutations of a fixed number of objects. E.g.,
int main()
{
cout << "The number of permutations of 5 objects = " <<
Factorial<5>::value << "\n";
}
Once again, Factorial<5>::value is not evaluated at run-time, but at compile-time. The run-time equivalent of the above cout statement is, therefore:
int main()
{
cout << "The number of permutations of 5 objects = " <<
120 << "\n";
}
23.3: User-defined literals
In addition to the literal operators discussed in section 11.13 C++ also offers a function template literal operator, matching the prototype
template <char ...Chars>
Type operator "" _identifier()
This variadic non-type parameter function template defines no parameters, but merely a variadic non-type parameter list.
Its argument must be an int constant, as is also expected by the literal operator defining an unsigned long long int parameter. All the characters of the int constant are passed as individual char non-type template arguments to the literal operator.
For example, if _NM2km is a literal operator function template, it can be called as 80_NM2km. The function template is then actually called as _NM2km<'8', '0'>(). If this function template merely uses template meta programming techniques and only processes integral data then its actions can be performed completely at compile-time. To illustrate this, let's assume NM2km only processes and returns unsigned values.
The function template _NM2km can forward its argument to a class template, defining an enum constant value, and that performs the required computations. Here is the implementation of the variadic literal operator function template _NM2km:
template <char ... Chars>
size_t constexpr operator "" _NM2km()
{
return static_cast<size_t>( // forward Chars to NM2km
NM2km<0, Chars ...>::value * 1.852);
}
The class template NM2km defines three non-type parameters: acc accumulates the value, c is the first character of the variadic non-type parameters, while ...Chars represents the remaining non-type parameters, contained in a non-type parameter pack. Since c is, at each recursive call, the next character from the original non-type parameter pack, the value so far multiplied by 10 plus the value of the next character is passed as the next accumulated value to its recursive call, together with the remaining elements of the parameter pack, represented by Chars ...:
template <size_t acc, char c, char ...Chars>
struct NM2km
{
enum
{
value = NM2km<10 * acc + c - '0', Chars ...>::value
};
};
Eventually, the parameter pack is empty. For this case a partial specialization of NM2km is available:
template <size_t acc, char c> // empty parameter pack
struct NM2km<acc, c>
{
enum
{
value = 10 * acc + c - '0'
};
};
This works fine, but of course not in cases where binary, octal, or hexadecimal values must also be interpreted. In that case we must first determine whether the first character(s) indicate a special number system. This can be determined by the class template NM2kmBase, that is now called from the _NM2km literal operator:
template <char ... Chars>
size_t constexpr operator "" _NM2km()
{
return static_cast<size_t>( // forward Chars to NM2kmBase
NM2kmBase<Chars ...>::value * 1.852);
}
The NM2kmBase class template normally assumes the decimal number system, passing base value 10 and initial sum 0 to NM2km. The NM2km class template is provided with an additional (first) non-type parameter representing the base value of the number system to use. Here is NM2kmBase:
template <char ...Chars>
struct NM2kmBase
{
enum
{
value = NM2km<10, 0, Chars ...>::value
};
};
Partial specializations handle the different number systems, by inspecting the first (one or two) characters:
template <char ...Chars>
struct NM2kmBase<'0', Chars ...> // "0..."
{
enum
{ // octal value: base 8
value = NM2km<8, 0, Chars ...>::value
};
};
template <char ...Chars>
struct NM2kmBase<'0', 'b', Chars ...> // "0b..."
{
enum
{ // binary value: base 2
value = NM2km<2, 0, Chars ...>::value
};
};
template <char ...Chars>
struct NM2kmBase<'0', 'x', Chars ...> // "0x..."
{
enum
{ // hex value: base 16
value = NM2km<16, 0, Chars ...>::value
};
};
NM2km is implemented as before, albeit that it can now handle various number systems. The conversion from character to numeric value is left to a small support function template, cVal:
template <char c>
int constexpr cVal()
{
return '0' <= c <= '9' ? c - '0' : 10 + c - 'a';
}
template <size_t base, size_t acc, char c, char ...Chars>
struct NM2km
{
enum
{
value = NM2km<base, base * acc + cVal<c>(),
Chars ...>::value
};
};
template <size_t base, size_t acc, char c>
struct NM2km<base, acc, c>
{
enum { value = base * acc + cVal<c>() };
};
23.4: Template template parameters
Consider the following situation: a software engineer is asked to design a storage class Storage. Data stored in Storage objects may either make and store copies of the data or store the data as received. Storage objects may also either use a vector or a linked list as its underlying storage medium. How should the engineer tackle this request? Should four different Storage classes be designed?
The engineer's first reaction could be to develop an all-in Storage class. It could have two data members, a list and a vector, and its constructor could be provided with maybe an enum value indicating whether the data itself or new copies should be stored. The enum value can be used to initialize a series of pointers to member functions performing the requested tasks (e.g., using a vector to store the data or a list to store copies).
Complex, but doable. Then the engineer is asked to modify the class: in the case of new copies a custom-made allocation scheme should be used rather than the standard new operator. He's also asked to allow the use of yet another type of container, in addition to the vector and the list that were already part of the design. Maybe a deque would be preferred or maybe even a stack.
It's clear that the approach aiming at implementing all functionality and all possible combinations in one class doesn't scale. The class Storage soon becomes a monolithic giant which is hard to understand, maintain, test, and deploy.
One of the reasons why the big, all-encompassing class is hard to deploy and understand is that a well-designed class should enforce constraints: the design of the class should, by itself, disallow certain operations, violations of which should be detected by the compiler, rather than by a program that might terminate in a fatal error.
Think about the above request. If the class offers both an interface to access the vector data storage and an interface to access the list data storage, then it's likely that the class offers an overloaded operator[] member to access elements in the vector. This member, however, will be syntactically present, but semantically invalid when the list data storage is selected, which doesn't support operator[].
Sooner or later, users of the monolithic all-encompassing class Storage will fall into the trap of using operator[] even though they've selected the list as the underlying data storage. The compiler won't be able to detect the error, which only appears once the program is running, confusing its users.
The question remains: how should the engineer proceed, when confronted with the above questions? It's time to introduce policies.
23.4.1: Policy classes - I
A policy defines (in some contexts: prescribes) a particular kind of behavior. In C++ a policy class defines a certain part of the class interface. It may also define inner types, member functions, and data members.
In the previous section the problem of creating a class that might use any of a series of allocation schemes was introduced. These allocation schemes all depend on the actual data type to use, and so the `template reflex' should kick in.
Allocation schemes should probably be defined as template classes, applying the appropriate allocation procedures to the data type at hand. When such allocation schemes are used by the familiar STL containers (like std::vector, std::stack, etc.), then such home-made allocation schemes should probably be derived from std::allocator, to provide for the requirements made by these containers. The class template std::allocator is declared by the <memory> header file and the three allocation schemes developed here were all derived from std::allocator.
Using in-class implementations for brevity the following allocation classes could be defined:
template <typename Data>
class PlainAlloc: public std::allocator<Data>
{
template<typename IData>
friend std::ostream &operator<<(std::ostream &out,
PlainAlloc<IData> const &alloc);
Data d_data;
public:
PlainAlloc()
{}
PlainAlloc(Data const &data)
:
d_data(data)
{}
PlainAlloc(PlainAlloc<Data> const &other)
:
d_data(other.d_data)
{}
};
template <typename Data>
class NewAlloc: public std::allocator<Data>
{
template<typename IData>
friend std::ostream &operator<<(std::ostream &out,
NewAlloc<IData> const &alloc);
Data *d_data;
public:
NewAlloc()
:
d_data(0)
{}
NewAlloc(Data const &data)
:
d_data(new Data(data))
{}
NewAlloc(NewAlloc<Data> const &other)
:
d_data(new Data(*other.d_data))
{}
~NewAlloc()
{
delete d_data;
}
};
template<typename Data>
class PlacementAlloc: public std::allocator<Data>
{
template<typename IData>
friend std::ostream &operator<<(std::ostream &out,
PlacementAlloc<IData> const &alloc);
Data *d_data;
static char s_commonPool[];
static char *s_free;
public:
PlacementAlloc()
:
d_data(0)
{}
PlacementAlloc(Data const &data)
:
d_data(new(request()) Data(data))
{}
PlacementAlloc(PlacementAlloc<Data> const &other)
:
d_data(new(request()) Data(*other.d_data))
{}
~PlacementAlloc()
{
d_data->~Data();
}
private:
static char *request();
};
The above three classes define policies that may be selected by the user of the class Storage introduced in the previous section. In addition to these classes, additional allocation schemes could be implemented by the user as well.
To apply the proper allocation scheme to the class Storage, Storage should be designed as a class template itself. The class also needs a template type parameter allowing users to specify the data type.
The data type to be used by a particular allocation scheme could of course be specified when specifying the allocation scheme to use. The class Storage would then have two template type parameters, one for the data type, one for the allocation scheme:
template <typename Data, typename Scheme>
class Storage ...
To use the class Storage we would then write, e.g.:
Storage<string, NewAlloc<string>> storage;
Using Storage this way is fairly complex and potentially error-prone, as it requires the user to specify the data type twice. Instead, the allocation scheme should be specified using a new type of template parameter, not requiring the user to specify the data type required by the allocation scheme. This new kind of template parameter (in addition to the well-known template type parameter and template non-type parameter) is called the template template parameter.
Starting with the C++14 standard the keyword class in the syntactical form of template template parameters (template <parameter specifications> class Name) is no longer required. From that standard onward, the keyword typename can also be used (e.g., template <parameter specifications> typename Name).
23.4.2: Policy classes - II: template template parameters
Template template parameters allow us to specify a class template as a template parameter. By specifying a class template, it is possible to add a certain kind of behavior (called a policy) to an existing class template.
To specify an allocation policy, rather than an allocation type for the class Storage we rephrase its class template header: definition starts as follows:
template <typename Data, template <typename> class Policy>
class Storage...
The second template parameter is new. It is a template template parameter. It has the following elements:
template <
template <
typename = std::string,
int = 12,
template <typename = int> class Inner = std::vector
>
class Policy
>
class Demo
{
...
};
Here, the class template Demo expects a template template parameter named Policy, expecting three template parameters: a template type parameter (by default std::string); a template non-type parameter (by default having value 12); and Policy itself expects a template template parameter, called Inner, by default using an int as its template type parameter.
Policy classes are often an integral part of the class under consideration. Because of this they are often deployed as base classes. In the example the class Policy could be used as a base class of the class Storage.
The policy operates on the class Storage's data type. Therefore the policy is informed about that data type as well. Our class Storage now begins like this:
template <typename Data, template <typename> class Policy>
class Storage: public Policy<Data>
This automatically allows us to use Policy's members when implementing the members of the class Storage.
Our home-made allocation classes do not really provide us with many useful members. Except for the extraction operator they offer no immediate access to the data. This can easily be repaired by adding more members. E.g., the class NewAlloc could be augmented with operators allowing access to and modification of stored data:
operator Data &() // optionally add a `const' member too
{
return *d_data;
}
NewAlloc &operator=(Data const &data)
{
*d_data = data;
}
The other allocation classes could be given comparable members.
Let's use the allocation schemes in some real code. The next example shows how Storage can be defined using some data type and an allocation scheme. We start out again with a class Storage:
template <typename Data, template <typename> class Allocate>
class Storage: public std::vector<Data, Allocate<Data>>
{};
That's all we have to do. Note that std::vector formally has two template parameters. The first one is the vector's data type, which is always specified; the second one is the allocator used by the vector. Usually the allocator is left unspecified (in which case the default STL allocator is used), but here it is mentioned explicitly, allowing us to pass our own allocation policy to Storage.
All required functionality is inherited from the vector base class, while the policy is `factored into the equation' using a template template parameter. Here's an example showing how this is done:
Storage<std::string, NewAlloc> storage;
copy(istream_iterator<std::string>(cin), istream_iterator<std::string>(),
back_inserter(storage));
cout << "Element index 1 is " << storage[1] << '\n';
storage[1] = "hello";
copy(storage.begin(), storage.end(),
ostream_iterator<NewAlloc<std::string> >(cout, "\n"));
Since Storage objects are also std::vector objects the STL copy function can be used in combination with the back_inserter iterator to add some data to the storage object. Its elements can be accessed and modified using the index operator. Then NewAlloc<std::string> objects are inserted into cout (also using the copy function).
Interestingly, this is not the end of the story. Remember that our intention was to create a class allowing us to specify the storage type as well. What if we don't want to use a vector, but instead would like to use a list?
It's easy to change Storage's setup so that a completely different storage type can be used on request, like a deque. To implement this, the storage class is parameterized as well, using yet another template template parameter:
template <typename Data, template <typename> class AllocationPolicy,
template <typename, typename> class Container = std::vector>
class Storage: public Container<Data, AllocationPolicy<Data>>
{};
The earlier example using a Storage object can be used again without requiring any modifications at all (except for the above redefinition). It clearly can't be used with a list container, as the list lacks operator[]. Trying to do so is immediately recognized by the compiler, producing an error if an attempt is made to use operator[] on, e.g., a list. (A complete example showing the definition of the allocation classes and the class Storage as well as its use is provided in the C++ Annotations's distribution in the file yo/advancedtemplates/examples/storage.cc.) A list container, however can still be specified as the container to use. In that case a Storage is implemented as a list, offering list's interface, rather than vector's interface, to its users.
23.4.2.1: The destructor of Policy classes
In the previous section policy classes were used as base classes of template classes. This resulted in the interesting observation that a policy class may serve as a base class of a derived class. As a policy class may act as a base class, a pointer or reference to such a policy class can be used to point or refer to the derived class using the policy.
This situation, although legal, should be avoided for various reasons:
To avoid these drawbacks, it is good practice to prevent the use of references or pointers to policy classes to refer or point to derived class objects. This is accomplished by providing policy classes with non-virtual protected destructors. With a non-virtual destructor there is no performance penalty and since its destructor is protected users cannot refer to classes derived from the policy class using a pointer or reference to the policy class.
23.4.3: Structure by Policy
Policy classes usually define behavior, not structure. Policy classes are normally used to parameterize some aspect of the behavior of classes that are derived from them. However, different policies may require different data members. These data members may also be defined by the policy classes. Policy classes may therefore be used to define both behavior and structure.
By providing a well-defined interface a class derived from a policy class may define member specializations using the different structures of policy classes to their advantage. For example, a plain pointer-based policy class could offer its functionality by resorting to C-style pointer juggling, whereas a vector-based policy class could use the vector's members directly.
In this example a generic class template Size could be designed expecting a container-like policy using features commonly found in containers, defining the data (and hence the structure) of the container specified in the policy. E.g.:
template <typename Data, template <typename> class Container>
struct Size: public Container<Data>
{
size_t size()
{ // relies on the container's `size()'
// note: can't use `this->size()'
return Container<Data>::size();
}
};
A specialization can now be defined for a much simpler storage class using, e.g., plain pointers (the implementation capitalizes on first and second, data members of std::pair. Cf. the example at the end of this section):
template <typename Data>
struct Size<Data, Plain>: public Plain<Data>
{
size_t size()
{ // relies on pointer data members
return this->second - this->first;
}
};
Depending on the intentions of the template's author other members could be implemented as well.
To simplify the real use of the above templates, a generic wrapper class can be constructed: it uses the Size template matching the actually used storage type (e.g., a std::vector or some plain storage class) to define its structure:
template <typename Data, template <typename> class Store>
class Wrapper: public Size<Data, Store>
{};
The above classes could now be used as follows (en passant showing an extremely basic Plain class):
#include <iostream>
#include <vector>
template <typename Data>
struct Plain: public std::pair<Data *, Data *>
{};
int main()
{
Wrapper<int, std::vector> wiv;
std::cout << wiv.size() << "\n";
Wrapper<int, Plain> wis;
std::cout << wis.size() << "\n";
}
The wiv object now defines vector-data, the wis object merely defines a std::pair object's data members.
23.5: Alias Templates
In addition to function and class templates, C++ also uses templates to define an alias for a set of types. This is called an alias template. Alias templates can be specialized. The name of an alias template is a type name.
Alias templates can be used as arguments to template template parameters. This allows us to avoid the `unexpected default parameters' you may encounter when using template template parameters. E.g., defining a template specifying a template <typename> class Container is fine, but it is impossible to specify a container like vector or set as template template argument, as vector and set containers also define a second template parameter, specifying their allocation policy.
Alias templates are defined like using declarations, specifying an alias for an existing (maybe partially or fully specialized) template type. In the following example Vector is defined as an alias for vector:
template <typename Type>
using Vector = std::vector<Type>;
Vector<int> vi; // same as std::vector<int>
std::vector<int> vi2(vi); // copy construction: OK
So, what's the point of doing this? Looking at the vector container, we see that it defines two, rather than one, template parameters, the second parameter being the allocation policy _Alloc, by default set to std::allocator<_Tp>:
template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
class vector: ...
Now define a class template Generic defining a template template parameter:
template <typename Type, template <typename> class Container>
class Generic: public Container<Type>
{
...
};
Most likely, Generic offers members made available by the container that is actually used to create the Generic object, and adds to those some members of it own. However, a simple container like std::vector cannot be used, as std::vector doesn't match a template <typename> class Container> parameter; it requires a template <typename, typename> class Container> template template parameter.
The Vector alias template, however, is defined as a template having one template type parameter, and it uses the vector's default allocator. Consequently, passing a Vector to Generic works fine:
Generic<int, Vector> giv; // OK
Generic<int, std::vector> err; // won't compile: 2nd argument mismatch
With the aid of a small alias template it is also possible to use a completely different kind of container, like a map, with Generic:
template <typename Type>
using MapString = std::map<Type, std::string>;
Generic<int, MapString> gim; // uses map<int, string>
23.6: Trait classes
Scattered over the std namespace trait classes are found. E.g., most C++ programmers have seen the compiler mentioning `std::char_traits<char>' when performing an illegal operation on std::string objects, as in std::string s(1).
Trait classes are used to make compile-time decisions about types. Trait classes allow us to apply the proper code to the proper data type, be it a pointer, a reference, or a plain value, all this maybe in combination with const. The particular type of data to use can be inferred from the actual type that is specified (or implied) when the template is used. This can be fully automated, not requiring the template writer to make any decision.
Trait classes allow us to develop a template <typename Type1, typename Type2, ...> without the need to specify many specializations covering all combinations of, e.g., values, (const) pointers, or (const) references, which would soon result in an unmaintainable exponential explosion of template specializations (e.g., allowing these five different types for each template parameter already results in 25 combinations when two template type parameters are used: each must be covered by potentially different specializations).
Having available a trait class, the actual type can be inferred compile time, allowing the compiler to deduce whether or not the actual type is a pointer, a pointer to a member, or a const pointer, and to make comparable deductions in case the actual type is, e.g., an lvalue or rvalue reference type. This in turn allows us to write templates that define types like argument_type, first_argument_type, second_argument_type and result_type, which are required by several generic algorithms (e.g., count_if()).
A trait class usually performs no behavior. I.e., it has no constructor and no members that can be called. Instead, it defines a series of types and enum values that have certain values depending on the actual type that is passed to the trait class template. The compiler uses one of a set of available specializations to select the one appropriate for an actual template type parameter.
The point of departure when defining a trait template is a plain vanilla struct, defining the characteristics of a plain value type like an int. This sets the stage for specific specializations, modifying the characteristics for any other type that could be specified for the template.
To make matters concrete, assume the intent is to create a trait class BasicTraits telling us whether a type is a plain value type, a pointer type, an lvalue reference type or an rvalue reference type (all of which may or may not be const types).
Whatever the actually provided type, we want to be able to determine the `plain' type (i.e., the type without any modifiers, pointers or references), the `pointer type' and the `reference type', allowing us to define in all cases, e.g., an rvalue reference to its built-in type, even though we passed a const pointer to that type.
Our point of departure, as mentioned, is a plain struct defining the required parameter. Maybe something like this:
template <typename T>
struct Basic
{
typedef T Type;
enum
{
isPointer = false,
isConst = false,
isRef = false,
isRRef = false
};
};
Although some conclusions can be drawn by combining various enum values (e.g., a plain type is not a pointer or a reference or an rvalue reference or a const), it is good practice to provide a full implementation of trait classes, not requiring its users to construct these logical expressions themselves. Therefore, the basic decisions in a trait class are usually made by a nested trait class, leaving the task of creating appropriate logical expressions to a surrounding trait class.
So, the struct Basic defines the generic form of our inner trait class. Specializations handle specific details. E.g., a pointer type is recognized by the following specialization:
template <typename T>
struct Basic<T *>
{
typedef T Type;
enum
{
isPointer = true,
isConst = false,
isRef = false,
isRRef = false
};
};
whereas a pointer to a const type is matched with the next specialization:
template <typename T>
struct Basic<T const *>
{
typedef T Type;
enum
{
isPointer = true,
isConst = true,
isRef = false,
isRRef = false
};
};
Several other specializations should be defined: e.g., recognizing const value types or (rvalue) reference types. Eventually all these specializations are implemented as nested structs of an outer class BasicTraits, offering the public traits class interface. The outline of the outer trait class is:
template <typename TypeParam>
class BasicTraits
{
// Define specializations of the template `Base' here
public:
BasicTraits(BasicTraits const &other) = delete;
typedef typename Basic<TypeParam>::Type ValueType;
typedef ValueType *PtrType;
typedef ValueType &RefType;
typedef ValueType &&RvalueRefType;
enum
{
isPointerType = Basic<TypeParam>::isPointer,
isReferenceType = Basic<TypeParam>::isRef,
isRvalueReferenceType = Basic<TypeParam>::isRRef,
isConst = Basic<TypeParam>::isConst,
isPlainType = not (isPointerType or isReferenceType or
isRvalueReferenceType or isConst)
};
};
The trait class's public interface explicitly deletes its copy constructor. As it therefore defines no constructor at all and as it has no static members it does not offer any run-time executable code. All the trait class's facilities must therefore be used compile time.
A trait class template can be used to obtain the proper type, irrespective of the template type argument provided. It can also be used to select a proper specialization that depends on, e.g., the const-ness of a template type. Example:
cout <<
"int: plain type? " << BasicTraits<int>::isPlainType << "\n"
"int: ptr? " << BasicTraits<int>::isPointerType << "\n"
"int: const? " << BasicTraits<int>::isConst << "\n"
"int *: ptr? " << BasicTraits<int *>::isPointerType << "\n"
"int const *: ptr? " << BasicTraits<int const *>::isPointerType <<
"\n"
"int const: const? " << BasicTraits<int const>::isConst << "\n"
"int: reference? " << BasicTraits<int>::isReferenceType << "\n"
"int &: reference? " << BasicTraits<int &>::isReferenceType << "\n"
"int const &: ref ? " << BasicTraits<int const &>::isReferenceType <<
"\n"
"int const &: const ? " << BasicTraits<int const &>::isConst << "\n"
"int &&: r-reference? " << BasicTraits<int &&>::isRvalueReferenceType <<
"\n"
"int &&: const? " << BasicTraits<int &&>::isConst << "\n"
"int const &&: r-ref ? "<< BasicTraits<int const &&>::
isRvalueReferenceType << "\n"
"int const &&: const ? "<< BasicTraits<int const &&>::isConst << "\n"
"\n";
BasicTraits<int *>::ValueType value = 12;
BasicTraits<int const *>::RvalueRefType rvalue = int(10);
BasicTraits<int const &&>::PtrType ptr = new int(14);
cout << value << ' ' << rvalue << ' ' << *ptr << '\n';
23.6.1: Distinguishing class from non-class types
In the previous section the BasicTraits trait class was developed. Using specialized versions of a nested struct Type modifiers, pointers, references and values could be distinguished.
Knowing whether a type is a class type or not (e.g., the type represents a primitive type) could also be a useful bit of knowledge to a template developer. The class template developer might want to define a specialization when the template's type parameter represents a class type (maybe using some member function that should be available) and another specialization for non-class types.
This section addresses the question how a trait class can distinguish class types from non-class types.
In order to distinguish classes from non-class types a distinguishing feature that can be used at compile-time must be found. It may require some thinking to find such a distinguishing characteristic, but a good candidate eventually is found in the pointer to members syntactic construct. Pointers to members are only available for classes. Using the pointer to member construct as the distinguishing characteristic, a specialization can be developed that uses the pointer to member if available. Another specialization (or the generic template) does something else if the pointer to member construction is not available.
How can we distinguish a pointer to a member from `a generic situation', not being a pointer to a member? Fortunately, such a distinction is possible. A function template specialization can be defined having a parameter which is a pointer to a member function. The generic function template then accepts any other argument. The compiler selects the former (specialized) function when the provided type is a class type as class types may support a pointer to a member. The interesting verb here is `may': the class does not have to define a pointer to member.
Furthermore, the compiler does not actually call any function: we're talking compile-time here. All the compiler does is to select the appropriate function by evaluating a constant expression.
So, our intended function template now looks like this:
template <typename ClassType>
static `some returntype' fun(void (ClassType::*)());
The function's return type (`(some returntype)') will be defined shortly. Let's first have a closer look at the function's parameter. The function's parameter defines a pointer to a member returning void. Such a function does not have to exist for the concrete class-type that's specified when the function is used. In fact, no implementation is provided. The function fun is only declared as a static member in the trait class. It's not implemented and no trait class object is required to call it. What, then, is its use?
To answer the question we now have a look at the generic function template that should be used when the template's argument is not a class type. The language offers a `worst case' parameter in its ellipsis parameter list. The ellipsis is a final resort the compiler may turn to if everything else fails. The generic function template specifies a plain ellipsis in its parameter list:
template <typename NonClassType>
static `some returntype' fun(...);
It would be an error to define the generic alternative as a function expecting an int. The compiler, when confronted with alternatives, favors the simplest, most specified alternative over a more complex, generic one. So, when providing fun with an argument it selects int whenever possible and it won't select fun(void (ClassType::*)()). When given the choice between fun(void (ClassType::*)()) and fun(...) it selects the former unless it can't do that.
The question now becomes: what argument can be used for both a pointer to a member and for the ellipsis? Actually, there is such a `one size fits all' argument: 0. The value 0 can be passed as argument value to functions defining an ellipsis parameter and to functions defining a pointers-to-member parameter.
But 0 does not specify a particular class. Therefore, fun must specify an explicit template argument, appearing in our code as fun<Type>(0), with Type being the template type parameter of the trait class.
Now for the return type. The function's return type cannot be a simple value (like true or false). Our eventual intent is to provide the trait class with an enum telling us whether the trait class's template argument represents a class type or not. That enum becomes something like this:
enum { isClass = some class/non-class distinguishing expression } ;
The distinguishing expression cannot be
enum { isClass = fun<Type>(0) } ;
as fun<Type>(0) is not a constant expression and enum values must be defined by constant expressions so they can be determined at compile-time.
To determine isClass's value we must find an expression allowing for compile-time discriminations between fun<Type>(...) and fun<Type>(void (Type::*)()).
In situations like these the sizeof operator often is our tool of choice as it is evaluated at compile-time. By defining different sized return types for the two fun declarations we are able to distinguish (at compile-time) which of the two fun alternatives is selected by the compiler.
The char type is by definition a type having size 1. By defining another type containing two consecutive char values a larger type is obtained. A char [2] is of course not a type, but a char[2] can be defined as a data member of a struct, and a struct does define a type. That struct then has a size exceeding 1. E.g.,
struct Char2
{
char data[2];
};
Char2 can be defined as a nested type of our traits class. The two fun function template declarations become:
template <typename ClassType>
static Char2 fun(void (ClassType::*)());
template <typename NonClassType>
static char fun(...);
Since sizeof expressions are evaluated at compile-time we can now determine isClass's value:
enum { isClass = sizeof(fun<Type>(0)) == sizeof(Char2) };
This expression has several interesting implications:
Without requiring any instantiation the trait class can now provide an answer to the question whether a template type argument represents a class type or not. Marvelous!
23.6.2: Available type traits
C++ offers many facilities to identify and modifiy characteristics of types. Before using these facilities the <type_traits> header file must be included.
All facilities offered by type_traits are defined in the std namespace (omitted from the examples given below), allowing programmers to determine various characteristics of types and values.
In the description of available type traits the following concepts are encountered:
struct NoThrow
{
NoThrow &operator=(SomeType const &rhs) noexept(true);
};
struct Pod
{
int x;
};
struct Nonpod
{
std::string s;
};
When type-condition applies to a type, it must be a complete type, void, or an array of unknown size;
The following type traits are provided:
23.7: Defining `ErrorCodeEnum' and 'ErrorConditionEnum' enumerations
In section 4.3.2 the class std::error_code was introduced. One of its constructors accepts ErrorCodeEnum values, where ErrorCodeEnum is a template type name for enumerations that we may define ourselves containing symbols that are used as error code values. Another constructor expects an int-valued error code and a specification of an error category that uses those error codes.
Several error code enumerations and error categories are predefined by C++ but it is also possible to define new ErrorCodeEnums and error categories. In this section constructing new ErrorCodeEnums is covered, in the next section designing new error categories is covered.
Defining new error code enumerations is an option when using error_code objects is attractive, but standard error code values (like the values defined by enum class errc) aren't appropriate. For example, when designing an interactive calculator, several errors may be encountered that are related to the way expressions are entered by the user. For those situations you might want to develop your own error code enumeration.
In this and the next section a bare bones approach to defining error code enumerations and error categories is adopted. No concrete, real-life like class is developed. I think the advantage of this is that this way it's easier to apply the principles to new real-life situations than if you first have to abstract the content of a real-life example yourself. Here we go:
The enum class CatErr lists causes of errors that are associated with our (as yet to be designed) error category:
enum class CatErr
{
Err1 = 1, // causes of errors
Err2,
Err3
};
20.5.4.2.1 Namespace std
The behavior of a C++ program is undefined if it adds declarations or definitions to namespace std or to a namespace within namespace std unless otherwise specified.
A program may add a template specialization for any standard library template to namespace std only if the declaration depends on a user-defined type and the specialization meets the standard library requirements for the original template and is not explicitly prohibited.
Here is how the is_error_code_enum trait class is specialized:
namespace std
{
template <>
struct is_error_code_enum<CatErr>: public true_type
{};
}
This completes the definition of our own error code enumeration, whose symbols are now accepted by error_code's constructor.
Before we're able to design our own error category we must also have a look at `higher order' causes of errors as represented by objects of the class std::error_condition (cf. section 10.9.2). Error conditions represent platform independent errors like syntax errors or non-existing requests.
In our bare bones implementation of an error category these higher order causes of errors are enumerated in the enum class Cond enumeration. It's defined similarly to CatErr.
enum class Cond
{
NoCond = -1,
Cond1 = 1,
Cond2,
Cond3,
};
Here is how the is_error_condition_enum trait class is specialized:
namespace std
{
template <>
struct is_error_condition_enum<Cond>: public true_type
{};
}
We're now ready for designing our own error_category class.
23.7.1: Deriving classes from std::error_category
In the previous section the error code enumerations CatErr and Cond were developed. The values of these enumerations specify, respectively, the direct and the platform independent causes of errors that may be encountered in the context of the new error category developed in this section.
Classes derived from std::error_category are designed as singleton classes and implement their own name, message and an equivalent members. Our class Category also declares a static member instance returning a reference to the class's singleton object, which is compile-time initialized and is available by the time instance is called. Alternatively a dedicated function (like Category_category), analogously to the function generic_category, returning a reference to the Category object could be defined.
CatErr values, Cond values and textual descriptions of CatErr's values are combined in a std::unordered_map using CatErr as key, and a struct POD as value type. This map allows us to retrieve the platform independent error types and the descriptions that are associated with CatErr values.
Here is the interface of the class Category:
class Category: public std::error_category
{
static Category s_instance;
struct POD
{
Cond cond;
char const *msg;
};
static std::unordered_map<CatErr, POD> s_map;
public:
Category(Category const &other) = delete;
static Category &instance();
bool equivalent(std::error_code const &ec, int condNr)
const noexcept override;
bool equivalent(int ev, std::error_condition const &condition)
const noexcept override;
std::error_condition default_error_condition(int ev)
const noexcept override;
std::string message(int ce) const override;
char const *name() const noexcept override;
private:
Category() = default;
template <typename Enum>
static constexpr Enum as(int err);
};
Its unordered_map s_map provides the Cond values and verbal descriptions of the CatErr values given those CatErr values:
unordered_map<CatErr, Category::POD> Category::s_map =
{
{ CatErr::Err1, { Cond::Cond1, "Err1" } },
{ CatErr::Err2, { Cond::Cond2, "Err2" } },
{ CatErr::Err3, { Cond::Cond1, "Err3" } },
};
The functions make_error_code and make_error_condition return, respectively, error_code and error_condition objects from, respectively, CatErr values and Cond values.
Their declarations can be provided below the Category class interface and their implementations pass the Category object to their constructors:
std::error_code make_error_code(CatErr ce)
{
return { static_cast<int>(ce), Category::instance() };
}
std::error_condition make_error_condition(Cond ec)
{
return { static_cast<int>(ec), Category::instance() };
}
The member name must be defined by classes derived from error_category. It simply returns a short string naming the category (e.g., "Category" for our Category class). Likewise, the member message must be redefined. Its implementation usually is slightly more complex than name's implementation: it expects a (cast to an int) CatErr value and uses that value to find the corresponding textual description in s_map. If found the description is returned; if not found then a short fallback message is returned:
std::string Category::message(int ce) const
{
auto iter = s_map.find(static_cast<CatErr>(ce));
return iter != s_map.end() ? iter->second.msg : "No CatErr value";
}
The member default_error_condition receives a (cast to int) CatErr value. That value is used to find the associated Cond value. If the int received by the function does not represent a valid CatErr value then the fallback value Cond::NoCond is used. The function returns an error_condition object created by make_error_condition which receives the determined Cond value as its argument:
std::error_condition Category::default_error_condition(int ev)
const noexcept
{
auto iter = s_map.find(as<CatErr>(ev));
return make_error_condition(
iter == s_map.end() ? Cond::NoCond : iter->second.cond
);
}
What's left is implementing the two equivalent members. The first equivalent member (receiving a reference to an error_code object and a (cast to int) Cond value) determines the equivalence of the Cond value that is associated with the error_code object and the Cond value that is specified as the function's second argument. If these values are equal and the error_code object's category is equal to Category then the equivalence has been established and true is returned. Here is its implementation:
bool Category::equivalent(std::error_code const &ec, int condNr)
const noexcept
{
if (*this != ec.category())
return false;
if (ec.value() == 0) // no error in ec?
return condNr == 0; // then condNr must
// also be 0
auto iter = s_map.find(as<CatErr>(ec.value())); // info associated
// with ec's CatErr
return iter == s_map.end() ?
false // not found or
: // compare Cond values
iter->second.cond == as<Cond>(condNr);
}
The second equivalent member (receiving (as an int) CatErr value and an error_condition object) determines the equivalence of an error_condition object that is constructed from the Cond value that is associated with the CatErr value that was passed (as int) to the function and the error_condition object that was passed to the function as its second argument.
Here a prerequisite for concluding equivalence is that the error condition's category is Category. If that's the case then the function returns true if its int argument equals zero and the condition object also indicates no error. Alternatively, if the condition argument is equal to the error_condition object made from the Cond value associated with the CatErr value passed to the function as its first argument the equivalence has also been established and true is returned. Here is its implementation:
bool Category::equivalent(int ev, error_condition const &condition)
const noexcept
{
if (ev == 0) // no error? then
return condition.category() == *this and // categories must
not static_cast<bool>(condition); // be equal and
// condition must
// indicate no error
auto iter = s_map.find(as<CatErr>(ev)); // find ev's Cond
return iter == s_map.end()?
false // no such CatErr
: // or compare conditions
condition == make_error_condition(iter->second.cond);
}
So, in order to define your own category:
23.8: Using `noexcept' when offering the `strong guarantee'
When throwing exceptions while trying to achieve the strong guarantee a function's actions are usually split in two parts
The actions in the first step might be made move aware by using std::move (e.g., to assign the source's values to a (possibly temporary) destination). However, using std::move can easily affect the source (e.g., when extending the source's memory, moving the existing data to its new locations), which breaks the first step's assumption, as the target object is now modified.
In this case (and generally) the move operation should not be allowed to throw exceptions. This, in turn, implies that it is difficult to write code which must offer a non-throwing moving constructor, if it uses (external) data types over which the moving constructor has no control. E.g.,
template <typename Type>
class MyClass
{
Type d_f;
public:
MyClass() = default;
MyClass(MyClass &&tmp)
:
d_f(move(tmp.d_f))
{}
};
Here, MyClass's author has no control over the design of Type. If Foreign merely has a (possibly throwing) copy constructor, then the following code breaks the no-throw assumption underlying move constructors:
MyClass<Foreign> s2{ move(MyClass<Foreign>()) };
If templates are able to detect whether Type has non-throwing move constructors then their implementations may be optimized by calling these move constructors (already modifying their targets in the first part of code offering the strong guarantee) in situations where otherwise the non-modifying, but more expensive copy constructor has to be used.
The noexcept keyword was introduced to allow such templates to perform such optimizations. As with throw lists, checking for noexcept is a run-time check, but the consequence of violating a noexept declaration are more serious than violating a throw list: violating noexcept results in calling std::terminate, terminating the program, possibly without unwinding the stack. In the context of the previous example, the following code is flawlessly accepted by the compiler, demonstrating that there is no compile-time checking of noexcept:
class Foreign
{
public:
Foreign() = default;
Foreign(Foreign const &other) noexcept
{
throw 1;
}
};
However, when this class's copy constructor is called, execution aborts with the following message:
terminate called after throwing an instance of 'int'
Abort
Keep in mind that the current purpose of noexcept is to allow templates to optimize their code by using move operations where the code must also be able to offer the string exception guarantee. Since noexcept also offers the conditional noexcept(condition) syntax (with noexcept(true) and noexcept having identical semantics), noexcept can be made conditional to the `noexcepting' nature of template types. Note that this is not possible with throw lists.
The following rules of thumb by be used to decide whether or not to use noexcept in your code:
std::is_nothrow_constructible<MyClass, string>::value
equals true. For the named members (like is_nothrow_move_constructible) parameter types do not have to be specified, as they are implied. E.g.,
std::is_nothrow_move_constructible<MyClass>::value
returns true if the move constructor has the noexcept modifier.
23.9: More conversions to class types
23.9.1: Types to types
Although class templates may be partially specialized, function templates may not. At times this is annoying. Assume a function template is available implementing a certain unary operator that could be used with the transform generic algorithm (cf. section 19.1.63):
template <typename Return, typename Argument>
Return chop(Argument const &arg)
{
return Return{ arg };
}
Furthermore assume that if Return is std::string then the above implementation should not be used. Instead, with std::string a second argument 1 should always be provided. If Argument is a C++ string, this would allow us to, e.g., return a copy of arg from which its first character has been chopped off.
Since chop is a function, it is not possible to define a partial specialization like this:
template <typename Argument> // This won't compile!
std::string chop<std::string, Argument>(Argument const &arg)
{
return std::string{ arg, 1 };
}
Although a function template cannot be partially specialized it is possible to use overloading, defining a second, dummy, string parameter:
template <typename Argument>
std::string chop(Argument const &arg, std::string)
{
return std::string{ arg, 1 };
}
Instead of providing a string dummy argument the functions could use the IntType template (cf. section 23.2.1.1) to select the proper overloaded version. E.g., IntType<0> could be defined as the type of the second argument of the first overloaded chop function, and IntType<1> could be used for the second overloaded function. From the point of view of program efficiency this is an attractive option, as the provided IntType objects are extremely lightweight. IntType objects contain no data at all. But there's also an obvious disadvantage as there is no intuitively clear association between the int value used and the intended type.
Instead of defining arbitrary IntType types it is more attractive to use another lightweight solution, using an automatic type-to-type association. The struct TypeType is a lightweight type wrapper, much like IntType. Here is its definition:
template <typename T>
struct TypeType
{
typedef T Type;
};
TypeType is also a lightweight type as it doesn't have any data fields either. TypeType allows us to use a natural type association for chop's second argument. E.g, the overloaded functions can now be defined as follows:
template <typename Return, typename Argument>
Return chop(Argument const &arg, TypeType<Argument> )
{
return Return{ arg };
}
template <typename Argument>
std::string chop(Argument const &arg, TypeType<std::string> )
{
return std::string{ arg, 1 };
}
Using the above implementations any type can be specified for Result. If it happens to be a std::string the appropriate overloaded version is automatically selected. The following additional overload of the function chop capitalizes on this:
template <typename Result>
Result chop(char const *txt) // char const * could also be a 2nd
{ // template type parameter
return chop(std::string{ txt }, TypeType<Result>{});
}
Using the third chop function, the following statement produces the text `ello world':
cout << chop<string>{ "hello world" } << '\n';
Template functions do not support partial specializations. But they can be overloaded. By providing overloads with dummy type-arguments that depend on other parameters and calling these overloads from a overloaded function that does not require the dummy type argument a situation similar to partial specializations with class templates can often be realized.
23.9.2: An empty type
At times (cf. section 23.10) an empty struct is a useful tool. It can be used as a type acting analogously to the final 0-byte in NTBSs. It can simply be defined as:
struct NullType
{};
23.9.3: Type convertibility
In what situations can a type T be used as a `stand in' for another type U? Since C++ is a strongly typed language the answer is surprisingly simple: Ts can be used instead of Us if a T is accepted as argument in cases where Us are requested.
This reasoning is behind the following class which can be used to determine whether a type T can be used where a type U is expected. The interesting part is that no code is actually generated or executed. All decisions are made by the compiler.
In the second part of this section we'll show how the code developed in the first part can be used to detect whether a class B is a base class of another class D (the is_base_of template (cf. section 23.6.2) also provides an answer to this question). The code developed here closely follows the example provided by Alexandrescu (2001, p. 35).
First, a function test is designed accepting a type U. The function test returns a value of the as yet unknown type Convertible:
Convertible test(U const &);
The function test is never implemented. It is only declared. If a type T can be used instead of a type U then T can also be passed as argument to the above test function.
On the other hand, if the alternate type T cannot be used where a U is expected, then the compiler won't be able to use the above test function. Instead, it uses an alternative function that has a lower selection priority but that can always be used with any T type.
C (and C++) offer a very general parameter list, a parameter list that is always considered acceptable. This parameter list is the familiar ellipsis which represents the worst case the compiler may encounter. If everything else fails, then the function defining an ellipsis as its parameter list is selected.
Usually that's not a productive alternative, but in the current situation it is exactly what is needed. When confronted with two candidate functions, one of which defines an ellipsis parameter, the compiler selects the function defining the ellipsis parameter only if the alternative(s) can't be used.
Following the above reasoning an alternative function test(...) is declared as well. This alternate function does not return a Convertible value but a NotConvertible value:
NotConvertible test(...);
If test's argument is of type T and if T can be converted to U then test's return type is Convertible. Otherwise NotConvertible is returned.
This situation clearly shows similarities with the situation encountered in section 23.6.1 where the value isClass had to be determined compile time. Here two related problems must be solved:
The first problem is solved by realizing that no T needs to be defined. After all, the intent is to decide compile-time whether a type is convertible and not to define a T value or object. Defining objects is not a compile-time but a run-time matter.
By simply declaring a function returning a T we can tell the compiler where it should assume a T:
T makeT();
This mysterious function has the magical power of enticing the compiler into thinking that a T object comes out of it. However, this function needs a small modification before it will actually suit our needs. If, for whatever reason, T happens to be an array then the compiler will choke on T makeT() as functions cannot return arrays. This, however, is easily solved, as functions can return references to arrays. So the above declaration is changed into:
T const &makeT();
Next we pass a T const & to test: following code:
test(makeT())
Now that the compiler sees test being called with a T const & argument it decides that its return value is Convertible if a conversion is in fact possible. Otherwise it decides that its return value is NotConvertible (as the compiler, in that case, selected test(...)).
The second problem, distinguishing Convertible from NotConvertible is solved exactly the way isClass could be determined in section 23.6.1, viz. by making their sizes different. Having done so the following expression determines whether T is convertible from U or not:
isConvertible = sizeof(test(makeT())) == sizeof(Convertible);
By using char for Convertible and Char2 (cf. section 23.6.1) for NotConvertible the distinction can be made.
The above can be summarized in a class template LconvertibleToR, having two template type parameters:
template <typename T, typename U>
class LconvertibleToR
{
struct Char2
{
char array[2];
};
static T const &makeT();
static char test(U const &);
static Char2 test(...);
public:
LconvertibleToR(LconvertibleToR const &other) = delete;
enum { yes = sizeof(test(makeT())) == sizeof(char) };
enum { sameType = 0 };
};
template <typename T>
class LconvertibleToR<T, T>
{
public:
LconvertibleToR(LconvertibleToR const &other) = delete;
enum { yes = 1 };
enum { sameType = 1 };
};
As the class template deletes its copy constructor no object can be created. Only its enum values can be interrogated. The next example writes 1 0 1 0 when run from a main function:
cout <<
LconvertibleToR<ofstream, ostream>::yes << " " <<
LconvertibleToR<ostream, ofstream>::yes << " " <<
LconvertibleToR<int, double>::yes << " " <<
LconvertibleToR<int, string>::yes <<
"\n";
23.9.3.1: Determining inheritance
Now that it is possible to determine type convertibility, it's easy to determine whether a type Base is a (public) base class of a type Derived.
Inheritance is determined by inspecting convertibility of (const) pointers. Derived const * can be converted to Base const * if
Assuming the last conversion isn't used inheritance can be determined using the following trait class LBaseRDerived. LBaseRDerived provides an enum yes which is 1 if the left type is a base class of the right type and both types are different:
template <typename Base, typename Derived>
struct LBaseRDerived
{
LBaseRDerived(LBaseRDerived const &) = delete;
enum {
yes =
LconvertibleToR<Derived const *, Base const *>::yes &&
not LconvertibleToR<Base const *, void const *>::sameType
};
};
If code should not consider a class to be its own base class, then the trait class LBaseRtrulyDerived can be used to perform a strict test. This trait class adds a test for type-equality:
template <typename Base, typename Derived>
struct LBaseRtrulyDerived
{
LBaseRtrulyDerived(LBaseRtrulyDerived const &) = delete;
enum {
yes =
LBaseRDerived<Base, Derived>::yes &&
not LconvertibleToR<Base const *, Derived const *>::sameType
};
};
Example: the next statement displays 1: 0, 2: 1, 3: 0, 4: 1, 5: 0 when executed from a main function:
cout << "\n" <<
"1: " << LBaseRDerived<ofstream, ostream>::yes << ", " <<
"2: " << LBaseRDerived<ostream, ofstream>::yes << ", " <<
"3: " << LBaseRDerived<void, ofstream>::yes << ", " <<
"4: " << LBaseRDerived<ostream, ostream>::yes << ", " <<
"5: " << LBaseRtrulyDerived<ostream, ostream>::yes <<
"\n";
23.10: Template TypeList processing
This section serves two purposes. It illustrates capabilities of the various template meta-programming techniques, which can be used as a source of inspiration when developing your own templates; and it offers a concrete example, illustrating some of the power offered by these techniques.
This section itself was inspired by Andrei Alexandrescu's (2001) book Modern C++ design. It diverts from Alexandrescu's book in its use of variadic templates which were not yet available when he wrote his book. Even so, the algorithms used by Alexandrescu are still useful when using variadic templates.
C++ offers the tuple to store and retrieve values of multiple types. Here the focus is merely on processing types. A simple struct TypeList is going to be used as our working horse for the upcoming subsections. Here is its definition:
template <typename ...Types>
struct TypeList
{
TypeList(TypeList const &) = delete;
enum { size = sizeof ...(Types) };
};
A typelist allows us to store any number of types. Here is an example storing the three types char, short, int in a TypeList:
TypeList<char, short, int>
23.10.1: The length of a TypeList
As the number of types in a parameter pack may be obtained using the sizeof operator (cf. section 22.5) it is easy to obtain the number of types that were specified with a certain TypeList. For example, the following statement displays the value 3:
std::cout << TypeList<int, char, bool>::size << '\n';
However, it's illustrative to see how the number of types specified with a TypeList could be determined if sizeof hadn't been available.
To obtain the number of types that were specified with a TypeList the following algorithm is used:
The algorithm uses recursion to define the length of a TypeList. In executable C++ recursion could also be used in comparable situations. For example recursion can be used to determine the length of an NTBS:
size_t c_length(char const *cp)
{
return *cp == 0 ? 0 : 1 + c_length(cp + 1);
}
While C++ functions usually use iteration rather than recursion, iteration is not available to template meta programming algorithms. In template meta programming repetition must be implemented using recursion. Furthermore, while C++ run-time code may use conditions to decide whether or not to start the next recursion template meta programming cannot do so. Template meta programming algorithms must resort to (partial) specializations. The specializations are used to select alternatives.
The number of types that are specified in a TypeList can be computed using the following alternate implementation of TypeList, using a generic struct declaration and two specialization for the empty and non-empty TypeList (cf. the above description of the algorithm):
template <typename ...Types>
struct TypeList;
template <typename Head, typename ...Tail>
struct TypeList<Head, Tail...>
{
enum { size = 1 + TypeList<Tail...>::size };
};
template <>
struct TypeList<>
{
enum { size = 0 };
};
23.10.2: Searching a TypeList
To determine whether a particular type (called SearchType below) is present in a given TypeList, an algorithm is used that either defines `index' as -1 (if SearchType is not an element of the TypeList ) or it defines `index' as the index of the first occurrence of SearchType in the TypeList. The following algorithm is used:
The algorithm is implemented using a variadic template struct ListSearch expecting a parameter pack:
template <typename ...Types>
struct ListSearch
{
ListSearch(ListSearch const &) = delete;
};
Specializations handle the alternatives mentioned with the algorithm:
template <typename SearchType>
struct ListSearch<SearchType, TypeList<>>
{
ListSearch(ListSearch const &) = delete;
enum { index = -1 };
};
template <typename SearchType, typename ...Tail>
struct ListSearch<SearchType, TypeList<SearchType, Tail...>>
{
ListSearch(ListSearch const &) = delete;
enum { index = 0 };
};
template <typename SearchType, typename Head, typename ...Tail>
struct ListSearch<SearchType, TypeList<Head, Tail...> >
{
ListSearch(ListSearch const &) = delete;
enum {tmp = ListSearch<SearchType, TypeList<Tail...>>::index};
enum {index = tmp == -1 ? -1 : 1 + tmp};
};
Here is an example showing how ListSearch can be used:
std::cout <<
ListSearch<char, TypeList<int, char, bool>>::index << "\n" <<
ListSearch<float, TypeList<int, char, bool>>::index << "\n";
23.10.3: Selecting from a TypeList
The inverse operation of determining the index of a certain type in a TypeList is retrieving the type given its index. This inverse operation is the topic of this section.
The algorithm is implemented using a struct TypeAt. TypeAt uses a typedef to define the type matching a given index. But the index might be out of bounds. In that case we have several options:
The first alternative is implemented below. The other alternatives are not difficult to implement and are left as exercises for the reader. Here's how TypeAt works:
template <size_t index, typename Typelist>
struct TypeAt;
template <size_t index>
struct TypeAt<index, TypeList<>>
{
static_assert(index < 0, "TypeAt index out of bounds");
typedef TypeAt Type;
};
template <typename Head, typename ...Tail>
struct TypeAt<0, TypeList<Head, Tail...>>
{
typedef Head Type;
};
template <size_t index, typename Head, typename ...Tail>
struct TypeAt<index, TypeList<Head, Tail...>>
{
typedef typename TypeAt<index - 1, TypeList<Tail...>>::Type Type;
};
Here is how typeAt can be used. Uncommenting the first variable definition causes a TypeAt index out of bounds compilation error:
typedef TypeList<int, char, bool> list3;
// TypeAt<3, list3>::Type invalid;
TypeAt<0, list3>::Type intVariable = 13;
TypeAt<2, list3>::Type boolVariable = true;
cout << "The size of the first type is " <<
sizeof(TypeAt<0, list3>::Type) << ", "
"the size of the third type is " <<
sizeof(TypeAt<2, list3>::Type) << "\n";
if (typeid(TypeAt<1, list3>::Type) == typeid(char))
cout << "The typelist's 2nd type is char\n";
if (typeid(TypeAt<2, list3>::Type) != typeid(char))
cout << "The typelist's 3nd type is not char\n";
23.10.4: Prefixing/Appending to a TypeList
Prepending or appending a type to a TypeList is easy and doesn't require recursive template meta programs. Two variadic template structs Append and Prefix and two specializations are all it takes.
Here are the declarations of the two variadic template structs:
template <typename ...Types>
struct Append;
template <typename ...Types>
struct Prefix;
To append or prefix a new type to a typelist, specializations expect a typelist and a type to add. Then, they simply define a new TypeList also including the new type. The Append specialization shows that a template pack does not have to be used as the first argument when defining another variadic template type:
template <typename NewType, typename ...Types>
struct Append<TypeList<Types...>, NewType>
{
typedef TypeList<Types..., NewType> List;
};
template <typename NewType, typename ...Types>
struct Prefix<NewType, TypeList<Types...>>
{
typedef TypeList<NewType, Types...> List;
};
23.10.5: Erasing from a TypeList
It is also possible to erase types from a TypeList. Again, there are several possibilities, each resulting in a different algorithm.
Doubtlessly there are other ways of erasing types from a TypeList. Which ones are eventually implemented depends of course on the circumstances. As template meta programming is very powerful most if not all algorithms can probably be implemented. As an illustration of how to erase types from a TypeList the above-mentioned algorithms are now developed in the upcoming subsections.
23.10.5.1: Erasing the first occurrence
To erase the first occurrence of a specified EraseType from a TypeList a recursive algorithm is used once again. The template meta program uses a generic Erase struct and several specializations. The specializations define a type List containing the resulting TypeList after the erasure. Here is the algorithm:
template <typename EraseType, typename TypeList>
struct Erase;
template <typename EraseType>
struct Erase<EraseType, TypeList<>>
{
typedef TypeList<> List;
};
template <typename EraseType, typename ...Tail>
struct Erase<EraseType, TypeList<EraseType, Tail...>>
{
typedef TypeList<Tail...> List;
};
template <typename EraseType, typename Head, typename ...Tail>
struct Erase<EraseType, TypeList<Head, Tail...>>
{
typedef typename
Prefix<Head,
typename Erase<EraseType, TypeList<Tail...>>::List
>::List List;
};
Here is a statement showing how Erase can be used:
cout <<
Erase<int, TypeList<char, double, int>>::List::size << '\n' <<
Erase<char, TypeList<int>>::List::size << '\n' <<
Erase<int, TypeList<int>>::List::size << '\n' <<
Erase<int, TypeList<>>::List::size << "\n";
23.10.5.2: Erasing a type by its index
To erase a type from a TypeList by its index we again use a recursive template meta program. EraseIdx expects a size_t index value and a TypeList from which its idxth (0-based) type must be erased. EraseIdx defines the type List containing the resulting TypeList. Here is the algorithm:
template <size_t idx, typename TypeList>
struct EraseIdx;
template <size_t idx>
struct EraseIdx<idx, TypeList<>>
{
typedef TypeList<> List;
};
template <typename EraseType, typename ...Tail>
struct EraseIdx<0, TypeList<EraseType, Tail...>>
{
typedef TypeList<Tail...> List;
};
template <size_t idx, typename Head, typename ...Tail>
struct EraseIdx<idx, TypeList<Head, Tail...>>
{
typedef typename Prefix<
Head,
typename EraseIdx<idx - 1, TypeList<Tail...>>::List
>::List List;
};
Here is a statement showing how EraseIdx can be used:
if
(
typeid(TypeAt<2,
EraseIdx<1,
TypeList<int, char, size_t, double, int>>::List
>::Type
)
== typeid(double)
)
cout << "the third type is now a double\n";
23.10.5.3: Erasing all occurrences of a type
Erasing all types EraseType from a TypeList can easily be accomplished by applying the erasure procedure not only to the head of the TypeList but also to the TypeList's tail.
Here is the algorithm, described in a slightly different order than Erase's algorithm:
template <size_t idx>
struct EraseIdx<idx, TypeList<>>
{
typedef TypeList<> List;
};
template <typename EraseType, typename TypeList>
struct EraseAll: public Erase<EraseType, TypeList>
{};
template <typename EraseType, typename ...Tail>
struct EraseAll<EraseType, TypeList<EraseType, Tail...>>
{
typedef typename EraseAll<EraseType, TypeList<Tail...>>::List List;
};
template <typename EraseType, typename Head, typename ...Tail>
struct EraseAll<EraseType, TypeList<Head, Tail...>>
{
typedef typename Prefix<
Head,
typename EraseAll<EraseType, TypeList<Tail...>>::List
>::List List;
};
Here is a statement showing how EraseAll can be used:
cout <<
"After erasing size_t from "
"TypeList<char, int, size_t, double, size_t>\n"
"it contains " <<
EraseAll<size_t,
TypeList<char, int, size_t, double, size_t>
>::List::size << " types\n";
23.10.5.4: Erasing duplicates
To remove all duplicates from a TypeList all the TypeList's first elements must be erased from the TypeList's tail, applying the procedure recursively to the TypeList's tail. The algorithm, outlined below, merely expects a TypeList:
template <typename TypeList>
struct EraseDup;
template <>
struct EraseDup<TypeList<>>
{
typedef TypeList<> List;
};
template <typename Head, typename ...Tail>
struct EraseDup<TypeList<Head, Tail...>>
{
typedef typename EraseDup<TypeList<Tail...>>::List UniqueTail;
typedef typename Erase<Head, UniqueTail>::List NewTail;
typedef typename Prefix<Head, NewTail>::List List;
};
Here is an example showing how EraseDup can be used:
cout <<
"After erasing duplicates from "
"TypeList<double, char, int, size_t, int, double, size_t>\n"
"it contains " <<
EraseDup<
TypeList<double, char, int, size_t, int, double, size_t>
>::List::size << " types\n";
23.11: Using a TypeList
In the previous sections the definition and some of the features of typelists were discussed. Most C++ programmers consider typelists both exciting and an intellectual challenge, honing their skills in the area of recursive programming.
But there's more to typelist than a mere intellectual challenge. In the final sections of this chapter the following topics are covered:
Again, much of the material covered by these sections was inspired by Alexandrescu's (2001) book.
23.11.1: The Wrap and Multi class templates
To illustrate template meta programming concepts the template class Multi is now developed. The class template Multi creates a new class from a template template parameter Policy defining the data storage policy and a series of types from which Multi is eventually derived. It does so by passing its template parameters to its base class MultiBase that in turn creates a final class inheritance tree. Since we don't know how many types are going to be used Multi is defined as a variadic class template using a template pack ...Types.
In fact, the types that are specified with Multi aren't that interesting. They primarily serve to `seed' the class Policy. Therefore, rather than forwarding Multi's types to MultiBase they are passed to Policy and the sequence of Policy<Type> types is then forwarded to MultiBase. Multi's constructor expects initialization values for its various Policy<Type>s which are perfectly forwarded to MultiBase.
The class Multi (implementing its constructor in-class to save some space) shows how a template pack can be wrapped into a policy. Here is Multi's definition:
template <template <typename> class Policy, typename ...Types>
struct Multi: public MultiBase<0, Policy<Types>...>
{
typedef TypeList<Types...> PlainTypes;
typedef MultiBase<0, Policy<Types>...> Base;
enum { size = PlainTypes::size };
Multi(Policy<Types> &&...types)
:
MultiBase<0, Policy<Types>...>(
std::forward<Policy<Types>>(types)...)
{}
};
Unfortunately, the design as described contains some flaws.
template <class Type>Now Vector provides std::vector's second parameter using its default template argument. Alternatively, a template using declaration could be used.
struct Vector: public std::vector<Type>
{
Vector(std::initializer_list<Type> iniValues)
:
std::vector<Type>(iniValues)
{}
};
There is one major source of annoyance...: you cannot use it when you have duplicate types in your TypeList.
.... There is no easy way to solve the ambiguity, [as the eventually derived class/FBB] ends up inheriting [the same base class/FBB] twice.
There is a way around the problem of duplicate base class types. If instead of inheriting directly from base classes these base classes are first wrapped in unique type defining classes, then these unique classes can be used to access the base classes using principles of inheritance. As these unique type-defining wrapper classes are merely classes that are derived from the `real' base classes they inherit (and thus: offer) the functionality of their base classes. A unique type defining wrapper class can be designed after the class IntType, defined earlier. The wrapper class we're looking combines class derivation with the uniqueness offered by IntType. The class template UWrap has two template parameters: one non-type parameter idx and one type parameter. By ensuring that each UWrap definition uses a unique idx value unique class types are created. These unique class types are then used as base classes of the derived class MultiBase:
template <size_t nr, typename Type>
struct UWrap: public Type
{
UWrap(Type const &type)
:
Type(type)
{}
};
Using UWrap it's easy to distinguish, e.g., two vector<int> classes: UWrap<0, vector<int>> could refer to the first vector<int>, UWrap<1, vector<int>> to the second vector.
Uniqueness of the various UWrap types is assured by the class template MultiBase as discussed in the next section.
It must also be possible to initialize a Multi class object. Its constructor therefore expects the initialization values for all its Policy values. So if a Multi is defined for Vector, int, string then its constructor can receive the matching initialization values. E.g.,
Multi<Vector, int, string> mvis({1, 2, 3}, {"one", "two", "three"});
23.11.2: The MultiBase class template
The class template MultiBase is Multi's base class. It defines a class that, eventually, is derived from the list of Policy types that, in turn, were created by Multi using any additional types that were passed to it.
MultiBase itself has no concept of a Policy. To MultiBase the world appears to consist of a simple template pack whose types are used to define a class from. In addition to the PolicyTypes template pack, MultiBase also defines a size_t nr non-type parameter that is used to create unique UWrap types. Here is MultiBase's generic class declaration:
template <size_t nr, typename ...PolicyTypes>
struct MultiBase;
Two specializations handle all possible MultiBase invocations. One specialization is a recursive template. This template handles the first type of MultiBase's template parameter pack and recursively uses itself to handle the remaining types. The second specialization is invoked once the template parameter pack is exhausted and does nothing. Here is the definition of the latter specialization:
template <size_t nr>
struct MultiBase<nr>
{};
The recursively defined specialization is the interesting one. It performs the following tasks:
An illustration showing the layout of the MultiBase class hierarchy is provided in figure 29.
Figure 29: Layout of a MultiBase class hierarchy
MultiBase's constructor simply receives the initialization values that were (originally) passed to the Multi object. Perfect forwarding is used to accomplish this. MultiBase's constructor passes its first parameter value to its UWrap base class, also using perfect forwarding. MultiBase's recursive definition is:
template <size_t nr, typename PolicyT1, typename ...PolicyTypes>
struct MultiBase<nr, PolicyT1, PolicyTypes...> :
public UWrap<nr, PolicyT1>,
public MultiBase<nr + 1, PolicyTypes...>
{
typedef PolicyT1 Type;
typedef MultiBase<nr + 1, PolicyTypes...> Base;
MultiBase(PolicyT1 && policyt1, PolicyTypes &&...policytypes)
:
UWrap<nr, PolicyT1>(std::forward<PolicyT1>(policyt1)),
MultiBase<nr + 1, PolicyTypes...>(
std::forward<PolicyTypes>(policytypes)...)
{}
};
23.11.3: Support templates
The Multi class template defines PlainTypes as the TypeList holding all the types of its parameter pack. Each MultiBase derived from a UWrap type also defines a type Type representing the policy type that was used to define the UWrap type and a type Base representing the type of its nested MultiBase class.
These three type definitions allow us to access the types from which the Multi object was created as well as the values of those types.
The class template typeAt, is a pure template meta program class template (it has no run-time executable code). It expects a size_t idx template argument specifying the index of the policy type in a Multi type object as well as a Multi class type. It defines the type Type as the Type defined by Multi's MultiBase<idx, ...> base class. Example:
typeAt<0, Multi<Vector, int, double>>::Type // Type is vector<int>
The class template typeAt defines (and uses) a nested class template PolType doing all the work. PolType's generic definition specifies two template parameters: an index used to specify the index of the requested type and a typename initialized by a MultiBase type argument. PolType's recursive definition recursively reduces its index non-type parameter, passing the next base class in MultiBase's inheritance tree to the recursive call. As PolType eventually defines the type Type to be the requested policy type the recursive definition defines its Type as the type defined by the recursive call. The final (non-recursive) specialization defines the initial policy type of the MultiBase type as Type. Here is typeAt's definition:
template <size_t index, typename Multi>
class typeAt
{
template <size_t idx, typename MultiBase>
struct PolType;
template <size_t idx,
size_t nr, typename PolicyT1, typename ...PolicyTypes>
struct PolType<idx, MultiBase<nr, PolicyT1, PolicyTypes...>>
{
typedef typename PolType<
idx - 1, MultiBase<nr + 1, PolicyTypes...>>::Type Type;
};
template <size_t nr, typename PolicyT1, typename ...PolicyTypes>
struct PolType<0, MultiBase<nr, PolicyT1, PolicyTypes...>>
{
typedef PolicyT1 Type;
};
public:
typeAt(typeAt const &) = delete;
typedef typename PolType<index, typename Multi::Base>::Type Type;
};
The types specified by Multi's parameter pack can also be retrieved using a second helper class template: plainTypeAt. Example:
plainTypeAt<0, Multi<Vector, int, double>>::Type // Type is int
The class template plainTypeAt uses a comparable (but simpler) implementation than typeAt. It is also a pure template meta program class template defining a nested class template At. At is implemented like typeAt but it visits the types of the original template pack that was passed to Multi, and made available by Multi as its PlainTypes type. Here is plainTypeAt's definition:
template <size_t index, typename Multi>
class plainTypeAt
{
template <size_t idx, typename List>
struct At;
template <size_t idx, typename Head, typename ...Tail>
struct At<idx, TypeList<Head, Tail...>>
{
typedef typename At<idx - 1, TypeList<Tail...>>::Type Type;
};
template <typename Head, typename ...Tail>
struct At<0, TypeList<Head, Tail...>>
{
typedef Head Type;
};
public:
plainTypeAt(plainTypeAt const &) = delete;
typedef typename At<index, typename Multi::PlainTypes>::Type Type;
};
Arguably the neatest support template is get. This is a function template defining size_t idx as its first template parameter and typename Multi as its second template parameter. The function template get defines one function parameter: a reference to a Multi, so it can deduce Multi's type by itself. Knowing that it's a Multi, we reason that it is also a UWrap<nr, PolicyType> and therefore also a PolicyType, as the latter class is defined as a base class of UWrap.
Since class type objects can initialize references to their base classes the PolicyType & can be initialized by an appropriate UWrap reference, which in turn can be initialized by a Multi object. Since we can determine PolicyType using TypeAt (note that evaluating typename typeAt<idx, Multi>::Type is a purely compile-time matter), the get function can very well be implemented inline by a single return statement:
template <size_t idx, typename Multi>
inline typename typeAt<idx, Multi>::Type &get(Multi &multi)
{
return static_cast<
UWrap<idx, typename typeAt<idx, Multi>::Type> &>(multi);
}
The intermediate UWrap cast is required to disambiguate between identical policy types (like two vector<int> types). As UWrap is uniquely determined by its nr template argument and this is the number argument that is passed to get ambiguities can easily be prevented.
23.11.4: Using Multi
Now that Multi and its support templates have been developed, how can a Multi be used?
A word of warning is in place. To reduce the size of the developed classes they were designed in a minimalist way. For example, the get function template cannot be used with Multi const objects and there is no default, or move constructor available for Multi types. Multi was designed to illustrate some of the possibilities of template meta programming and hopefully Multi's implementation served that purpose well. But can it be used? If so, how?
This section provides some annotated examples. They may be concatenated to define a series of statements that could be placed in a main function's body, which would result in a working program.
template <typename Type>
struct Policy
{
Type d_type;
Policy(Type &&type)
:
d_type(std::forward<Type>(type))
{}
};
Policy defines a data member and it can be used to define Multi objects:
Multi<Policy, string> ms{ Policy<string>{ "hello" } };
Multi<Policy, string, string> ms2s{ Policy<string>{ "hello" },
Policy<string>{ "world" } };
typedef Multi<Policy, string, int> MPSI;
MPSI mpsi{ string{ "hello" }, 4 };
cout << "There are " << MPSI::size << " types in MPSI\n"
"There are " << mpsi.size << " types in mpsi\n";
plainTypeAt<0, MPSI>::Type sx = "String type";
plainTypeAt<1, MPSI>::Type ix = 12;
cout << static_cast<Policy<string> &>(mpsi).d_type << '\n' <<
static_cast<Policy<int> &>(mpsi).d_type << '\n';
typedef Multi<Policy, int, int> MPII;
MPII mpii{ 4, 18 };
cout << get<0>(mpii).d_type << ' ' << get<1>(mpii).d_type << '\n';
typedef Multi<Vector, int, double> MVID;
MVID mi{ {1, 2, 3}, {1.2, 3.4, 5.6, 7.8} };
typeAt<0, Multi<Vector, int>>::Type vi = {1, 2, 3};
cout << get<0>(mi)[2] << '\n';
get<1>(mi)[3] = get<0>(mi)[0];
cout << get<1>(mi)[3] << '\n';
23.12: Expression Templates
Assume we are processing std::vector objects. Vectors may be assigned to each other, but that's about it. We've seen (cf. section 12.4.2) that its member functions tend to operate on the current vector, but arithmetic operations like addition, subtraction, multiplication and the like cannot be applied to pairs of vectors.
Implementing the, e.g., addition operator for vectors is not difficult. If VecType is our vector type, then implementing free functions like VecType &&operator+(VecType const &lhs, VecType const &rhs) and VecType &&operator+(VecType &&lhs, VecType const &rhs) performing the additions is a simple exercise (cf. chapter 11).
Now consider an expression like one + two + three + four. It takes four steps to compute this sum: first, tmp = one is computed, creating the eventual return value. The vector tmp becomes the eventual return value. Once it is available tmp += two is computed, followed by tmp += three, and finally by tmp += four (of course we shouldn't implement std::vector::operator+= as the std namespace is off-limits to us, and we shouldn't derive a class from std::vector offering operator+= according to Liskov's Substitution Principle (cf. section 14.7), but we could get around that. Here we simply assume operator+= is available).
Here's how we might implement operator+= for VecType:
VecType &VecType::operator+=(VecType const &rhs)
{
for (size_t idx = 0, end = size(); idx != end; ++idx)
(*this)[idx] += rhs[idx];
return *this;
}
Consider this implementation: once we add VecType objects and such objects have N elements then we have to perform 2 * N index evaluations. When adding k VecType objects this adds up to 2 * N * k index expression evaluations (as eventually we also have to assign the elements of the resulting temporary object to the destination object): lots of index expression evaluations.
If instead we could manage to perform the evaluations `row by row', we would only have to access each vector element only once (which in particular applies to the temporary object). In that case, when adding k objects, assigning the sums of their respective elements to a destination vector we have to compute N * (k + 1) index expressions (`k' for each of the vectors, `1' for the destination vector).
For k == 1 the two methods are equally efficient in terms of index computations. But that's not addition, that is assignment. So when adding any number of vectors, assigning their sum to a destination vector using expression templates is more efficient than the ordinary implementation of the addition operator. We'll have a look at the design and implementation of expression templates in the coming sections.
23.12.1: Designing an Expression Template
As we've seen, when using a standard implementation of an expression like one + two + three + four, where the objects are vectors having n elements, then if we have k vectors we have to perform a total of k * 2 * n index evaluations.
Expression templates allow us to avoid many of these evaluations. When using expression templates these templates may access the vectors, but their elements are not accessed during addition operations.
Assuming our expression template is named ET, and we want to add one + two + three, then the first + operator merely creates ET(one, two). Note that no addition is actually performed, ET merely stores (constant) references to one (becoming ET's lhs data member) and two (becoming ET's rhs data member). In general, ET stores references to the two arguments that are passed to its constructor.
At the next addition operator another ET is created. Its constructor arguments are, respectively, the ET object that has just been constructed for one and two, and the vector three. Again, no addition is performed by the ET objects.
This algorithm easily generalizes to any number of vectors. Parentheses can also be used. E.g., (one + two) + (three + four) results in
ET(ET(one, two), ET(three, four))
Presumably, at some point we want to obtain the sum of the vectors. For this the expression template is provided with a conversion operator, converting the ET object to a vector, or maybe an assignment operator doing the same.
The conversion operator looks like this:
operator ET::VecType() const
{
VecType retVal;
retVal.reserve(size());
for (size_t ix = 0, end = size(); ix != end; ++ix)
new(&retVal[ix]) value_type((*this)[ix]);
return retVal;
}
Placement new is used for efficiency reasons: there's no need to initialize retVal with default values first. The really interesting part, however, is hidden behind the (*this)[idx] expression: at this point the real addition takes place.
ET's index operator simply adds the values returned by the corresponding index expressions of its lhs and rhs data members. If a data member refers to a vector then the corresponding vector element is used, adding it to the other data member's value. If a data member itself refers to an ET object, then that nested ET object's index operator performs the same addition on its own data members, returning their sum. So, an expression like (*this)[0] returns first[0] + second[0] + third[0], and the computed sum is then stored in retVal[0] using placement new.
In this case the required number of index expression evaluations are n * k (for the n elements of the k vectors) plus n (for the n elements of retVal, adding up to (k + 1) * n).
Since (k + 1) * n < 2 * k * n for k > 1 expression templates evaluate the requested addition more efficiently than the traditional implementation of operator+. An additional benefit of using expression templates is that they do not create additional temporary vector objects when parenthesized expressions are used.
23.12.2: Implementing an Expression Template
In this section we use a typedef std::vector<int> IntVect to illustrate the construction of an expression template.
Starting point is a simple main function, in which several IntVect objects are added. E.g.,
int main()
{
IntVect one;
IntVect two;
IntVect three;
IntVect four;
// ... assume the IntVects somehow receive values
four = one + two + three + four;
}
At this point the code does not suggest that expression templates are going to be used. However, operator+'s implementation is special: it's a template merely returning an object constructed by operator+:
template<typename LHS, typename RHS>
BinExpr<LHS, RHS, plus> operator+(LHS const &lhs, RHS const &rhs)
{
return BinExpr<LHS, RHS, plus>{ lhs, rhs };
}
Our expression template is called BinExpr. It has three template type parameters: two object types and a template template parameter performing the requested operation. Its declaration looks like this:
template<typename LHS, typename RHS, template<typename> class Operation>
struct BinExpr;
Since LHS and RHS can either be the data type that is processed by the expression template, or a BinExpr two different typenames are required. Operation is the operation that is performed by the expression template. By using a template template parameter we can use BinExpr to perform any operation we want, not just addition. Predefined function templates like std::plus can be used for the standard arithmetic operators; for other operators we can define our own function templates.
BinExpr's constructor initializes constant references to lhs and rhs. Its in-class implementation is
BinExpr(LHS const &lhs, RHS const &rhs)
:
d_lhs(lhs),
d_rhs(rhs)
{}
To retrieve the resulting IntVect a conversion operator is defined. We already encountered its implementation (in the previous section). Here is it, as an in-class implemented BinExpr member:
operator ObjType() const
{
ObjType retVal;
retVal.reserve(size());
for (size_t idx = 0, end = size(); idx != end; ++idx)
new(&retVal[idx]) value_type((*this)[idx]);
return retVal;
}
We return to the type ObjType below. At this point it can be considered an IntVect. The member size() simply returns d_lhs.size(): in any sequence of IntVect additions LHS eventually is an IntVect, and so every BinExpr defines a valid size() like so:
size_t size() const
{
return d_lhs.size();
}
The only remaining member to implement is operator[]. Since it receives an index, it only needs to perform the requested operation on the corresponding index elements of its d_lhs and d_rhs data members. The beauty of expression templates is that if either one itself is a BinExpr that expression template in turn calls its operator[], eventually performing the requested operation on all corresponding elements of all IntVect objects. Here is its implementation:
value_type operator[](size_t ix) const
{
static Operation<value_type> operation;
return operation(d_lhs[ix], d_rhs[ix]);
}
This implementation uses another type: value_type which is the type of the elements of the vector type that is processed by the expression template. Like ObjType before, its definition is covered below. The static data member operation simply is an instantiation of the Operation type that is specified when constructing an ExprType object.
In the next section we take a closer look at ObjType and value_type.
23.12.3: The BasicType trait class and ordering classes
The BinExpr expression template needs to be aware of two types before it can instantiate objects. First, ObjType must be known, as this is the type of object that is handled by the expression template. ObjType objects contain values, and we require that the type of these values can be determined as ObjType::value_type. E.g., for our IntVect data type value_type is int.
In expressions like one + two + three, the BinExpr expression template receives two IntVect objects. This is always true: the BinExpr that is first constructed receives two IntVect objects. In this case ObjType is simply LHS, and ObjType::value_type is also available: either value_type is already defined by LHS or BinExpr requires that it defines type value_type.
Since arguments to BinExpr objects are not always of the basic ObjType type (BinExpr objects at the next nesting level receive at least one BinExpr argument) we need a way to determine ObjType from a BinExpr. For this we use a trait class. The trait class BasicType receives a typename template argument, and equates its type ObjType to the received template type argument:
template<typename Type>
struct BasicType
{
typedef Type ObjType;
};
A specialization handles the case where Type in fact is a BinExpr: template<typename LHS, typename RHS, template<typename> class Operation>
template<typename LHS, typename RHS, template<typename> class Operation>
struct BasicType<BinExpr<LHS, RHS, Operation>>
{
typedef typename BinExpr<LHS, RHS, Operation>::ObjType ObjType;
};
Since BinExpr requires that ObjType::value_type is a defined type, value_type has automatically been taken care of.
As BinExpr refers to BasicType and BasicType refers to BinExpr somewhere we must provide a forward declaration. As BinExpr's declaration has already been provided, we start with that declaration, resulting in:
BinExpr's declaration
BasicType's definition
BasicType's specialization (for BinExpr)
template<typename LHS, typename RHS, template<typename> class Operation>
class BinExpr
{
LHS const &d_lhs;
RHS const &d_rhs;
public:
typedef typename BasicType<RHS>::DataType DataType;
typedef typename DataType::value_type value_type;
// all BinExpr member functions
};
23.13: Concepts
C++ is a strongly typed language: a function add(int lhs, int rhs) doesn't accept std::string arguments, even though the actual operations (lhs + rhs) are identical for ints and strings.
Templates were introduced so we could design recipes for the compiler, allowing it to construct type-safe overloaded versions of functions and classes while keeping their type-safety.
A basic addition function template adding two values looks like this:
template <typename Type>
Type add(Type const &lhs, Type const &rhs)
{
return lhs + rhs;
}
When this function template is called with arguments of types that do not support operator+ then the compiler notices this, and it will generate an error. E.g., when calling
add(std::cerr, std::cout);
the g++ compiler produces some 140 lines of error messages. It notices that there's no operator+ for std::ostream objects, and then tells us what else we might have done (like adding two ints), and where the construction of the add function that should accept std::ostream arguments went wrong. In fact, 140 lines of error messages is rather benign. Getting several hundreds of lines is quite common, and sometimes the location of the error isn't mentioned at the top but somewhere near the end of the error message output.
The C++2a standard introduced concepts allowing us to specify requirements for template types. When applying an appropriate concept to the definition of the add function template the compiler immediately pinpoints the error, telling us where and why the error occurred in some 15 instead of 140 lines of error messages.
The reduction of the number of lines of error messages by itself is a boon. But the fact that concepts allow us to consciously develop our templates, realizing what the precise requirements are for their use, is at least as important: it improves the template's documentation, and thus our understanding of templates.
Concepts may be considered the template's answer to the philosphy that lies behind a strongly typed language. By applying concepts to templates we can specify type-requirements rather than using the traditional `shotgun empiricism' approach where templates are bluntly used, knowing that the compiler will complain if things are incorrect. In that sense concepts provide type definitions of types. Concepts have names and can (among other) be used in template headers where the concept names replace the traditional typename keywords.
As an opening illustration, assume that a concept Addable exists specifying that operator+ must have been defined for the template's type. The above function template add can now be formulated as:
template<Addable Type>
Type add(Type const &lhs, Type const &rhs)
{
return lhs + rhs;
}
From now on every type that is actually passed to add must be satisfy the Addable requirements. Here are two expressions using add:
add("first"s, "second"s); // (1)
add(map<int, int>{}, map<int, int>{}); // (2)
Expression (1) flawlessly compiles as string objects can be added; expression (2) fails with the compiler reporting something like
error: use of function `Type add(const Type&, const Type&)
[with Type = std::unordered_map<int, int>]' with unsatisfied constraints
add(unordered_map<int, int>{}, unordered_map<int, int>{});
note: constraints not satisfied
Type add(const Type&, const Type&)
...
note: the required expression `(lh + rh)' is invalid
The error message's final `note' clearly states the cause of the problem: you can't add maps.
The difference between the compiler's report using concepts and not using concepts again is impressive. When using the traditional typename Type specification in the template header the compiler produces some 17 kB of error messages, spread out over more than 200 lines.
In the following sections we cover how concepts are defined, what kind of requirements can be formulated, and how they can be used in practice.
23.13.1: Defining concepts
As a prelude before actually looking at how concepts are defined it is noted that concept names, like class names, type names, function names, and variable names should suggest their purposes. Don't name a concept `Constraint' or `Concept', but use names like `Addable' and `HasValueType'.
Concepts are templates. They start with a template header (the template headers shown in the examples define a single template type parameter, but multiple template parameters are also used).
In the previous section we used the concept Addable. Here is how it can be defined:
template <typename Type>
concept Addable =
requires(Type lh, Type rh)
{
lh + rh;
};
The concept's template header is followed by the keyword concept, the concept's name, and the assignment operator. Following the assignment operator requirement specifications are provided.
Semicolons end concept definitions. This concept uses a simple requirement (cf. section 23.13.2.1) indicating that operator+ must have been defined for Addable templates' types.
Requirements come in many forms. A very simple form consists of just a bool value, which is sometimes useful when developing a concept. Such a concept looks like this:
template <typename Type>
concept IsTrue =
true;
But in most situations requires specifications are used. They resemble function definitions having parameter lists optionally defining variables of the types that specified in the concept's template header and compound statements specifying requirements.
Concepts are never instantiated. They are used compile-time to verify that template types satisfy the imposed requirements. Thus there's no need to use refererences in parameter lists of requires specifications. The concept Addable simply uses
requires(Type lh, Type rh)
and there's no need to specify
requires(Type const &lh, Type const &rh)
(That is, usually there is no need for this. In section 23.13.2.4 we encounter a situation where a more specific parameter definition might be appropriate.)
Here are two examples of templates using concept Addable. The first example uses Addable instead of typedef when specifying the template header, the second example appends the concept specification to the template header itself:
template<Addable Type>
Type add2(Type const &x, Type const &y)
{
return x + y;
}
template<typename Type>
requires Addable<Type>
Type add(Type const &x, Type const &y)
{
return x + y;
}
Template declarations using concepts are specified accordingly. Simply replace the function template's body by a semicolon.
Concepts may also be defined by extending or combining existing concepts. Nesting concepts is covered in section 23.13.2.4.
Although concepts are templates, they cannot be specialized. If a concept should recognize specializations then these specializations must be handled by the concepts' definitions. Section 23.13.2.3 for an illustration
23.13.2: Requirements
The bodies of requires declarations contain define constraints to apply to template parameters. There are four types of requirements:
Constraints must be compile-time verifiable.
When multiple constraints are specified, they must all be compile-time verifiable, and an actual type is only accepted by the compiler if all requirements could be satisfied.
23.13.2.1: Simple requirements
We've already encountered various examples of simple requirements: they specify the operations that must be supported by the variable(s) declared in the parameter lists of requires specifications. When the requirements refer to single variables single Type parameters suffice; when requirements involve different types then the concept's template head declares those different types and the requires parameter list will usually define variables of those different types. The concept BasicMath specifies two types, and uses four simple requirements to specify the four basic arithmetic operations:
template <typename LhsType, typename RhsType>
concept BasicMath =
requires(LhsType lhs, RhsType rhs)
{
lhs + rhs; // addition must be available
lhs - rhs; // subtraction must be available
lhs * rhs; // multiplication must be available
lhs / rhs; // division must be available
};
Specifying constraints does not necessarily mean that the constraints as specified literally apply to run-time situations. To require the existence of the index operator the following simple requirement can be used:
template <typename Type>
concept HasIndex =
requires(Type tp)
{
tp[0];
};
template <HasIndex Type>
auto idx(Type const &obj, size_t idx)
{
return obj[idx];
}
Here the stand-in argument 0 is used to specify the index operator's argument. The argument value used in the simple requirement really is a stand-in. The following code fragment compiles, as string supports the index operator. Athough argument 0 is used in the simple requirement specification the argument 5 is in fact being used:
string str;
idx(str, 5);
Other than int index types can be specified analogously. Here is an example showing how to define and use a concept HasStrIndex requiring the availability of std::string arguments of index operators:
template <typename Type>
concept HasStrIndex =
requires(Type tp)
{
tp[std::string{}];
};
template <HasStrIndex Type>
auto value(Type &obj, std::string const &key)
{
return obj[key];
}
int main()
{
std::map<std::string, double> msd;
value(msd, "hi");
}
23.13.2.2: Type requirements
Sometimes templates must use sub-types of template types. Examples are templates assuming the existence of iterator (like vector<int>::iterator) or value_type which is used when calling std::push_back.
To specify that a sub-type must be available the concept's requires specification needs no parameters, but can directly refer to the subtype. It's also possible to combine type requirements with requirements that do define a non-empty parameter list, and so the requires's parameter list does not have to be empty. Here is a concept that specifies a plain type requirement:
template <typename Type>
concept HasValueType =
requires()
{
typename Type::value_type;
};
and here's a concept that combines a simple requirement with a type requirement:
template <typename Type>
concept Iteratable =
requires(Type tp)
{
typename Type::iterator;
tp.begin();
};
template <Iteratable Type>
auto iter(Type const &obj)
{
return obj.begin();
}
Calling iter with a string argument succeeds, calling it with a queue argument results in two error notes: no Type::iterator and no tp.begin().
Types specified in type requirements don't necessarily have to refer to types. They may also specify be the names of nested classes or enumerations defined by Type. When specifying enumerations they do not have to be strongly typed.
23.13.2.3: Compound requirements
When return types of operations must satisfy certain requirements then compound requirements should be used. Compound requirements define type constraints on expressions embedded in compound statements. The C++2a standard defines several concepts that can be used to specify such requirements (see also section 23.13.3 below). Here is an example:
template <typename Type, typename ReturnType>
concept Return =
requires(Type par)
{
// par[..] must return a `ReturnType'
{ par[0] } -> std::same_as<ReturnType>;
};
This concept can now be used to specify requirements of template type parameters. E.g.,
template <typename Type, typename RetType>
requires Return<Type, RetType>
Ret fun(Type tp)
{
return tp[0];
}
Here arguments passed to fun must satify two requirements:
You may have noticed that the std::same_as concept receives only one template type argument, which (as if by magic) compares it with the type returned by the par[0] expression. When peeking at the available concepts in section 23.13.3 you will see that several of those concepts in fact define two template type parameters. When these concepts are used in compound requirements then the compiler passes the deduced type of the expression in the concept's compound statement (so that's the type of par[0] in the above example) to the concept's first type, and passes the explicitly specified type to the concept's second type.
Knowing this we can define our own concepts to use in compound expressions. We may define our own same_as concept as follows, using a separate class template SameTypes. SameTypes defines a bool value `value' which is used to decide about the concept's requirement. The class template SameTypes uses a specialization to handle the situation where both types are equal. Note that concepts themselves cannot be specialized:
template <typename Lhs, typename Rhs>
struct SameTypes // generic: any two types
{
static bool const value = false;
};
template <typename Lhs>
struct SameTypes<Lhs, Lhs> //specialization: equal types
{
static bool const value = true;
};
template<typename Compound, typename Specified>
concept Same = SameTypes::value;
Now the concept Same can be used instead of std::same_as by merely specifying the required type:
template <typename Type, typename ReturnType>
concept Return =
requires(Type par)
{
// par[..] must return a `ReturnType'
{ par[0] } -> Same<ReturnType>;
};
Although in this case it isn't important which actual type is used as argument for which concept type parameter, the compiler specifies the compound expression's type as template argument for Same's Compound parameter whereas ReturnType is used as template argument for Same's Specified parameter.
Multiple type requirements can be specified by providing multiple compound requirements as in the following example:
template <typename Type>
concept MultiArgs =
requires(Type lhs, Type rhs)
{
{ lhs + rhs } -> std::same_as<Type>;
{ lhs += rhs } -> std::same_as<Type &>;
{ lhs.c_str() } -> std::same_as<char const *>;
};
If it is required that the compound operation doesn't throw exceptions then noexcept can be written immediately following the compound requirement's late return type arrow (->). The noexcept specification itself may then optionally be followed by a type constraint.
Finally, the late return type specifications itself is optional, in which case the compound requirement acts like a simple requirement: it requires the existence of the expression that's specified in the compound statement. In this case: don't forget to add the semicolon following the closing parenthesis of the compound requirement:
template <typename Type>
concept Increment =
requires(Type par)
{
{ ++par };
// same as:
++par;
};
23.13.2.4: Nested requirements
Concepts can be nested. Being able to nest concepts is very useful as it allows us to hierarchically order concepts and to define concepts in terms of existing concepts.
In chapter 18 iterators were introduced (section 18.2). Commonly five conceptually different iterator types are distinguished:
Figure 30: Concept Hierarchy
All iterator types support (in)equality checks and increment operators. Thus, at the basis of all iterators we find the requirements that iterators must be comparable and incrementable. Concepts covering those requirements are easily constructed (see also figure 30):
template <typename Type>
concept Comparable =
requires (Type lhs, Type rhs)
{
lhs == rhs;
lhs != rhs;
};
template <typename Type>
concept Incrementable =
requires (Type type)
{
++type;
type++;
};
Note that no type is specified following the lhs == rhs and lhs != rhs requirements, as those types are implied by their operators.
Two more concepts are defined: one allowing dereferencing pointers returning constant references and one returning modifiable references. To allow the compiler to verify those requirements we also implicitly require the (commonly encountered) existence of typename Type::value_type:
template <typename Type>
concept Dereferenceable =
requires(Type type)
{
{ *type } -> std::same_as<typename Type::value_type &>;
};
template <typename Type>
concept ConstDereferenceable =
requires(Type type)
{
{ *type } -> std::same_as<typename Type::value_type const &>;
};
Not much of a hierarchy so far, but that changes now that we're about to define concepts for iterators.
An input iterator is an iterator that is comparable, incrementable and const-dereferenceable. For each of these requirements concepts were defined which can be combined using boolean operators when defining the concept InIterator. Note that template type parameters of concepts must use the typename keyword. Concepts' template parameters cannot be constrained by specifying them in terms of existing concepts (which is possible when defining function and class templates).
Here is the definition of the concept InIterator. The function template inFun (below the concept InIterator) illustrates how a constrained template parameter type can be specified in template headers:
template <typename Type>
concept InIterator =
Comparable<Type> and Incrementable<Type> and
ConstDereferenceable<Type>;
template <InIterator Type>
void inFun(Type tp)
{}
The concept for output iterators (and its use, as in the function template outFun) is defined analogously. This time requiring dereferenceable types rather than const-dereferenceable types:
template <typename Type>
concept OutIterator =
Comparable<Type> and Incrementable<Type> and
Dereferenceable<Type>;
template <OutIterator Type>
void outFun(Type tp)
{}
For forward iterators the concept FwdIterator is defined. A forward iterator combines the characteristics of input and output iterators, and we may want to define a forward iterator by requiring the requirements of the InIterator and OutIterator concepts.
However, there's a slight problem. The following class (struct) defines const and non-const dereference operators and may be therefore be passed to functions expecting input or output iterators:
struct Iterable
{
typedef int value_type;
Iterable &operator++();
Iterable operator++(int);
int const &operator*() const;
int &operator*();
};
bool operator==(Iterable const &lh, Iterable const &rh);
bool operator!=(Iterable const &lh, Iterable const &rh);
int operator-(Iterable const &lh, Iterable const &rh);
But when a function template requires ConstDerefenceable arguments then the compiler notices that the overloaded member int &operator*() doesn't return an int const &. Even though int const &operator*() const is available compilation fails. This problem can be solved in two ways: noting that an int & can be converted to an int const & the predefined concept std::convertible_to instead of std::same_as can be used in ConstDereferenceable; alternatively its requires clause can specify Type const &type instead of just Type type. Here is a definition of ConstDereferenceable that, when defining the concept FwdIter, can be used in combination with Dereferenceable:
template <typename Type>
concept ConstDereferenceable =
requires(Type const &type)
{
{ *type } -> std::same_as<typename Type::value_type const &>;
};
The final two iterator types pose no problems: the concept BiIterator requires the constraints of the concept FwdIterator as well as decrement operators, and finally the concept RndIterator requires the constraints of BiIterator and in addition iterator increments decrements for any step size as well as the possibility to subtract iterators:
template <typename Type>
concept BiIterator =
FwdIterator<Type> and
requires(Type type)
{
--type;
type--;
};
template <typename Type>
concept RndIterator =
BiIterator<Type>
and
requires(Type lhs, Type rhs)
{
lhs += 0;
lhs -= 0;
lhs + 0;
lhs - 0;
{ lhs - rhs } -> std::same_as<int>;
};
23.13.3: Predefined concepts
In the previous section we covered defining concept requirements. When specifying some of the requirements already available concepts were used, like std::same_as. The C++2a standard provides some 30 predefined concepts which may be used to specify type requirements, to specify conversion requirements, and to specify more advanced requirements, sometimes accepting variadic template parameters. The currently predefined concepts are covered in the following subsections.
23.13.3.1: Concepts specifying one template type parameter
The following concepts specify just one template type parameter. Their generic form is
template <typename Type>
concept Name =
... requirements ...
;
When used in compound requirements only their names have to be specified. For example (using the concept std::boolean (see below)), to require that a function fun receiving an argument of some type Type returns a boolean value, the following concept could be defined:
template<typename Type>
concept BoolFun =
requires(Type param)
{
{ fun(param) } -> std::boolean;
};
23.13.3.2: Concepts specifying two template type parameters
The following concepts define two template type parameters. Their generic form is
template <typename LHS, typename RHS>
concept Name =
... requirements ...
;
When used in compound requirements the compiler deduces the type of the compound expression, and then uses that type as LHS. In the type requirement following the compound statement only the RHS type is specified. For example (using the concept std::same_as (see below)), to require that a function fun, receiving an argument of some type Type, returns a std::string the following concept can be defined:
template<typename Type>
concept StringFun =
requires(Type param)
{
{ fun(param) } -> std::same_as<std::string>;
};
template <typename LHS, typename RHS>
concept CommonRef = std::common_reference_with<LHS, RHS>;
template <typename T1, typename T2>
requires CommonRef<T1, T2>
void fun(T1 &&t1, T2 &&t2)
{}
struct B
{};
struct D1: public B
{
};
int main()
{
fun(4, 'a');
fun(4.5, 'a');
D1 d1;
B b;
fun(b, d1); // objects, rvalue refs:
fun(D1{}, B{}); // all OK
}
template <typename LHS, typename RHS>
concept Convertible =
requires(LHS lhs)
{
{ lhs } -> std::convertible_to<RHS>;
};
template <typename RHS, typename LHS>
requires Convertible<LHS, RHS>
void fun(LHS lhs)
{}
int main()
{ // note: LHS is the <...>'s type
fun<double>(12); // from int to double
fun<int>(12.5); // from double to int
fun<std::string>("a"); // from NTBS to string
// fun<std::string>(12); // constraints not satisfied
}
23.13.3.3: Concepts specifying multiple template type parameters
Most predefined concepts expecting more than two parameters are variadic (cf. section 23.13.4).
template <typename LHS, typename ...Args>
concept Constructible = std::constructible_from<LHS, Args...>;
template <typename T1, typename ...Args>
requires Constructible<T1, Args...>
T1 fun(Args &&...t2)
{
return T1( std::forward<Args>(t2)... );
}
int main()
{
std::string s{ fun<std::string>(5, 'a') };
std::string s2{ fun<std::string>() }; // slightly weird...
}
template <typename Function, typename ...Params>
void fun(Function &&fun, Params &&...params)
requires std::invocable<Function, Params ...>
{
fun(std::forward<Params>(params)...);
}
void hello(int value, char const *txt, std::string const &str)
{
std::cout << value << ' ' << txt << ' ' << str << '\n';
}
int main()
{
fun(hello, 1, "text", "string"); // promotions are still OK
// fun(hello, 1); // WC: not invocable
}
template <typename Container, typename Predicate>
concept Find_ifConcept =
std::predicate<Predicate, typename Container::value_type>
and
requires(Container container)
{
{ container.begin() } -> Iter;
{ container.end() } -> Iter;
{ container.size() } -> std::same_as<size_t>;
};
template <typename Container, typename Predicate>
size_t findIdx_if(Container const &cont, size_t from, Predicate const &pred)
requires Find_ifConcept<Container, Predicate>
{
auto iter = std::find_if(cont.begin() + from, cont.end(), pred);
return iter == cont.end() ? cont.size() : iter - cont.begin();
}
int main()
{
std::cout << "Index at " <<
findIdx_if(std::string{ "hello world" }, 0,
[&](int ch)
{
return ch == ' ';
}
) << '\n';
int target = 4;
fun(
[&](int value)
{
return value == target;
},
4
);
}
In the following example struct Less is a functor comparing the two arguments of its function call operator. Next, the function cmp accepts such a struct type as predicate, verifying that the predicate and the arguments that are passed to the function satisfy the requirements of the std::relation concept. If so the functor's return value is returned.
Finally, in main cmp is first called with int and double arguments (which succeeds) and then with an int and a NTBS arguments: for the second call the constraints are not satisfied as ints and NTBSs can't be compared, and consequently compilation fails:
template <typename LHS, typename RHS>;
struct Less
{
bool operator()(LHS lhs, RHS rhs) const
{
return lhs < rhs;
}
};
template <template<typename LHS, typename RHS> typename Pred,
typename LHS, typename RHS>
bool cmp(LHS lhs, RHS rhs)
requires std::relation<Pred<LHS, RHS>, LHS, RHS>
{
return Pred<LHS, RHS>{}(lhs, rhs);
}
int main()
{
std::cout << cmp <Less>(5, 4.9) << '\n';
std::cout << cmp <Less>(5, "hello world") << '\n';
}
23.13.4: Applying concepts to template parameter packs
As we have seen (cf. section 23.13.3.3) concepts may process template parameter packs. Such concepts are called variadic concepts. When defining concept-protected variadic function or class templates variadic concepts aren't always required. Consider the following function:
template <HasSize ...Types>
void fun(Types &&...obj)
{
sum(std::forward<Types &&>(obj)...);
}
Here we see a variadic template, but it defines all its parameters as constrained types by simply mentioning the concept HasSize instead of just typename. The HasSize concept is very basic: it merely requires that type.size() exists, returning a size_t:
template <typename Types>
concept HasSize =
requires (Types type)
{
{ type.size() } -> std::same_as<size_t>;
};
Once fun has verified that all its argument types satisfy the HasSize requirements no additional checks are necessary. The fun function template merely forwards its arguments to sum, a variadic template, that simply adds the return values of the size() members of its arguments:
size_t sum()
{
return 0;
}
template <typename First, typename ...Types>
size_t sum(First &&first, Types &&...types)
{
return first.size() + sum(std::forward<Types>(types)...);
}
The wrapper function fun isn't really required. The variadic template function summing the various size() values itself can also be defined so that its types themselves must satisfy the HasSize concept. Here is the definition of the variadic function template sum2 requiring precisely that:
size_t sum2()
{
return 0;
}
template <HasSize First, HasSize ...Types>
size_t sum2(First &&first, Types &&...types)
{
return first.size() + sum2(std::forward<Types>(types)...);
}
And here is a main function calling fun and sum2:
int main()
{
fun(queue<int>{}, vector<int>{}, string{});
cout << sum2(queue<int>{}, vector<int>{}, string{}) << '\n';
}
On the other hand, the predefined concept std::constructible_from is a variadic concept, as it accepts a LHS template parameter and a RHS parameter pack. This concept is satisfied if the LHS parameter can be constructed from the types specified in its RHS parameter pack. After including type_trait defining and using such a concept is not very hard:
template <typename Class, typename ...Params>
concept Constructible = std::is_constructible<Class, Params ...>::value;
template <typename Class, typename ...Params>
requires Constructible<Class, Params ...>
void fun(Class &&type, Params &&...params)
{}
The recipe for writing variadic concepts is not very complex:
To use the variadic concept in a function or class template its template parameters are simply forwarded to the concept (as shown in the above example).
When no predefined variadic type trait is available the variadic concept must use other means to determine whether its constraints are satisfied or not. In those cases define your own variadic type traits. For illustration let's assume we are looking for a variadic concept that can be used to verify that the types of all the arguments that are passed to a variadic function template are integral types. In this case there is no predefined type trait we can use, so we have to define it ourselves. We define the concept IntegralOnly as a variadic concept using our self-defined type trait allIntegralTypes, and thereupon use it when defining a function requiring that all of its arguments are integral values:
template <typename ...Types>
concept IntegralOnly = allIntegralTypes<Types ...>::value;
template <IntegralOnly ...Types>
void fun(Types ...types)
{}
The generic type trait allIntegralTypes merely specifies that it accepts any number of type parameters and uses specializations to handle specific cases. One specific case is the case were no types are specified which simply defines a true static bool const value:
template <typename ...Types>
struct allIntegralTypes;
template <>
struct allIntegralTypes<>
{
static bool const value = true;
};
The type trait's partial specialization does the hard work: it determines whether the first type is integral and combines that (using and) with the value made available by the struct allIntegralType receiving the remaining types:
template <typename First, typename ...Types>
struct allIntegralTypes<First, Types ...>
{
static bool const value = std::is_integral<First>::value and
allIntegralTypes<Types ...>::value;
};
The function fun can now be called with any number of arguments. As long as the arguments are integral types the compilation succeeds and fun can safely do its job.
23.13.5: Implementing constrained class members
When defining members of class templates outside of their class interfaces the members' template headers must match the class templates' template headers. This is no different when using concepts.
In the following example the concept Addable is used when defining the class template Data. The class Data declares a member process, implemented below the class interface. Like the class of which it is a member its header must also specify Addable (cf. section 23.13.1):
template <Addable Type>
class Data
{
void process();
};
template <Addable Tp> // The concept must be specified,
void Data<Tp>::process() // but the formal type name
{ // doesn't have to be `Type'
...
}
Comparably, if a class template member function can only be used when a constraint has been satisfied (but no additional constraints apply to other class members), the class template's header can use typename and the (additional) constraint can be tailored to members where applicable:
template <typename Type> // generic template type parameter
class Data
{
void process() requires Addable<Type>; // additional requirement
};
template <typename X>
void Data<X>::process() requires Addable<X>
...
Types of member templates themselves may also be constrained. Here too the rule applies that the template headers of member implementations must match those of their declarations:
template <typename Type>
class Data
{
template <Addable Tp> // constraint applied to
void process(Tp par); // a member template
};
template <typename Type>
template <Addable Tp>
void Data<Type>::process(Tp par)
{
...
}
23.13.5.1: Constrained partial specializations
Class templates can be (partially) specialized. Specializations are commonly used to fine-tune implementations for specific types. Concepts can also be used when specializations are defined. Consider a struct Handler having the following generic implementation:
template <typename Tp>
struct Handler
{
Handler()
{
std::cout << "Generic Handler\n";
}
};
In addition to possibly type-related specializations (like a struct Handler<Tp *> ...) a specialization requiring the availability of the addition operator on Tp can be defined by requiring the concept Addable:
template <Addable Tp> // constrain Tp to addable types
struct Handler<Tp>
{
Handler()
{
std::cout << "Handler for types supporting operator+\n";
}
};
When used in the following program (assuming all required headers were included), the first line of the output shows Generic Handler, while the second line shows Handler for types supporting operator+:
int main()
{
Handler<std::vector<int>>{}; // generic
Handler<int>{}; // specialized
}
The compiler, compiling main's first statement, first looks for a specialized version of Handler. Although it finds one, that specialization requires the availability of operator+. As that operator is not available for std::vector the compiler does not use that specialization. Had this been the only available implementation, then the compiler would have reported a constraints not satisfied error. However, there's still the generic definition which can be used for std::vector. Therefore the compiler uses the generic definition (which is at the same time provides a nice illustration of the SFINAE (cf. section 21.15) principle).
When instantiating the second Handler object the addition operator is available, and so in that case the compiler selects the specialized version: where available, specializations are used; if not, then generic template definitions are used.
23.13.5.2: Function- and class template declarations
Constrained function- or class-templates can be declared as usual: instead of the implementations semicolons are used. When declaring a function- or class-template without constraint specifications then the function or class template is unconstrained and won't match existing constrained overloaded versions of such function or class templates. On the other hand, concepts cannot be declared. So if a concept definition must be used in multiple source or header files then the concept definition normally is provided in a header file of its own which is then included by files using the concept.
Here are some simple examples illustrating how constrained function templates are declared:
template <typename Type> // advice: define concepts in
concept Addable = // separate headers.
requires(Type lh, Type rh)
{
lh + rh;
};
template <typename Type> // declares an unconstrained
void fun(); // function template
template <Addable Type> // declares a constrained overloaded
void fun(); // function template
template <typename Type> // same, requirement follows fun
void fun() requires Addable<Type>;
template <typename Type> // same, requirement precedes fun
requires Addable<Type> void fun();
When declaring class templates their requires-clauses must precede the class names. Also, when unconstrained class templates are available the constrained class templates are in fact specializations and must be declared accordingly:
template <typename Type> // unconstrained
struct Data; // declaration
template <Addable Type> // constrained declaration
struct Data<Type>; // (i.e., a specialization)
// template <typename Type> // same specialization
// requires Addable<Type> struct Data<Type>;
Multiple constraints can also be declared:
template <typename Type> // used concepts
concept C1 = true;
template <typename Type>
concept C2 = true;
template <C1 Type> // multiply constrained
requires C2<Type> void fun(); // function template
template <typename Type> // same, using 'and'
requires C1<Type> and C2<Type> void fun();
template <typename Type> // same, trailing 'requires'
void fun() requires C1<Type> and C2<Type>;
template <typename Type>
struct Multi;
template <C1 Type> // multiply constrained
requires C2<Type> struct Multi<Type>; // class template
Although specializations may define different constraints (e.g., there may also be a concept Subtractable), a Data specialization for subtractable types might also be defined:
template <Subtractable Type>
struct Data<Type>
{};
But this is probably not what you want: when defining Data<vector<int>>{}, where template<typename Type> Data is merely declared, the compiler complains about an incomplete type `struct Data<std::vector<int>>' as it cannot use the specialization for either Addable or Subtractable. So it falls back on the generic template, but for that one no implementation is available, and hence it's incomplete.
Defining a template requiring two types, the first being Addable and the second template argument being unrestricted, while a specialization is defined requiring a Subtractable type and an int, then that also does'n work as intended. In that case, the templates might be:
template <typename t1, typename t2> requires Addable<t1>
struct Data
{};
template <Subtractable Type>
struct Data<Type, int>
{};
Here, if the first template argument isn't a subtractable type (like a vector<int>), and the second argument is an int then the compiler simply won't use it because the 1st argument isn't a subtractable type.
Therefore it falls back to the first (generic) template definition. However, that one doesn't work either, because the first argument also isn't addable, and you receive complaints about (lh + rh) being ill-formed.
Now, as you specified int as the template's second argument chances are that you expected a complaint about (lh - rh) being ill formed, but that doesn't happen. In other words: using concepts still requires you to understand what's going on. Concepts help the compiler to pinpoint reasons for compilation failures, but in the end it's you who has to understand what you're doing in order to grasp what the compiler is trying to tell you.
Chapter 24: Concrete Examples
In this chapter concrete examples of C++ programs, classes and templates are presented. Topics covered by the C++ Annotations such as virtual functions, static members, etc. are illustrated in this chapter. The examples roughly follow the organization of earlier chapters.
As an additional topic, not just providing examples of C++ the subjects of scanner and parser generators are covered. We show how these tools may be used in C++ programs. These additional examples assume a certain familiarity with the concepts underlying these tools, like grammars, parse-trees and parse-tree decoration. Once the input for a program exceeds a certain level of complexity, it's attractive to use scanner- and parser-generators to create the code doing the actual input processing. One of the examples in this chapter describes the usage of these tools in a C++ environment.
24.1: Using file descriptors with `streambuf' classes
24.1.1: Classes for output operations
Reading and writing from and to file descriptors are not part of the C++ standard. But on most operating systems file descriptors are available and can be considered a device. It seems natural to use the class std::streambuf as the starting point for constructing classes interfacing such file descriptor devices.
Below we'll construct classes that can be used to write to a device given its file descriptor. The devices may be files, but they could also be pipes or sockets. Section 24.1.2 covers reading from such devices; section 24.2.3 reconsiders redirection, discussed earlier in section 6.6.2.
Using the streambuf class as a base class it is relatively easy to design classes for output operations. The only member function that must be overridden is the (virtual) member int streambuf::overflow(int c). This member's responsibility is to write characters to the device. If fd is an output file descriptor and if output should not be buffered then the member overflow() can simply be implemented as:
class UnbufferedFD: public std::streambuf
{
public:
virtual int overflow(int c);
...
};
int UnbufferedFD::overflow(int c)
{
if (c != EOF)
{
if (write(d_fd, &c, 1) != 1)
return EOF;
}
return c;
}
The argument received by overflow is either written to the file descriptor (and returned from overflow), or EOF is returned.
This simple function does not use output buffering. For various reasons, using a buffer is usually a good idea (see also the next section).
When output buffering is used, the overflow member is a bit more complex as it is only called when the buffer is full. Once the buffer is full, we first have to flush the buffer. Flushing the buffer is the responsibility of the (virtual) function streambuf::sync. Since sync is a virtual function, classes derived from streambuf may redefine sync to flush a buffer streambuf itself doesn't know about.
Overriding sync and using it in overflow is not all that has to be done. When the object of the class defining the buffer reaches the end of its lifetime the buffer may be only partially full. In that situation the buffer must also be flushed. This is easily done by simply calling sync from the class's destructor.
Now that we've considered the consequences of using an output buffer, we're almost ready to design our derived class. Several more features are added as well, though:
To save some space in the C++ Annotations, the successful completion of the functions designed here is not checked in the example code. In `real life' implementations these checks should of course not be omitted. Our class OFdnStreambuf has the following characteristics:
class OFdnStreambuf: public std::streambuf
{
int d_fd = -1;
size_t d_bufsize = 0;
char *d_buffer = 0;
public:
OFdnStreambuf() = default;
OFdnStreambuf(int fd, size_t bufsize = 1);
virtual ~OFdnStreambuf();
void open(int fd, size_t bufsize = 1);
private:
virtual int sync();
virtual int overflow(int c);
};
inline OFdnStreambuf::OFdnStreambuf(int fd, size_t bufsize)
{
open(fd, bufsize);
}
inline OFdnStreambuf::~OFdnStreambuf()This implementation does not close the device. It is left as an exercise to the reader to change this class in such a way that the device is optionally closed (or optionally remains open). This approach was adopted by, e.g., the Bobcat library. See also section 24.1.2.2.
{
if (d_buffer)
{
sync();
delete[] d_buffer;
}
}
inline void OFdnStreambuf::open(int fd, size_t bufsize)
{
d_fd = fd;
d_bufsize = bufsize == 0 ? 1 : bufsize;
delete[] d_buffer;
d_buffer = new char[d_bufsize];
setp(d_buffer, d_buffer + d_bufsize);
}
inline int OFdnStreambuf::sync()
{
if (pptr() > pbase())
{
write(d_fd, d_buffer, pptr() - pbase());
setp(d_buffer, d_buffer + d_bufsize);
}
return 0;
}
inline int OFdnStreambuf::overflow(int c)
{
sync();
if (c != EOF)
{
*pptr() = c;
pbump(1);
}
return c;
}
The next program uses the OFfdStreambuf class to copy its standard input to file descriptor STDOUT_FILENO, which is the symbolic name of the file descriptor used for the standard output:
#include <string>
#include <iostream>
#include <istream>
#include "fdout.h"
using namespace std;
int main(int argc, char **argv)
{
OFdnStreambuf fds(STDOUT_FILENO, 500);
ostream os(&fds);
switch (argc)
{
case 1:
for (string s; getline(cin, s); )
os << s << '\n';
os << "COPIED cin LINE BY LINE\n";
break;
case 2:
cin >> os.rdbuf(); // Alternatively, use: cin >> &fds;
os << "COPIED cin BY EXTRACTING TO os.rdbuf()\n";
break;
case 3:
os << cin.rdbuf();
os << "COPIED cin BY INSERTING cin.rdbuf() into os\n";
break;
}
}
24.1.2: Classes for input operations
When classes for input operation are derived from std::streambuf, they should be provided with an input buffer of at least one character. The one-character input buffer allows for the use of the member functions istream::putback or istream::ungetc. Strictly speaking it is not necessary to implement a buffer in classes derived from streambuf. But using buffers in these classes is strongly advised. Their implementation is very simple and straightforward and the applicability of such classes is greatly improved. Therefore, all our classes derived from the class streambuf define a buffer of at least one character.
24.1.2.1: Using a one-character buffer
When deriving a class (e.g., IFdStreambuf) from streambuf using a buffer of one character, at least its member streambuf::underflow should be overridden, as this member eventually receives all requests for input. The member streambuf::setg is used to inform the streambuf base class of the size and location of the input buffer, so that it is able to set up its input buffer pointers accordingly. This ensures that streambuf::eback, streambuf::gptr, and streambuf::egptr return correct values.
The class IFdStreambuf is designed like this:
class IFdStreambuf: public std::streambuf
{
protected:
int d_fd;
char d_buffer[1];
public:
IFdStreambuf(int fd);
private:
int underflow();
};
inline IFdStreambuf::IFdStreambuf(int fd)
:
d_fd(fd)
{
setg(d_buffer, d_buffer + 1, d_buffer + 1);
}
inline int IFdStreambuf::underflow()
{
if (read(d_fd, d_buffer, 1) <= 0)
return EOF;
setg(d_buffer, d_buffer, d_buffer + 1);
return static_cast<unsigned char>(*gptr());
}
The following main function shows how IFdStreambuf can be used:
int main()
{
IFdStreambuf fds(STDIN_FILENO);
istream is(&fds);
cout << is.rdbuf();
}
24.1.2.2: Using an n-character buffer
How complex would things get if we decided to use a buffer of substantial size? Not that complex. The following class allows us to specify the size of a buffer, but apart from that it is basically the same class as IFdStreambuf developed in the previous section. To make things a bit more interesting, in the class IFdNStreambuf developed here, the member streambuf::xsgetn is also overridden, to optimize reading a series of characters. Also a default constructor is provided that can be used in combination with the open member to construct an istream object before the file descriptor becomes available. In that case, once the descriptor becomes available, the open member can be used to initiate the object's buffer. Later, in section 24.2, we'll encounter such a situation.
To save some space, the success of various calls was not checked. In `real life' implementations, these checks should of course not be omitted. The class IFdNStreambuf has the following characteristics:
class IFdNStreambuf: public std::streambuf
{
protected:
int d_fd = -1;
size_t d_bufsize = 0;
char* d_buffer = 0;
public:
IFdNStreambuf() = default;
IFdNStreambuf(int fd, size_t bufsize = 1);
virtual ~IFdNStreambuf();
void open(int fd, size_t bufsize = 1);
private:
virtual int underflow();
virtual std::streamsize xsgetn(char *dest, std::streamsize n);
};
inline IFdNStreambuf::IFdNStreambuf(int fd, size_t bufsize)
{
open(fd, bufsize);
}
IFdNStreambuf::~IFdNStreambuf()Even though the device is closed in the above implementation this may not always be desirable. In cases where the open file descriptor is already available the intention may be to use that descriptor repeatedly, each time using a newly constructed IFdNStreambuf object. It is left as an exercise to the reader to change this class in such a way that the device may optionally be closed. This approach was followed in, e.g., the Bobcat library.
{
if (d_bufsize)
{
close(d_fd);
delete[] d_buffer;
}
}
void IFdNStreambuf::open(int fd, size_t bufsize)
{
d_fd = fd;
d_bufsize = bufsize == 0 ? 1 : bufsize;
delete[] d_buffer;
d_buffer = new char[d_bufsize];
setg(d_buffer, d_buffer + d_bufsize, d_buffer + d_bufsize);
}
int IFdNStreambuf::underflow()
{
if (gptr() < egptr())
return *gptr();
int nread = read(d_fd, d_buffer, d_bufsize);
if (nread <= 0)
return EOF;
setg(d_buffer, d_buffer, d_buffer + nread);
return static_cast<unsigned char>(*gptr());
}
std::streamsize IFdNStreambuf::xsgetn(char *dest, std::streamsize n)
{
int nread = 0;
while (n)
{
if (!in_avail())
{
if (underflow() == EOF)
break;
}
int avail = in_avail();
if (avail > n)
avail = n;
memcpy(dest + nread, gptr(), avail);
gbump(avail);
nread += avail;
n -= avail;
}
return nread;
}
The member function xsgetn is called by streambuf::sgetn, which is a streambuf member. Here is an example illustrating the use of this member function with an IFdNStreambuf object:
#include <unistd.h>
#include <iostream>
#include <istream>
#include "ifdnbuf.h"
using namespace std;
int main()
{
// internally: 30 char buffer
IFdNStreambuf fds(STDIN_FILENO, 30);
char buf[80]; // main() reads blocks of 80
// chars
while (true)
{
size_t n = fds.sgetn(buf, 80);
if (n == 0)
break;
cout.write(buf, n);
}
}
24.1.2.3: Seeking positions in `streambuf' objects
When devices support seek operations, classes derived from std::streambuf should override the members streambuf::seekoff and streambuf::seekpos. The class IFdSeek, developed in this section, can be used to read information from devices supporting seek operations. The class IFdSeek was derived from IFdStreambuf, so it uses a character buffer of just one character. The facilities to perform seek operations, which are added to our new class IFdSeek, ensure that the input buffer is reset when a seek operation is requested. The class could also be derived from the class IFdNStreambuf. In that case the arguments to reset the input buffer must be adapted so that its second and third parameters point beyond the available input buffer. Let's have a look at the characteristics of IFdSeek:
class IFdSeek: public IFdStreambuf
{
typedef std::streambuf::pos_type pos_type;
typedef std::streambuf::off_type off_type;
typedef std::ios::seekdir seekdir;
typedef std::ios::openmode openmode;
public:
IFdSeek(int fd);
private:
pos_type seekoff(off_type offset, seekdir dir, openmode);
pos_type seekpos(pos_type offset, openmode mode);
};
inline IFdSeek::IFdSeek(int fd)
:
IFdStreambuf(fd)
{}
IFdSeek::pos_type IFdSeek::seekoff(off_type off, seekdir dir, openmode)
{
pos_type pos =
lseek
(
d_fd, off,
(dir == std::ios::beg) ? SEEK_SET :
(dir == std::ios::cur) ? SEEK_CUR :
SEEK_END
);
if (pos < 0)
return -1;
setg(d_buffer, d_buffer + 1, d_buffer + 1);
return pos;
}
inline IFdSeek::pos_type IFdSeek::seekpos(pos_type off, openmode mode)
{
return seekoff(off, std::ios::beg, mode);
}
Here is an example of a program using the class IFdSeek. If this program is given its own source file using input redirection then seeking is supported (and with the exception of the first line, every other line is shown twice):
#include "fdinseek.h"
#include <string>
#include <iostream>
#include <istream>
#include <iomanip>
using namespace std;
int main()
{
IFdSeek fds(0);
istream is(&fds);
string s;
while (true)
{
if (!getline(is, s))
break;
streampos pos = is.tellg();
cout << setw(5) << pos << ": `" << s << "'\n";
if (!getline(is, s))
break;
streampos pos2 = is.tellg();
cout << setw(5) << pos2 << ": `" << s << "'\n";
if (!is.seekg(pos))
{
cout << "Seek failed\n";
break;
}
}
}
24.1.2.4: Multiple `unget' calls in `streambuf' objects
Streambuf classes and classes derived from streambuf should support at least ungetting the last read character. Special care must be taken when series of unget calls must be supported. In this section the construction of a class supporting a configurable number of istream::unget or istream::putback calls is discussed.
Support for multiple (say `n') unget calls is implemented by reserving an initial section of the input buffer, which is gradually filled up to contain the last n characters read. The class is implemented as follows:
class FdUnget: public std::streambuf
{
int d_fd;
size_t d_bufsize;
size_t d_reserved;
char *d_buffer;
char *d_base;
public:
FdUnget(int fd, size_t bufsz, size_t unget);
virtual ~FdUnget();
private:
int underflow();
};
FdUnget::FdUnget(int fd, size_t bufsz, size_t unget)
:
d_fd(fd),
d_reserved(unget)
{
size_t allocate =
bufsz > d_reserved ?
bufsz
:
d_reserved + 1;
d_buffer = new char[allocate];
d_base = d_buffer + d_reserved;
setg(d_base, d_base, d_base);
d_bufsize = allocate - d_reserved;
}
inline FdUnget::~FdUnget()
{
delete[] d_buffer;
}
int FdUnget::underflow()
{
size_t ungetsize = gptr() - eback();
size_t move = std::min(ungetsize, d_reserved);
memcpy(d_base - move, egptr() - move, move);
int nread = read(d_fd, d_base, d_bufsize);
if (nread <= 0) // none read -> return EOF
return EOF;
setg(d_base - move, d_base, d_base + nread);
return static_cast<unsigned char>(*gptr());
}
An example using FdUnget
The next example program illustrates the use of the class FdUnget. It reads at most 10 characters from the standard input, stopping at EOF. A guaranteed unget-buffer of 2 characters is defined in a buffer holding 3 characters. Just before reading a character, the program tries to unget at most 6 characters. This is, of course, not possible; but the program nicely ungets as many characters as possible, considering the actual number of characters read:
#include "fdunget.h"
#include <string>
#include <iostream>
#include <istream>
using namespace std;
int main()
{
FdUnget fds(0, 3, 2);
istream is(&fds);
char c;
for (int idx = 0; idx < 10; ++idx)
{
cout << "after reading " << idx << " characters:\n";
for (int ug = 0; ug <= 6; ++ug)
{
if (!is.unget())
{
cout
<< "\tunget failed at attempt " << (ug + 1) << "\n"
<< "\trereading: '";
is.clear();
while (ug--)
{
is.get(c);
cout << c;
}
cout << "'\n";
break;
}
}
if (!is.get(c))
{
cout << " reached\n";
break;
}
cout << "Next character: " << c << '\n';
}
}
/*
Generated output after 'echo abcde | program':
after reading 0 characters:
unget failed at attempt 1
rereading: ''
Next character: a
after reading 1 characters:
unget failed at attempt 2
rereading: 'a'
Next character: b
after reading 2 characters:
unget failed at attempt 3
rereading: 'ab'
Next character: c
after reading 3 characters:
unget failed at attempt 4
rereading: 'abc'
Next character: d
after reading 4 characters:
unget failed at attempt 4
rereading: 'bcd'
Next character: e
after reading 5 characters:
unget failed at attempt 4
rereading: 'cde'
Next character:
after reading 6 characters:
unget failed at attempt 4
rereading: 'de
'
reached
*/
24.1.3: Fixed-sized field extraction from istream objects
Usually when extracting information from istream objects operator>>, the standard extraction operator is perfectly suited for the task as in most cases the extracted fields are white-space (or otherwise clearly) separated from each other. But this does not hold true in all situations. For example, when a web-form is posted to some processing script or program, the receiving program may receive the form field's values as url-encoded characters: letters and digits are sent unaltered, blanks are sent as + characters, and all other characters start with % followed by the character's ascii-value represented by its two digit hexadecimal value.
When decoding url-encoded information, simple hexadecimal extraction won't work, as that extracts as many hexadecimal characters as available, instead of just two. Since the letters a-f` and 0-9 are legal hexadecimal characters, a text like My name is `Ed', url-encoded as
My+name+is+%60Ed%27
results in the extraction of the hexadecimal values 60ed and 27, instead of 60 and 27. The name Ed disappears from view, which is clearly not what we want.
In this case, having seen the %, we could extract 2 characters, put them in an istringstream object, and extract the hexadecimal value from the istringstream object. A bit cumbersome, but doable. Other approaches are possible as well.
The class Fistream for fixed-sized field istream defines an istream class supporting both fixed-sized field extractions and blank-delimited extractions (as well as unformatted read calls). The class may be initialized as a wrapper around an existing istream, or it can be initialized using the name of an existing file. The class is derived from istream, allowing all extractions and operations supported by istreams in general. Fistream defines the following data members:
Here is the initial section of Fistream's class interface:
class Fistream: public std::istream
{
std::unique_ptr<std::filebuf> d_filebuf;
std::streambuf *d_streambuf;
std::istringstream d_iss;
size_t d_width;
As stated, Fistream objects can be constructed from either a filename or an existing istream object. The class interface therefore declares two constructors:
Fistream(std::istream &stream);
Fistream(char const *name,
std::ios::openmode mode = std::ios::in);
When an Fistream object is constructed using an existing istream object, the Fistream's istream part simply uses the stream's streambuf object:
Fistream::Fistream(istream &stream)
:
istream(stream.rdbuf()),
d_streambuf(rdbuf()),
d_width(0)
{}
When an fstream object is constructed using a filename, the istream base initializer is given a new filebuf object to be used as its streambuf. Since the class's data members are not initialized before the class's base class has been constructed, d_filebuf can only be initialized thereafter. By then, the filebuf is only available as rdbuf, returning a streambuf. However, as it is actually a filebuf, a static_cast is used to cast the streambuf pointer returned by rdbuf to a filebuf *, so d_filebuf can be initialized:
Fistream::Fistream(char const *name, ios::openmode mode)
:
istream(new filebuf()),
d_filebuf(static_cast<filebuf *>(rdbuf())),
d_streambuf(d_filebuf.get()),
d_width(0)
{
d_filebuf->open(name, mode);
}
24.1.3.1: Member functions and example
There is only one additional public member: setField(field const &). This member defines the size of the next field to extract. Its parameter is a reference to a field class, a manipulator class defining the width of the next field.
Since a field & is mentioned in Fistream's interface, field must be declared before Fistream's interface starts. The class field itself is simple and declares Fistream as its friend. It has two data members: d_width specifies the width of the next field, and d_newWidth which is set to true if d_width's value should actually be used. If d_newWidth is false, Fistream returns to its standard extraction mode. The class field has two constructors: a default constructor, setting d_newWidth to false, and a second constructor expecting the width of the next field to extract as its value. Here is the class field:
class field
{
friend class Fistream;
size_t d_width;
bool d_newWidth;
public:
field(size_t width);
field();
};
inline field::field(size_t width)
:
d_width(width),
d_newWidth(true)
{}
inline field::field()
:
d_newWidth(false)
{}
Since field declares Fistream as its friend, setField may inspect field's members directly.
Time to return to setField. This function expects a reference to a field object, initialized in one of three different ways:
Here is setField's implementation:
std::istream &Fistream::setField(field const ¶ms)
{
if (params.d_newWidth) // new field size requested
d_width = params.d_width; // set new width
if (!d_width) // no width?
rdbuf(d_streambuf); // return to the old buffer
else
setBuffer(); // define the extraction buffer
return *this;
}
The private member setBuffer defines a buffer of d_width + 1 characters and uses read to fill the buffer with d_width characters. The buffer is an NTBS. This buffer is used to initialize the d_iss member. Fistream's rdbuf member is used to extract the d_str's data via the Fistream object itself:
void Fistream::setBuffer()
{
char *buffer = new char[d_width + 1];
rdbuf(d_streambuf); // use istream's buffer to
buffer[read(buffer, d_width).gcount()] = 0; // read d_width chars,
// terminated by a 0-byte
d_iss.str(buffer);
delete[] buffer;
rdbuf(d_iss.rdbuf()); // switch buffers
}
Although setField could be used to configure Fistream to use or not to use fixed-sized field extraction, using manipulators is probably preferable. To allow field objects to be used as manipulators an overloaded extraction operator was defined. This extraction operator accepts istream & and a field const & objects. Using this extraction operator, statements like
fis >> field(2) >> x >> field(0);
are possible (assuming fis is a Fistream object). Here is the overloaded operator>>, as well as its declaration:
istream &std::operator>>(istream &str, field const ¶ms)
{
return static_cast<Fistream *>(&str)->setField(params);
}
Declaration:
namespace std
{
istream &operator>>(istream &str, FBB::field const ¶ms);
}
Finally, an example. The following program uses a Fistream object to url-decode url-encoded information appearing at its standard input:
int main()
{
Fistream fis(cin);
fis >> hex;
while (true)
{
size_t x;
switch (x = fis.get())
{
case '\n':
cout << '\n';
break;
case '+':
cout << ' ';
break;
case '%':
fis >> field(2) >> x >> field(0);
// FALLING THROUGH
default:
cout << static_cast<char>(x);
break;
case EOF:
return 0;
}
}
}
/*
Generated output after:
echo My+name+is+%60Ed%27 | a.out
My name is `Ed'
*/
24.2: The `fork' system call
From the C programming language the fork system call is well known. When a program needs to start a new process, system can be used. The function system requires the program to wait for the child process to terminate. The more general way to spawn subprocesses is to use fork.
In this section we investigate how C++ can be used to wrap classes around a complex system call like fork. Much of what follows in this section directly applies to the Unix operating system, and the discussion therefore focuses on that operating system. Other systems usually provide comparable facilities. What follows is closely related to the Template Design Pattern (cf. Gamma et al. (1995) Design Patterns, Addison-Wesley)
When fork is called, the current program is duplicated in memory, thus creating a new process. Following this duplication both processes continue their execution just below the fork system call. The two processes may inspect fork's return value: the return value in the original process (called the parent process) differs from the return value in the newly created process (called the child process):
24.2.1: A basic Fork class
A basic Fork class should hide all bookkeeping details of a system call like fork from its users. The class Fork developed here does just that. The class itself only ensures the proper execution of the fork system call. Normally, fork is called to start a child process, usually boiling down to the execution of a separate process. This child process may expect input at its standard input stream and/or may generate output to its standard output and/or standard error streams. Fork does not know all this, and does not have to know what the child process will do. Fork objects should be able to start their child processes.
Fork's constructor cannot know what actions its child process should perform. Similarly, it cannot know what actions the parent process should perform. For these kind of situations, the template method design pattern was developed. According to Gamma c.s., the template method design pattern
``Define(s) the skeleton of an algorithm in an operation, deferring some steps to subclasses. [The] Template Method (design pattern) lets subclasses redefine certain steps of an algorithm, without changing the algorithm's structure.''
This design pattern allows us to define an abstract base class already providing the essential steps related to the fork system call, deferring the implementation of other parts of the fork system call to subclasses.
The Fork abstract base class has the following characteristics:
class Fork
{
int d_pid;
public:
virtual ~Fork();
void fork();
protected:
int pid() const;
int waitForChild(); // returns the status
private:
virtual void childRedirections();
virtual void parentRedirections();
virtual void childProcess() = 0; // pure virtual members
virtual void parentProcess() = 0;
};
inline int Fork::pid() const
{
return d_pid;
}
#include "fork.ih"This simple implementation returns the child's exit status to the parent. The called system function waitpid blocks until the child terminates.
int Fork::waitForChild()
{
int status;
waitpid(d_pid, &status, 0);
return WEXITSTATUS(status);
}
void Fork::childRedirections()
{}
void Fork::parentRedirections()
{}
24.2.2: Parents and Children
The member function fork calls the system function fork (Caution: since the system function fork is called by a member function having the same name, the :: scope resolution operator must be used to prevent a recursive call of the member function itself). The function ::fork's return value determines whether parentProcess or childProcess is called. Maybe redirection is necessary. Fork::fork's implementation calls childRedirections just before calling childProcess, and parentRedirections just before calling parentProcess:
#include "fork.ih"
void Fork::fork()
{
if ((d_pid = ::fork()) < 0)
throw "Fork::fork() failed";
if (d_pid == 0) // childprocess has pid == 0
{
childRedirections();
childProcess();
exit(1); // we shouldn't come here:
} // childProcess() should exit
parentRedirections();
parentProcess();
}
In fork.cc the class's internal header file fork.ih is included. This header file takes care of the inclusion of the necessary system header files, as well as the inclusion of fork.h itself. Its implementation is:
#include "fork.h"
#include <cstdlib>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
Child processes should not return: once they have completed their tasks, they should terminate. This happens automatically when the child process performs a call to a member of the exec... family, but if the child itself remains active, then it must make sure that it terminates properly. A child process normally uses exit to terminate itself, but note that exit prevents the activation of destructors of objects defined at the same or more superficial nesting levels than the level at which exit is called. Destructors of globally defined objects are activated when exit is used. When using exit to terminate childProcess, it should either itself call a support member function defining all nested objects it needs, or it should define all its objects in a compound statement (e.g., using a throw block) calling exit beyond the compound statement.
Parent processes should normally wait for their children to complete. Terminating child processes inform their parents that they are about to terminate by sending a signal that should be caught by their parents. If child processes terminate and their parent processes do not catch those signals then such child processes remain visible as so-called zombie processes.
If parent processes must wait for their children to complete, they may call the member waitForChild. This member returns the exit status of a child process to its parent.
There exists a situation where the child process continues to live, but the parent dies. This is a fairly natural event: parents tend to die before their children do. In our context (i.e. C++), this is called a daemon program. In a daemon the parent process dies and the child program continues to run as a child of the basic init process. Again, when the child eventually dies a signal is sent to its `step-parent' init. This does not create a zombie as init catches the termination signals of all its (step-) children. The construction of a daemon process is very simple, given the availability of the class Fork (cf. section 24.2.4).
24.2.3: Redirection revisited
Earlier, in section 6.6.2 streams were redirected using the ios::rdbuf member function. By assigning the streambuf of a stream to another stream, both stream objects access the same streambuf, thus implementing redirection at the level of the programming language itself.
This may be fine within the context of a C++ program, but once we leave that context the redirection terminates. The operating system does not know about streambuf objects. This situation is encountered, e.g., when a program uses a system call to start a subprogram. The example program at the end of this section uses C++ redirection to redirect the information inserted into cout to a file, and then calls
system("echo hello world")
to echo a well-known line of text. Since echo writes its information to the standard output, this would be the program's redirected file if the operating system would recognize C++'s redirection.
But redirection doesn't happen. Instead, hello world still appears at the program's standard output and the redirected file is left untouched. To write hello world to the redirected file redirection must be realized at the operating system level. Some operating systems (e.g., Unix and friends) provide system calls like dup and dup2 to accomplish this. Examples of the use of these system calls are given in section 24.2.5.
Here is the example of the failing redirection at the system level following C++ redirection using streambuf redirection:
#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
int main()
{
ofstream of("outfile");
streambuf *buf = cout.rdbuf(of.rdbuf());
cout << "To the of stream\n";
system("echo hello world");
cout << "To the of stream\n";
cout.rdbuf(buf);
}
/*
Generated output: on the file `outfile'
To the of stream
To the of stream
On standard output:
hello world
*/
24.2.4: The `Daemon' program
Applications exist in which the only purpose of fork is to start a child process. The parent process terminates immediately after spawning the child process. If this happens, the child process continues to run as a child process of init, the always running first process on Unix systems. Such a process is often called a daemon, running as a background process.
Although the next example can easily be constructed as a plain C program, it was included in the C++ Annotations because it is so closely related to the current discussion of the Fork class. I thought about adding a daemon member to that class, but eventually decided against it because the construction of a daemon program is very simple and requires no features other than those currently offered by the class Fork. Here is an example illustrating the construction of such a daemon program. Its child process doesn't do exit but throw 0 which is caught by the catch clause of the child's main function. Doing this ensures that any objects defined by the child process are properly destroyed:
#include <iostream>
#include <unistd.h>
#include "fork.h"
class Daemon: public Fork
{
virtual void parentProcess() // the parent does nothing.
{}
virtual void childProcess() // actions by the child
{
sleep(3);
// just a message...
std::cout << "Hello from the child process\n";
throw 0; // The child process ends
}
};
int main()
try
{
Daemon{}.fork();
}
catch(...)
{}
/*
Generated output:
The next command prompt, then after 3 seconds:
Hello from the child process
*/
24.2.5: The class `Pipe'
Redirection at the system level requires the use of file descriptor, created by the pipe system call. When two processes want to communicate using such file descriptors, the following happens:
Though basically simple, errors may easily creep in. Functions of file descriptors available to the two processes (child or parent) may easily get mixed up. To prevent bookkeeping errors, the bookkeeping may be properly set up once, to be hidden thereafter inside a class like the Pipe class developed here. Let's have a look at its characteristics (before using functions like pipe and dup the compiler must have read the <unistd.h> header file):
class Pipe
{
enum RW { READ, WRITE };
int d_fd[2];
Pipe::Pipe()
{
if (pipe(d_fd))
throw "Pipe::Pipe(): pipe() failed";
}
int Pipe::readOnly()
{
close(d_fd[WRITE]);
return d_fd[READ];
}
void Pipe::readFrom(int fd)
{
readOnly();
redirect(d_fd[READ], fd);
close(d_fd[READ]);
}
int Pipe::writeOnly()For the latter member two overloaded versions are available:
{
close(d_fd[READ]);
return d_fd[WRITE];
}
void Pipe::writtenBy(int fd)
{
writtenBy(&fd, 1);
}
void Pipe::writtenBy(int const *fd, size_t n)
{
writeOnly();
for (size_t idx = 0; idx < n; idx++)
redirect(d_fd[WRITE], fd[idx]);
close(d_fd[WRITE]);
}
void Pipe::redirect(int d_fd, int alternateFd)
{
if (dup2(d_fd, alternateFd) < 0)
throw "Pipe: redirection failed";
}
Now that redirection can be configured easily using one or more Pipe objects, we'll use Fork and Pipe in various example programs.
24.2.6: The class `ParentSlurp'
The class ParentSlurp, derived from Fork, starts a child process executing a stand-alone program (like /bin/ls). The (standard) output of the executed program is not shown on the screen but is read by the parent process.
For demonstration purposes the parent process writes the lines it receives to its standard output stream, prepending linenumbers to the lines. It is attractive to redirect the parent's standard input stream to allow the parent to read the output from the child process using its std::cin input stream. Therefore, the only pipe in the program is used as an input pipe for the parent, and an output pipe for the child.
The class ParentSlurp has the following characteristics:
class ParentSlurp: public Fork
{
Pipe d_pipe;
virtual void childRedirections();
virtual void parentRedirections();
virtual void childProcess();
virtual void parentProcess();
};
inline void ParentSlurp::childRedirections()
{
d_pipe.writtenBy(STDOUT_FILENO);
}
inline void ParentSlurp::parentRedirections()
{
d_pipe.readFrom(STDIN_FILENO);
}
inline void ParentSlurp::childProcess()
{
execl("/bin/ls", "/bin/ls", 0);
}
void ParentSlurp::parentProcess()
{
std::string line;
size_t nr = 1;
while (getline(std::cin, line))
std::cout << nr++ << ": " << line << '\n';
waitForChild();
}
The following program simply constructs a ParentSlurp object, and calls its fork() member. Its output consists of a numbered list of files in the directory where the program is started. Note that the program also needs the fork.o, pipe.o and waitforchild.o object files (see earlier sources):
int main()
{
ParentSlurp{}.fork();
}
/*
Generated Output (example only, actually obtained output may differ):
1: a.out
2: bitand.h
3: bitfunctional
4: bitnot.h
5: daemon.cc
6: fdinseek.cc
7: fdinseek.h
...
*/
24.2.7: Communicating with multiple children
The next step up the ladder is the construction of a child-process monitor. Here, the parent process is responsible for all its child processes, but it also must read their standard output. The user enters information at the standard input of the parent process. A simple command language is used for this:
If a child process hasn't received text for some time it will complain by sending a message to the parent-process. Those messages are simply transmitted to the user by copying them to the standard output stream.
A problem with programs like our monitor is that they allow asynchronous input from multiple sources. Input may appear at the standard input as well as at the input-sides of pipes. Also, multiple output channels are used. To handle situations like these, the select system call was developed.
24.2.7.1: The class `Selector': interface
The select system call was developed to handle asynchronous I/O multiplexing. The select system call is used to handle, e.g., input appearing simultaneously at a set of file descriptors.
The select function is rather complex, and its full discussion is beyond the C++ Annotations' scope. By encapsulating select in a class Selector, hiding its details and offering an intuitively attractive interface, its use is simplified. The Selector class has these features:
#include <limits.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
class Selector
{
fd_set d_read;
fd_set d_write;
fd_set d_except;
fd_set d_ret_read;
fd_set d_ret_write;
fd_set d_ret_except;
timeval d_alarm;
int d_max;
int d_ret;
int d_readidx;
int d_writeidx;
int d_exceptidx;
public:
Selector();
int exceptFd();
int nReady();
int readFd();
int wait();
int writeFd();
void addExceptFd(int fd);
void addReadFd(int fd);
void addWriteFd(int fd);
void noAlarm();
void rmExceptFd(int fd);
void rmReadFd(int fd);
void rmWriteFd(int fd);
void setAlarm(int sec, int usec = 0);
private:
int checkSet(int *index, fd_set &set);
void addFd(fd_set *set, int fd);
};
24.2.7.2: The class `Selector': implementation
Selector's member functions serve the following tasks:
Selector::Selector()
{
FD_ZERO(&d_read);
FD_ZERO(&d_write);
FD_ZERO(&d_except);
noAlarm();
d_max = 0;
}
int Selector::wait()
{
timeval t = d_alarm;
d_ret_read = d_read;
d_ret_write = d_write;
d_ret_except = d_except;
d_readidx = 0;
d_writeidx = 0;
d_exceptidx = 0;
d_ret = select(d_max, &d_ret_read, &d_ret_write, &d_ret_except,
t.tv_sec == -1 && t.tv_usec == -1 ? 0 : &t);
if (d_ret < 0)
throw "Selector::wait()/select() failed";
return d_ret;
}
inline int Selector::nReady()
{
return d_ret;
}
inline int Selector::readFd()
{
return checkSet(&d_readidx, d_ret_read);
}
inline void Selector::setAlarm(int sec, int usec)
{
d_alarm.tv_sec = sec;
d_alarm.tv_usec = usec;
}
inline void Selector::noAlarm()
{
setAlarm(-1, -1);
}
inline void Selector::addReadFd(int fd)
{
addFd(&d_read, fd);
}
inline void Selector::rmReadFd(int fd)
{
FD_CLR(fd, &d_read);
}
The class's remaining (two) members are support members, and should not be used by non-member functions. Therefore, they are declared in the class's private section:
void Selector::addFd(fd_set *set, int fd)
{
FD_SET(fd, set);
if (fd >= d_max)
d_max = fd + 1;
}
int Selector::checkSet(int *index, fd_set &set)
{
int &idx = *index;
while (idx < d_max && !FD_ISSET(idx, &set))
++idx;
return idx == d_max ? -1 : idx++;
}
24.2.7.3: The class `Monitor': interface
The monitor program uses a Monitor object doing most of the work. The class Monitor's public interface only offers a default constructor and one member, run, to perform its tasks. All other member functions are located in the class's private section.
Monitor defines the private enum Commands, symbolically listing the various commands its input language supports, as well as several data members. Among the data members are a Selector object and a map using child order numbers as its keys and pointer to Child objects (see section 24.2.7.7) as its values. Furthermore, Monitor has a static array member s_handler[], storing pointers to member functions handling user commands.
A destructor should be implemented as well, but its implementation is left as an exercise to the reader. Here is Monitor's interface, including the interface of the nested class Find that is used to create a function object:
class Monitor
{
enum Commands
{
UNKNOWN,
START,
EXIT,
STOP,
TEXT,
sizeofCommands
};
typedef std::map<int, std::shared_ptr<Child>> MapIntChild;
friend class Find;
class Find
{
int d_nr;
public:
Find(int nr);
bool operator()(MapIntChild::value_type &vt) const;
};
Selector d_selector;
int d_nr;
MapIntChild d_child;
static void (Monitor::*s_handler[])(int, std::string const &);
static int s_initialize;
public:
enum Done
{};
Monitor();
void run();
private:
static void killChild(MapIntChild::value_type it);
static int initialize();
Commands next(int *value, std::string *line);
void processInput();
void processChild(int fd);
void createNewChild(int, std::string const &);
void exiting(int = 0, std::string const &msg = std::string{});
void sendChild(int value, std::string const &line);
void stopChild(int value, std::string const &);
void unknown(int, std::string const &);
};
Since there's only one non-class type data member, the class's constructor is a very simple function which could be implemented inline:
inline Monitor::Monitor()
:
d_nr(0)
{}
24.2.7.4: The class `Monitor': s_handler
The array s_handler, storing pointers to functions needs to be initialized as well. This can be accomplished in several ways:
void (Monitor::*Monitor::s_handler[])(int, string const &) =The advantage of this is that it's simple, not requiring any run-time effort. The disadvantage is of course relatively complex maintenance. If for some reason Commands is modified, s_handler must be modified as well. In cases like these, compile-time initialization often is asking for trouble. There is a simple alternative though.
{
&Monitor::unknown, // order follows enum Command's
&Monitor::createNewChild, // elements
&Monitor::exiting,
&Monitor::stopChild,
&Monitor::sendChild,
};
void (Monitor::*Monitor::s_handler[sizeofCommands])(int, string const &);The member initialize is a static member and so it can be called to initialize s_initialize, a static int variable. The initialization is enforced by placing the initialization statement in the source file of a function that is known to be executed. It could be main, but if we're Monitor's maintainers and only have control over the library containing Monitor's code then that's not an option. In those cases the source file containing the destructor is a very good candidate. If a class has only one constructor and it's not defined inline then the constructor's source file is a good candidate as well. In Monitor's current implementation the initialization statement is put in run's source file, reasoning that s_handler is only needed when run is used.
int Monitor::initialize()
{
s_handler[UNKNOWN] = &Monitor::unknown;
s_handler[START] = &Monitor::createNewChild;
s_handler[EXIT] = &Monitor::exiting;
s_handler[STOP] = &Monitor::stopChild;
s_handler[TEXT] = &Monitor::sendChild;
return 0;
}
24.2.7.5: The class `Monitor': the member `run'
Monitor's core activities are performed by run. It performs the following tasks:
As noted by Ben Simons (ben at mrxfx dot com) Monitor must not catch the termination signals. Instead, the process spawning child processes has that responsibility (the underlying principle being that a parent process is responsible for its child processes; a child process, in turn, is responsible for its own child processes).
Here is run's implementation and s_initialize's definition:
#include "monitor.ih"
int Monitor::s_initialize = Monitor::initialize();
void Monitor::run()
{
d_selector.addReadFd(STDIN_FILENO);
while (true)
{
cout << "? " << flush;
try
{
d_selector.wait();
int fd;
while ((fd = d_selector.readFd()) != -1)
{
if (fd == STDIN_FILENO)
processInput();
else
processChild(fd);
}
cout << "NEXT ...\n";
}
catch (char const *msg)
{
exiting(1, msg);
}
}
}
The member function processInput reads the commands entered by the user using the program's standard input stream. The member itself is rather simple. It calls next to obtain the next command entered by the user, and then calls the corresponding function using the matching element of the s_handler[] array. Here are the members processInput and next:
void Monitor::processInput()
{
string line;
int value;
Commands cmd = next(&value, &line);
(this->*s_handler[cmd])(value, line);
}
Monitor::Commands Monitor::next(int *value, string *line)
{
if (!getline(cin, *line))
exiting(1, "Monitor::next(): reading cin failed");
if (*line == "start")
return START;
if (*line == "exit" || *line == "quit")
{
*value = 0;
return EXIT;
}
if (line->find("stop") == 0)
{
istringstream istr(line->substr(4));
istr >> *value;
return !istr ? UNKNOWN : STOP;
}
istringstream istr(line->c_str());
istr >> *value;
if (istr)
{
getline(istr, *line);
return TEXT;
}
return UNKNOWN;
}
All other input sensed by d_select is created by child processes. Because d_select's readFd member returns the corresponding input file descriptor, this descriptor can be passed to processChild. Using a IFdStreambuf (see section 24.1.2.1), its information is read from an input stream. The communication protocol used here is rather basic. For every line of input sent to a child, the child replies by sending back exactly one line of text. This line is then read by processChild:
void Monitor::processChild(int fd)
{
IFdStreambuf ifdbuf(fd);
istream istr(&ifdbuf);
string line;
getline(istr, line);
cout << d_child[fd]->pid() << ": " << line << '\n';
}
The construction d_child[fd]->pid() used in the above source deserves some special attention. Monitor defines the data member map<int, shared_ptr<Child>> d_child. This map contains the child's order number as its key, and a (shared) pointer to the Child object as its value. A shared pointer is used here, rather than a Child object, since we want to use the facilities offered by the map, but don't want to copy a Child object time and again.
24.2.7.6: The class `Monitor': example
Now that run's implementation has been covered, we'll concentrate on the various commands users might enter:
In the parent process, createNewChild's remaining code simply adds the file descriptor that's available for reading information from the child to the set of input file descriptors monitored by d_select, and uses d_child to establish the association between that file descriptor and the Child object's address:
void Monitor::createNewChild(int, string const &)
{
Child *cp = new Child{ ++d_nr };
cp->fork();
int fd = cp->readFd();
d_selector.addReadFd(fd);
d_child[fd].reset(cp);
cerr << "Child " << d_nr << " started\n";
}
inline Monitor::Find::Find(int nr)If the child process having order number nr was found, its file descriptor is removed from d_selector's set of input file descriptors. Then the child process itself is terminated by the static member killChild. The member killChild is declared as a static member function, as it is used as function argument of the for_each generic algorithm by exiting (see below). Here is killChild's implementation:
:
d_nr(nr)
{}
inline bool Monitor::Find::operator()(MapIntChild::value_type &vt) const
{
return d_nr == vt.second->nr();
}
void Monitor::killChild(MapIntChild::value_type it)Having terminated the specified child process, the corresponding Child object is destroyed and its pointer is removed from d_child:
{
if (kill(it.second->pid(), SIGTERM))
cerr << "Couldn't kill process " << it.second->pid() << '\n';
// reap defunct child process
int status = 0;
while( waitpid( it.second->pid(), &status, WNOHANG) > -1)
;
}
void Monitor::stopChild(int nr, string const &)
{
auto it = find_if(d_child.begin(), d_child.end(), Find{ nr });
if (it == d_child.end())
cerr << "No child number " << nr << '\n';
else
{
d_selector.rmReadFd(it->second->readFd());
d_child.erase(it);
}
}
void Monitor::sendChild(int nr, string const &line)
{
auto it = find_if(d_child.begin(), d_child.end(), Find(nr));
if (it == d_child.end())
cerr << "No child number " << nr << '\n';
else
{
OFdnStreambuf ofdn{ it->second->writeFd() };
ostream out(&ofdn);
out << line << '\n';
}
}
void Monitor::exiting(int value, string const &msg)
{
for_each(d_child.begin(), d_child.end(), killChild);
if (msg.length())
cerr << msg << '\n';
throw value;
}
The program's main function is simple and needs no further comment:
int main()
try
{
Monitor{}.run();
}
catch (int exitValue)
{
return exitValue;
}
24.2.7.7: The class `Child'
When the Monitor object starts a child process, it creates an object of the class Child. The Child class is derived from the class Fork, allowing it to operate as a daemon (as discussed in the previous section). Since Child is a daemon class, we know that its parent process must be defined as an empty function. Its childProcess member has a non-empty implementation. Here are the characteristics of the class Child:
class Child: public Fork
{
Pipe d_in;
Pipe d_out;
int d_parentReadFd;
int d_parentWriteFd;
int d_nr;
public:
Child(int nr);
virtual ~Child();
int readFd() const;
int writeFd() const;
int pid() const;
int nr() const;
private:
virtual void childRedirections();
virtual void parentRedirections();
virtual void childProcess();
virtual void parentProcess();
};
inline Child::Child(int nr)
:
d_nr(nr)
{}
void Child::childRedirections()
{
d_in.readFrom(STDIN_FILENO);
d_out.writtenBy(STDOUT_FILENO);
}
void Child::parentRedirections()
{
d_parentReadFd = d_out.readOnly();
d_parentWriteFd = d_in.writeOnly();
}
inline int Child::readFd() const
{
return d_parentReadFd;
}
inline int Child::writeFd() const
{
return d_parentWriteFd;
}
Then, in an endless loop, childProcess waits for selector.wait() to return. When the alarm goes off it sends a message to its standard output (hence, into the writing pipe). Otherwise, it echoes the messages appearing at its standard input to its standard output. Here is the childProcess member:
void Child::childProcess()
{
Selector selector;
size_t message = 0;
selector.addReadFd(STDIN_FILENO);
selector.setAlarm(5);
while (true)
{
try
{
if (!selector.wait()) // timeout
cout << "Child " << d_nr << ": standing by\n";
else
{
string line;
getline(cin, line);
cout << "Child " << d_nr << ":" << ++message << ": " <<
line << '\n';
}
}
catch (...)
{
cout << "Child " << d_nr << ":" << ++message << ": " <<
"select() failed" << '\n';
}
}
exit(0);
}
inline int Child::pid() const
{
return Fork::pid();
}
inline int Child::nr() const
{
return d_nr;
}
Child::~Child()
{
if (pid())
{
cout << "Killing process " << pid() << "\n";
kill(pid(), SIGTERM);
int status;
wait(&status);
}
}
24.3: Adding binary operators to classes
As we've seen in section 11.6 binary operators expecting const & arguments can be implemented using a member implementing the operation, only offering the basic exception guarantee. This latter function can in turn be implemented using the binary assignment member. The following examples illustrated this approach for a fictitious class Binary:
class Binary
{
public:
Binary();
Binary(int value);
// copy and move constructors are available by default, or
// they can be explicitly declared and implemented.
Binary &operator+=(Binary const &other) &; // see the text
Binary &&operator+=(Binary const &other) &&;
private:
void add(Binary const &rhs);
friend Binary operator+(Binary const &lhs, Binary const &rhs);
friend Binary operator+(Binary &&lhs, Binary const &rhs);
};
Eventually, the implementation of binary operators depends on the availability of the member implementing the basic binary operation, modifying the object calling that member (i.e., void Binary::add(Binary const &) in the example).
Since template functions are not instantiated before they are actually used we can call non-existing functions from template functions that are never instantiated. If such a template function is never instantiated, nothing happens; if it is (accidentally) instantiated, then the compiler generates an error message, complaining about the missing function.
This allows us to implement all binary operators, movable and non-movable, as templates. In the following subsections we develop the class template Binops, prividing binary operators. A complete implementation of a class Derived illustrating how addition and insertion operators can be added to a class is provided in the file annotations/yo/concrete/examples/binopclasses.cc in the C++ Annotations' source archive.
24.3.1: Merely using operators
In section 11.6 addition operators are implemented in terms of a support member add. This is less attractive when developing function templates, as add is a private member, requiring us to provide friend declarations for all function templates so they may access the private add member.
At the end of section 11.6 we saw that add's implementation can be provided by operator+=(Class const &rhs) &&. This operator may thereupon be used when implementing the remaining addition operators:
inline Binary &operator+=(Binary const &rhs) &
{
return *this = Binary{*this} += rhs;
}
Binary operator+(Binary &&lhs, Binary const &rhs)
{
return std::move(lhs) += rhs;
}
Binary operator+(Binary const &lhs, Binary const &rhs)
{
return Binary{lhs} += rhs;
}
In this implementation add is no longer required. The plain binary operators are free functions, which supposedly can easily be converted to function templates. E.g.,
template <typename Binary>
Binary operator+(Binary const &lhs, Binary const &rhs)
{
return Binary{lhs} += rhs;
}
24.3.1.1: To namespace or not to namespace?
When using the function template Binary operator+(Binary const &lhs, Binary const &rhs), however, we may encounter a subtle and unexpected complication. Consider the following program. When run, it displays the value 12, rather than 1:
enum Values
{
ZERO,
ONE
};
template <typename Tp>
Tp operator+(Tp const &lhs, Tp const &rhs)
{
return static_cast<Tp>(12);
};
int main()
{
cout << (ZERO + ONE); // shows 12
}
This complication can be avoided by defining the operators in their own namespace, but then all classes using the binary operator also have to be defined in that namespace, which is not a very attractive restriction. Fortunately, there is a better alternative: using the CRTP (cf. section 22.12).
24.3.2: The CRTP and defining operator function templates
When deriving classes from a class template Binops, using the CRTP the operators are defined for arguments of the class Binops<Derived>: a base class receiving the derived class as its template argument.
Thus the class Binops as well as the additional operators are defined, expecting Binops<Derived> type of arguments:
template <class Derived>
struct Binops
{
Derived &operator+=(Derived const &rhs) &;
};
template <typename Derived>
Derived operator+(Binops<Derived> const &lhs, Derived const &rhs)
{
return Derived{static_cast<Derived> const &>(lhs) } += rhs;
}
// analogous implementation for Binops<Derived> &&lhs
This way, a class that derives from Binops, and that provides an operator+= member which is bound to an rvalue reference object, suddenly also provides all other binary addition operators:
class Derived: public Binops<Derived>
{
...
public:
...
Derived &&operator+=(Derived const &rhs) &&
};
All, but one....
The operator that's not available is the compound addition operator, bound to an lvalue reference. As its function name is identical to the one in the class Derived, it is not automatically visible at the user level.
Although this problem can simply be solved by providing the class Derived with a using Binops<Derived>::operator+= declaration, it is not a very attractive solution, as separate using declarations have to be provided for each binary operator that is implemented in the class Derived.
But a much more attractive solution exists. A beautiful out-of-the-box solution, completely avoiding the hidden base class operator, was proposed by Wiebe-Marten Wijnja. Wiebe-Marten conjectured that operator+=, bound to an lvalue reference could also very well be defined as a free function. In that case no inheritance is used and therefore no function hiding occurs. Consequently, the using directive can be avoided.
The implementation of this free operator+= function looks like this:
template <class Derived>
Derived &operator+=(Binops<Derived> &lhs, Derived const &rhs)
{
Derived tmp{ Derived{ static_cast<Derived &>(lhs) } += rhs };
tmp.swap(static_cast<Derived &>(lhs));
return static_cast<Derived &>(lhs);
}
The flexibility of this design can be further augmented once we realize that the right-hand side operand doesn't have to be a Derived class object. Consider operator<<: oftentimes shifts are bit-shifts, using a size_t to specify the number of bits to shift. In fact, the type of the right-hand side operand can completely be generalized by defining a second template type parameter, which is used to specify the right-hand side's operand type. It's up to the Derived class to specify the argument type of its operator+= (or any other binary compound operator), whereafter the compiler will deduce the types of the right-hand side operands for the remaining binary operators. Here is the final implementation of the free operator+= function:
template <class Derived, typename Rhs>
Derived &operator+=(Binops<Derived> &lhs, Rhs const &rhs)
{
Derived tmp{ Derived{ static_cast<Derived &>(lhs) } += rhs };
tmp.swap(static_cast<Derived &>(lhs));
return static_cast<Derived &>(lhs);
}
24.3.3: Insertion and extraction
Classes also frequently define overloaded insertion and extraction operators. Since there are no `compound insertion operators' the design shown so far cannot be used when overloading these operators. Instead using standardized member function signatures is advocated: void insert(std::ostream &out) const to insert an object into an ostream and void extract(std::istream &in) const to extract an object from an istream. As these functions are only used by, respectively, the insertion and extraction operators, they can be declared in the Derived class's private interface. Instead of declaring the insertion and extraction operators friends of the class Derived a single friend Binops<Derived> is specified. This allows Binops<Derived> to define private, inline iWrap and eWrap members, merely calling, respectively, Derived's insert and extract members:
template <typename Derived>
inline void Binops<Derived>::iWrap(std::ostream &out) const
{
static_cast<Derived const &>(*this).insert(out);
}
Binops<Derived> then declares the insertion and extraction operators as its friends, allowing these operators to call, respectively, iWrap and eWrap. Note that the software engineer designing the class Derived only has to provide a friend Binops<Derived> declaration. Here is the implementation of the overloaded insertion operator:
template <typename Derived>
std::ostream &operator<<(std::ostream &out, Binops<Derived> const &obj)
{
obj.iWrap(out);
return out;
}
This completes the coverage of the essentials of a class template Binops potentially offering binary operators and insertion/extraction operators for any class derived from Binops. Finally, as noted at the beginning of this section, a complete implementation of a class offering addition and insertion operators is provided in the file annotations/yo/concrete/examples/binopclasses.cc in the C++ Annotations' source archive.
24.4: Distinguishing lvalues from rvalues with operator[]()
A problem with operator[] is that it can't distinguish between its use as an lvalue and as an rvalue. It is a familiar misconception to think that
Type const &operator[](size_t index) const
is used as rvalue (as the object isn't modified), and that
Type &operator[](size_t index)
is used as lvalue (as the returned value can be modified).
The compiler, however, distinguishes between the two operators only by the const-status of the object for which operator[] is called. With const objects the former operator is called, with non-const objects the latter is always used. It is always used, irrespective of it being used as lvalue or rvalue.
Being able to distinguish between lvalues and rvalues can be very useful. Consider the situation where a class supporting operator[] stores data of a type that is very hard to copy. With data like that reference counting (e.g., using shared_ptrs) is probably used to prevent needless copying.
As long as operator[] is used as rvalue there's no need to copy the data, but the information must be copied if it is used as lvalue.
The Proxy Design Pattern (cf. Gamma et al. (1995)) can be used to distinguish between lvalues and rvalues. With the Proxy Design Pattern an object of another class (the Proxy class) is used to act as a stand in for the `real thing'. The proxy class offers functionality that cannot be offered by the data themselves, like distinguishing between its use as lvalue or rvalue. A proxy class can be used in many situations where access to the real data cannot or should not be directly provided. In this regard iterator types are examples of proxy classes as they create a layer between the real data and the software using the data. Proxy classes could also dereference pointers in a class storing its data by pointers.
In this section we concentrate on the distinction between using operator[] as lvalue and rvalue. Let's assume we have a class Lines storing lines from a file. Its constructor expects the name of a stream from which the lines are read and it offers a non-const operator[] that can be used as lvalue or rvalue (the const version of operator[] is omitted as it causes no confusion because it is always used as rvalue):
class Lines
{
std::vector<std::string> d_line;
public:
Lines(std::istream &in);
std::string &operator[](size_t idx);
};
To distinguish between lvalues and rvalues we must find distinguishing characteristics of lvalues and rvalues that we can exploit. Such distinguishing characteristics are operator= (which is always used as lvalue) and the conversion operator (which is always used as rvalue). Rather than having operator[] return a string & we can let it return a Proxy object that is able to distinguish between its use as lvalue and rvalue.
The class Proxy thus needs operator=(string const &other) (acting as lvalue) and operator std::string const &() const (acting as rvalue). Do we need more operators? The std::string class also offers operator+=, so we should probably implement that operator as well. Plain characters can also be assigned to string objects (even using their numeric values). As string objects cannot be constructed from plain characters promotion cannot be used with operator=(string const &other) if the right-hand side argument is a character. Implementing operator=(char value) could therefore also be considered. These additional operators are left out of the current implementation but `real life' proxy classes should consider implementing these additional operators as well. Another subtlety is that Proxy's operator std::string const &() const is not used when using ostream's insertion operator or istream's extraction operator as these operators are implemented as templates not recognizing our Proxy class type. So when stream insertion and extraction is required (it probably is) then Proxy must be given its own overloaded insertion and extraction operator. Here is an implementation of the overloaded insertion operator inserting the object for which Proxy is a stand-in:
inline std::ostream &operator<<(std::ostream &out, Lines::Proxy const &proxy)
{
return out << static_cast<std::string const &>(proxy);
}
There's no need for any code (except Lines) to create or copy Proxy objects. Proxy's constructor should therefore be made private, and Proxy can declare Lines to be its friend. In fact, Proxy is intimately related to Lines and can be defined as a nested class. In the revised Lines class operator[] no longer returns a string but instead a Proxy is returned. Here is the revised Lines class, including its nested Proxy class:
class Lines
{
std::vector<std::string> d_line;
public:
class Proxy;
Proxy operator[](size_t idx);
class Proxy
{
friend Proxy Lines::operator[](size_t idx);
std::string &d_str;
Proxy(std::string &str);
public:
std::string &operator=(std::string const &rhs);
operator std::string const &() const;
};
Lines(std::istream &in);
};
Proxy's members are very lightweight and can usually be implemented inline:
inline Lines::Proxy::Proxy(std::string &str)
:
d_str(str)
{}
inline std::string &Lines::Proxy::operator=(std::string const &rhs)
{
return d_str = rhs;
}
inline Lines::Proxy::operator std::string const &() const
{
return d_str;
}
The member Lines::operator[] can also be implemented inline: it merely returns a Proxy object initialized with the string associated with index idx.
Now that the class Proxy has been developed it can be used in a program. Here is an example using the Proxy object as lvalue or rvalue. On the surface Lines objects won't behave differently from Lines objects using the original implementation, but by adding an identifying cout statement to Proxy's members it can be shown that operator[] behaves differently when used as lvalue or as rvalue:
int main()
{
ifstream in("lines.cc");
Lines lines(in);
string s = lines[0]; // rvalue use
lines[0] = s; // lvalue use
cout << lines[0] << '\n'; // rvalue use
lines[0] = "hello world"; // lvalue use
cout << lines[0] << '\n'; // rvalue use
}
24.5: Implementing a `reverse_iterator'
In section 22.14.1 the construction of iterators and reverse iterators was discussed. In that section the iterator was constructed as an inner class in a class derived from a vector of pointers to strings.
An object of this nested iterator class handles the dereferencing of the pointers stored in the vector. This allowed us to sort the strings pointed to by the vector's elements rather than the pointers.
A drawback of this is that the class implementing the iterator is closely tied to the derived class as the iterator class was implemented as a nested class. What if we would like to provide any class derived from a container class storing pointers with an iterator handling pointer-dereferencing?
In this section a variant of the earlier (nested class) approach is discussed. Here the iterator class is defined as a class template, not only parameterizing the data type to which the container's elements point but also the container's iterator type itself. Once again, we concentrate on developing a RandomIterator as it is the most complex iterator type.
Our class is named RandomPtrIterator, indicating that it is a random iterator operating on pointer values. The class template defines three template type parameters:
RandomPtrIterator has one private data member, a BaseIterator. Here is the class interface and the constructor's implementation:
#include <iterator>
template <typename Class, typename BaseIterator, typename Type>
class RandomPtrIterator:
public std::iterator<std::random_access_iterator_tag, Type>
{
friend RandomPtrIterator<Class, BaseIterator, Type> Class::begin();
friend RandomPtrIterator<Class, BaseIterator, Type> Class::end();
BaseIterator d_current;
RandomPtrIterator(BaseIterator const ¤t);
public:
bool operator!=(RandomPtrIterator const &other) const;
int operator-(RandomPtrIterator const &rhs) const;
RandomPtrIterator operator+(int step) const;
Type &operator*() const;
bool operator<(RandomPtrIterator const &other) const;
RandomPtrIterator &operator--();
RandomPtrIterator operator--(int);
RandomPtrIterator &operator++();
RandomPtrIterator operator++(int);
bool operator==(RandomPtrIterator const &other) const;
RandomPtrIterator operator-(int step) const;
RandomPtrIterator &operator-=(int step);
RandomPtrIterator &operator+=(int step);
Type *operator->() const;
};
template <typename Class, typename BaseIterator, typename Type>
RandomPtrIterator<Class, BaseIterator, Type>::RandomPtrIterator(
BaseIterator const ¤t)
:
d_current(current)
{}
Looking at its friend declarations, we see that the members begin and end of a class Class, returning a RandomPtrIterator object for the types Class, BaseIterator and Type are granted access to RandomPtrIterator's private constructor. That is exactly what we want. The Class's begin and end members are declared as bound friends.
All RandomPtrIterator's remaining members are public. Since RandomPtrIterator is just a generalization of the nested class iterator developed in section 22.14.1, re-implementing the required member functions is easy and only requires us to change iterator into RandomPtrIterator and to change std::string into Type. For example, operator<, defined in the class iterator as
inline bool operator<(StringPtr::iterator const &lhs,
StringPtr::iterator const &rhs)
{
return lhs.d_current < rhs.d_current;
}
is now implemented as:
template <typename Class, typename BaseIterator, typename Type>
bool RandomPtrIterator<Class, BaseIterator, Type>::operator<(
RandomPtrIterator const &other) const
{
return **d_current < **other.d_current;
}
Some additional examples: operator*, defined in the class iterator as
inline std::string &StringPtr::iterator::operator*() const
{
return **d_current;
}
is now implemented as:
template <typename Class, typename BaseIterator, typename Type>
Type &RandomPtrIterator<Class, BaseIterator, Type>::operator*() const
{
return **d_current;
}
The pre- and postfix increment operators are now implemented as:
template <typename Class, typename BaseIterator, typename Type>
RandomPtrIterator<Class, BaseIterator, Type>
&RandomPtrIterator<Class, BaseIterator, Type>::operator++()
{
++d_current;
return *this;
}
template <typename Class, typename BaseIterator, typename Type>
RandomPtrIterator<Class, BaseIterator, Type>
RandomPtrIterator<Class, BaseIterator, Type>::operator++(int)
{
return RandomPtrIterator(d_current++);
}
Remaining members can be implemented accordingly, their actual implementations are left as exercises to the reader (or can be obtained from the cplusplus.yo.zip archive, of course).
Re-implementing the class StringPtr developed in section 22.14.1 is not difficult either. Apart from including the header file defining the class template RandomPtrIterator, it only requires a single modification. Its iterator typedef must now be associated with a RandomPtrIterator. Here is the full class interface and the class's inline member definitions:
#ifndef INCLUDED_STRINGPTR_H_
#define INCLUDED_STRINGPTR_H_
#include <vector>
#include <string>
#include "iterator.h"
class StringPtr: public std::vector<std::string *>
{
public:
typedef RandomPtrIterator
<
StringPtr,
std::vector<std::string *>::iterator,
std::string
>
iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
iterator begin();
iterator end();
reverse_iterator rbegin();
reverse_iterator rend();
};
inline StringPtr::iterator StringPtr::begin()
{
return iterator(this->std::vector<std::string *>::begin() );
}
inline StringPtr::iterator StringPtr::end()
{
return iterator(this->std::vector<std::string *>::end());
}
inline StringPtr::reverse_iterator StringPtr::rbegin()
{
return reverse_iterator(end());
}
inline StringPtr::reverse_iterator StringPtr::rend()
{
return reverse_iterator(begin());
}
#endif
Including StringPtr's modified header file into the program given in section 22.14.2 results in a program behaving identically to its earlier version. In this case StringPtr::begin and StringPtr::end return iterator objects constructed from a template definition.
24.6: Using `bisonc++' and `flexc++'
The example discussed below digs into the peculiarities of using parser- and scanner generators generating C++ sources. Once the input for a program exceeds a certain level of complexity, it becomes attractive to use scanner- and parser-generators generating the code which does the actual input recognition.
The examples in this and subsequent sections assume that the reader knows how to use the scanner generator flex and the parser generator bison. Both bison and flex are well documented elsewhere. The original predecessors of bison and flex, called yacc and lex are described in several books, e.g. in O'Reilly's book `lex & yacc'.
Scanner- and parser generators are also available as free software. Both bison and flex are usually part of software distributions or they can be obtained from ftp://prep.ai.mit.edu/pub/non-gnu. Flex creates a C++ class when %option c++ is specified.
For parser generators the program bison is available. In the early 90's Alain Coetmeur (coetmeur@icdc.fr) created a C++ variant (bison++) creating a parser class. Although the bison++ program produces code that can be used in C++ programs it also shows many characteristics that are more suggestive of a C context than a C++ context. In January 2005 I rewrote parts of Alain's bison++ program, resulting in the original version of the program bisonc++. Then, in May 2005 a complete rewrite of the bisonc++ parser generator was completed (version number 0.98). Current versions of bisonc++ can be downloaded from https://fbb-git.gitlab.io/bisoncpp/. Binary versions for various architectures are available as, e.g., Debian package (including bisonc++'s documentation).
Bisonc++ creates a cleaner parser class than bison++. In particular, it derives the parser class from a base-class, containing the parser's token- and type-definitions as well as all member functions which should not be (re)defined by the programmer. As a result of this approach, the generated parser class is very small, declaring only members that are actually defined by the programmer (as well as some other members, generated by bisonc++ itself, implementing the parser's parse() member). One member that is not implemented by default is lex, producing the next lexical token. When the directive %scanner (see section 24.6.2.1) is used, bisonc++ produces a standard implementation for this member; otherwise it must be implemented by the programmer.
In early 2012 the program flexc++ http://flexcpp.org/ reached its initial release. Like bisonc++ it is part of the Debian linux distribution.
Jean-Paul van Oosten (j.p.van.oosten@rug.nl) and Richard Berendsen (richardberendsen@xs4all.nl) started the flexc++ project in 2008 and the final program was completed by Jean-Paul and me between 2010 and 2012.
These sections of the C++ Annotations focus on bisonc++ as our parser generator and flexc++ as our lexical scanner generator. Previous releases of the C++ Annotations were using flex as the scanner generator.
Using flex++ and bisonc++ class-based scanners and parsers are generated. The advantage of this approach is that the interface to the scanner and the parser tends to become cleaner than without using class interfaces. Furthermore, classes allow us to get rid of most if not all global variables, making it easy to use multiple parsers in one program.
Below two example programs are developed. The first example only uses flexc++. The generated scanner monitors the production of a file from several parts. That example focuses on the lexical scanner and on switching files while churning through the information. The second example uses both flexc++ and bisonc++ to generate a scanner and a parser transforming standard arithmetic expressions to their postfix notations, commonly used in code generated by compilers and in HP-calculators. In the second example the emphasis is mainly on bisonc++ and on composing a scanner object inside a generated parser.
24.6.1: Using `flexc++' to create a scanner
The lexical scanner developed in this section is used to monitor the production of a file from several subfiles. The setup is as follows: the input-language defines #include directives, followed by a text string specifying the file (path) which should be included at the location of the #include.
In order to avoid complexities irrelevant to the current example, the format of the #include statement is restricted to the form #include <filepath>. The file specified between the angle brackets should be available at the location indicated by filepath. If the file is not available, the program terminates after issuing an error message.
The program is started with one or two filename arguments. If the program is started with just one filename argument, the output is written to the standard output stream cout. Otherwise, the output is written to the stream whose name is given as the program's second argument.
The program defines a maximum nesting depth. Once this maximum is exceeded, the program terminates after issuing an error message. In that case, the filename stack indicating where which file was included is printed.
An additional feature of the program is that (standard C++) comment-lines are ignored. Include-directives in comment-lines are also ignored.
The program is created in five major steps:
24.6.1.1: The derived class `Scanner'
The function matching the regular expression rules (lex) is a member of the class Scanner. Since Scanner is derived from ScannerBase, it has access to all of ScannerBase's protected members that execute the lexical scanner's regular expression matching algorithm.
Looking at the regular expressions themselves, notice that we need rules to recognize comment, #include directives, and all remaining characters. This all is fairly standard practice. When an #include directive is sensed, the directive is parsed by the scanner. This too is common practice. Our lexical scanner performs the following tasks:
24.6.1.2: The lexical scanner specification file
The lexical scanner specification file is organized comparably to the one used for flex in C contexts. However, in C++ contexts, flexc++ creates a class Scanner, rather than just a scanner function.
Flexc++'s specification file consists of two sections:
%filenames scanner
%debug
%max-depth 3
%x comment
%x include
%%
// The comment-rules: comment is ignored.
//.* // ignore eoln comment
"/*" begin(StartCondition__::comment);
<comment>{
.|\n // ignore all characters in std C comment
"*/" begin(StartCondition__::INITIAL);
}
// File switching: #include <filepath>
#include[ \t]+"<" begin(StartCondition__::include);
<include>{
[^ \t>]+ d_nextSource = matched();
">"[ \t]*\n switchSource();
.|\n throw runtime_error("Invalid include statement");
}
// The default rule: echo anything else to std::cout
.|\n echo();
24.6.1.3: Implementing `Scanner'
The class Scanner is generated once by flexc++. This class has access to several members defined by its base class ScannerBase. Some of these members have public access rights and can be used by code external to the class Scanner. These members are extensively documented in the flexc++(1) man-page, and the reader is referred to this man-page for further information.
Our scanner performs the following tasks:
The #include statements in the input allow the scanner to distill the name of the file where the scanning process must continue. This file name is stored in a local variable d_nextSource and a member stackSource handles the switch to the next source. Nothing else is required. Pushing and popping input files is handled by the scanner's members pushStream and popStream, provided by flexc++. Scanner's interface, therefore, only needs one additional function declaration: switchSource.
Switching streams is handled as follows: once the scanner has extracted a filename from an #include directive, a switch to another file is realized by switchSource. This member calls pushStream, defined by flexc++, to stack the current input stream and to switch to the stream whose name is stored in d_nextSource. This also ends the include mini-scanner, so to return the scanner to its default scanning mode begin(StartCondition__::INITIAL) is called. Here is its source:
#include "scanner.ih"
void Scanner::switchSource()
{
pushStream(d_nextSource);
begin(StartCondition__::INITIAL);
}
The member pushStream, defined by flexc++, handles all necessary checks, throwing an exception if the file could not be opened or if too many files are stacked.
The member performing the lexical scan is defined by flexc++ in Scanner::lex, and this member can be called by code to process the tokens returned by the scanner.
24.6.1.4: Using a `Scanner' object
The program using our Scanner is very simple. It expects a filename indicating where to start the scanning process.
The program first checks the number of arguments. If at least one argument was given, then that argument is passed to Scanner's constructor, together with a second argument "-", indicating that the output should go to the standard output stream.
If the program receives more than one argument debug output, extensively documenting the lexical scanner's actions, is written to the standard output stream as well.
Next the Scanner's lex member is called. If anything fails, a std::exception is thrown, which is caught by main's try-block's catch clause. Here is the program's source:
#include "lexer.ih"
int main(int argc, char **argv)
try
{
if (argc == 1)
{
cerr << "Filename argument required\n";
return 1;
}
Scanner scanner(argv[1], "-");
scanner.setDebug(argc > 2);
return scanner.lex();
}
catch (exception const &exc)
{
cerr << exc.what() << '\n';
return 1;
}
24.6.1.5: Building the program
The final program is constructed in two steps. These steps are given for a Unix system, on which flexc++ and the GNU C++ compiler g++ have been installed:
flexc++ lexer
g++ -Wall *.cc
Flexc++ can be downloaded from https://fbb-git.gitlab.io/flexcpp/, and requires the bobcat library, which can be downloaded from http://fbb-git.gitlab.io/bobcat/.
24.6.2: Using `bisonc++' and `flexc++'
Once an input language exceeds a certain level of complexity, a parser is often used to control the complexity of the language. In this case, a parser generator can be used to generate the code verifying the input's grammatical correctness. The lexical scanner (preferably composed into the parser) provides chunks of the input, called tokens. The parser then processes the series of tokens generated by the lexical scanner.
Starting point when developing programs that use both parsers and scanners is the grammar. The grammar defines a set of tokens that can be returned by the lexical scanner (called the scanner below).
Finally, auxiliary code is provided to `fill in the blanks': the actions performed by the parser and by the scanner are not normally specified literally in the grammar rules or lexical regular expressions, but should be implemented in member functions, called from the parser's rules or which are associated with the scanner's regular expressions.
In the previous section we've seen an example of a C++ class generated by flexc++. In the current section we concentrate on the parser. The parser can be generated from a grammar specification file, processed by the program bisonc++. The grammar specification file required by bisonc++ is similar to the file processed by bison (or bison++, bisonc++'s predecessor, written in the early nineties by Alain Coetmeur).
In this section a program is developed converting infix expressions, where binary operators are written between their operands, to postfix expressions, where operators are written behind their operands. Also, the unary operator - is converted from its prefix notation to a postfix form. The unary + operator is ignored as it requires no further actions. In essence our little calculator is a micro compiler, transforming numeric expressions into assembly-like instructions.
Our calculator recognizes a rather basic set of operators: multiplication, addition, parentheses, and the unary minus. We'll distinguish real numbers from integers, to illustrate a subtlety in bison-like grammar specifications. That's all. The purpose of this section is, after all, to illustrate the construction of a C++ program that uses both a parser and a lexical scanner, rather than to construct a full-fledged calculator.
In the coming sections we'll develop the grammar specification for bisonc++. Then, the regular expressions for the scanner are specified. Following that, the final program is constructed.
24.6.2.1: The `bisonc++' specification file
The grammar specification file required by bisonc++ is comparable to the specification file required by bison. Differences are related to the class nature of the resulting parser. Our calculator distinguishes real numbers from integers, and supports a basic set of arithmetic operators.
Bisonc++ should be used as follows:
int main()
{
Parser parser;
return parser.parse();
}
The bisonc++ specification file has two sections:
Readers familiar with bison may note that there is no header section anymore. Header sections are used by bison to provide for the necessary declarations allowing the compiler to compile the C function generated by bison. In C++ declarations are part of or already used by class definitions. Therefore, a parser generator generating a C++ class and some of its member functions does not require a header section anymore.
The declaration section
The declaration section contains several sets of declarations, among which definitions of all the tokens used in the grammar and the priorities and associativities of the mathematical operators. Moreover, several new and important specifications can be used here as well. Those relevant to our current example and only available in bisonc++ are discussed here. The reader is referred to bisonc++'s man-page for a full description.
inline int Parser::lex()
{
return d_scanner.lex();
}
and an object Scanner d_scanner is composed into the parser. The d_scanner object is constructed by its default constructor. If another constructor is required, the parser class may be provided with an appropriate (overloaded) parser constructor after having constructed the default parser class header file using bisonc++. By default header is surrounded by double quotes (using, e.g., #include "header"). When the argument is surrounded by angle brackets #include <header> is included.
An example of a %union declaration is:
%union
{
int i;
double d;
};
In pre-C++11 code a union cannot contain objects as its fields, as constructors cannot be called when a union is created. This means that a string cannot be a member of the union. A string *, however, is a possible union member. It might also be possible to use unrestricted unions (cf. section 9.9), having class type objects as fields.
As an aside: the scanner does not have to know about such a union. It can simply pass its scanned text to the parser through its matched member function. For example using a statement like
$$.i = A2x(d_scanner.matched());
matched text is converted to a value of an appropriate type.
Tokens and non-terminals can be associated with union fields. This is strongly advised, as it prevents type mismatches, since the compiler may then check for type correctness. At the same time, the bison specific variables $$, $1, $2, etc. may be used, rather than the full field specification (like $$.i). A non-terminal or a token may be associated with a union field using the <fieldname> specification. E.g.,
%token <i> INT // token association (deprecated, see below)
<d> DOUBLE
%type <i> intExpr // non-terminal association
In the example developed here, both the tokens and the non-terminals can be associated with a union field. However, as noted before, the scanner does not have to know about all this. In our opinion, it is cleaner to let the scanner do just one thing: scan texts. The parser, knowing what the input is all about, may then convert strings like "123" to an integer value. Consequently, the association of a union field and a token is discouraged. Below, while describing the grammar's rules, this is further illustrated.
In the %union discussion the %token and %type specifications should be noted. They are used to specify the tokens (terminal symbols) that can be returned by the scanner, and to specify the return types of non-terminals. Apart from %token the token declarators %left, %right, and %nonassoc can be used to specify the associativity of operators. The tokens mentioned at these indicators are interpreted as tokens indicating operators, associating in the indicated direction. The precedence of operators is defined by their order: the first specification has the lowest priority. To overrule a certain precedence in a certain context %prec can be used. As all this is standard bisonc++ practice, it isn't further elaborated here. The documentation provided with bisonc++'s distribution should be consulted for further reference.
Here is the specification of the calculator's declaration section:
%filenames parser
%scanner ../scanner/scanner.h
%union {
int i;
double d;
};
%token INT DOUBLE
%type <i> intExpr
%type <d> doubleExpr
%left '+'
%left '*'
%right UnaryMinus
In the declaration section %type specifiers are used, associating the intExpr rule's value (see the next section) to the i-field of the semantic-value union, and associating doubleExpr's value to the d-field. This approach, admittedly, is rather complex, as expression rules must be included for each of the supported union types. Alternatives are definitely possible, and involve the use of polymorphic semantic values, covered in detail in the Bisonc++ user guide.
The grammar rules
The rules and actions of the grammar are specified as usual. The grammar for our little calculator is given below. There are quite a few rules, but they illustrate various features offered by bisonc++. In particular, note that no action block requires more than a single line of code. This keeps the grammar simple, and therefore enhances its readability and understandability. Even the rule defining the parser's proper termination (the empty line in the line rule) uses a single member function called done. The implementation of that function is simple, but it is worth while noting that it calls Parser::ACCEPT, showing that ACCEPT can be called indirectly from a production rule's action block. Here are the grammar's production rules:
lines:
lines
line
|
line
;
line:
intExpr
'\n'
{
display($1);
}
|
doubleExpr
'\n'
{
display($1);
}
|
'\n'
{
done();
}
|
error
'\n'
{
reset();
}
;
intExpr:
intExpr '*' intExpr
{
$$ = exec('*', $1, $3);
}
|
intExpr '+' intExpr
{
$$ = exec('+', $1, $3);
}
|
'(' intExpr ')'
{
$$ = $2;
}
|
'-' intExpr %prec UnaryMinus
{
$$ = neg($2);
}
|
INT
{
$$ = convert<int>();
}
;
doubleExpr:
doubleExpr '*' doubleExpr
{
$$ = exec('*', $1, $3);
}
|
doubleExpr '*' intExpr
{
$$ = exec('*', $1, d($3));
}
|
intExpr '*' doubleExpr
{
$$ = exec('*', d($1), $3);
}
|
doubleExpr '+' doubleExpr
{
$$ = exec('+', $1, $3);
}
|
doubleExpr '+' intExpr
{
$$ = exec('+', $1, d($3));
}
|
intExpr '+' doubleExpr
{
$$ = exec('+', d($1), $3);
}
|
'(' doubleExpr ')'
{
$$ = $2;
}
|
'-' doubleExpr %prec UnaryMinus
{
$$ = neg($2);
}
|
DOUBLE
{
$$ = convert<double>();
}
;
This grammar is used to implement a simple calculator in which integer and real values can be negated, added, and multiplied and in which standard priority rules can be overruled by parentheses. The grammar shows the use of typed nonterminal symbols: doubleExpr is linked to real (double) values, intExpr is linked to integer values. Precedence and type association is defined in the parser's definition section.
The Parser's header file
Several class members called from the grammar are defined as member templates. Bisonc++ generates multiple files, among which the file defining the parser's class. Functions called from the production rule's action blocks are usually member functions of the parser. These member functions must be declared and defined. Once bisonc++ has generated the header file defining the parser's class, that header file isn't automatically rewritten, allowing the programmer to add new members to the parser class whenever required. Here is `parser.h' as used in our little calculator:
#ifndef Parser_h_included
#define Parser_h_included
#include <iostream>
#include <sstream>
#include <bobcat/a2x>
#include "parserbase.h"
#include "../scanner/scanner.h"
#undef Parser
class Parser: public ParserBase
{
std::ostringstream d_rpn;
// $insert scannerobject
Scanner d_scanner;
public:
int parse();
private:
template <typename Type>
Type exec(char c, Type left, Type right);
template <typename Type>
Type neg(Type op);
template <typename Type>
Type convert();
void display(int x);
void display(double x);
void done() const;
void reset();
void error(char const *msg);
int lex();
void print();
static double d(int i);
// support functions for parse():
void executeAction(int d_ruleNr);
void errorRecovery();
int lookup(bool recovery);
void nextToken();
void print__();
};
inline double Parser::d(int i)
{
return i;
}
template <typename Type>
Type Parser::exec(char c, Type left, Type right)
{
d_rpn << " " << c << " ";
return c == '*' ? left * right : left + right;
}
template <typename Type>
Type Parser::neg(Type op)
{
d_rpn << " n ";
return -op;
}
template <typename Type>
Type Parser::convert()
{
Type ret = FBB::A2x(d_scanner.matched());
d_rpn << " " << ret << " ";
return ret;
}
inline void Parser::error(char const *msg)
{
std::cerr << msg << '\n';
}
inline int Parser::lex()
{
return d_scanner.lex();
}
inline void Parser::print()
{}
#endif
24.6.2.2: The `flexc++' specification file
The flex-specification file used by the calculator is simple: blanks are ignored, single characters are returned, and numeric values are returned as either Parser::INT or Parser::DOUBLE tokens.
The flexc++ directive %interactive is provided since the calculator is a program actively interacting with its human user.
Here is the complete flexc++ specification file:
%interactive
%filenames scanner
%%
[ \t] // ignored
[0-9]+ return Parser::INT;
"."[0-9]* |
[0-9]+("."[0-9]*)? return Parser::DOUBLE;
.|\n return matched()[0];
24.6.2.3: Building the program
The calculator is built using bisonc++ and flexc++. Here is the implementation of the calculator's main function:
#include "parser/parser.h"
using namespace std;
int main()
{
Parser parser;
cout << "Enter (nested) expressions containing ints, doubles, *, + and "
"unary -\n"
"operators. Enter an empty line to stop.\n";
return parser.parse();
}
The parser's files parse.cc and parserbase.h are generated by the command:
bisonc++ grammar
The file parser.h is created only once, to allow the developer to add members to the Parser class occe the need for them arises.
The program flexc++ is used to create a lexical scanner:
flexc++ lexer
On Unix systems a command like
g++ -Wall -o calc *.cc -lbobcat -s
can be used to compile and link the source of the main program and the sources produced by the scanner and parser generators. The example uses the A2x class, which is part of the bobcat library (cf. section 24.6.1.5) (the bobcat library is available on systems offering either bisonc++ or flexc++). Bisonc++ can be downloaded from
http://fbb-git.gitlab.io/bisoncpp/.
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